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Chemotherapeutic agents have certain limitations when it comes to treating cancer, the most important being
severe side effects along with multidrug resistance developed against them. Tumor cells exhibit drug resistance
due to activation of various cellular level processes viz. activation of drug efflux pumps, anti-apoptotic defense
mechanisms, etc. Currently, RNA interference (RNAi) based therapeutic approaches are under vibrant
scrutinization to seek cancer cure. Especially small interfering RNA (siRNA) and micro RNA (miRNA), are able
to knock down the carcinogenic genes by targeting the mRNA expression, which underlies the uniqueness of
this therapeutic approach. Recent research focus in the regime of cancer therapy involves the engagement of
targeted delivery of siRNA/miRNA in combinations with other therapeutic agents (such as gene, DNA or chemo-
therapeutic drug) for targeting permeability glycoprotein (P-gp), multidrug resistant protein 1 (MRP-1), B-cell
lymphoma (BCL-2) and other targets that are mainly responsible for resistance in cancer therapy. RNAi-
chemotherapeutic drug combinations have also been found to be effective against different molecular targets
as well and can increase the sensitization of cancer cells to therapy several folds. However, due to stability issues
associated with siRNA/miRNA suitable protective carrier is needed and nanotechnology based approaches have
been widely explored to overcome these drawbacks. Furthermore, it has been univocally advocated that the co-
delivery of siRNA/miRNA with other chemodrugs significantly enhances their capability to overcome cancer
resistance compared to naked counterparts. The objective of this article is to review recent nanocarrier based
approaches adopted for the delivery of siRNA/miRNA combinations with other anticancer agents (siRNA/
miRNA/pDNA/chemodrugs) to treat cancer.

© 2014 Published by Elsevier B.V.
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Cancer is a leading cause of death and according toWorld Health Or-
ganization accounted for almost 8.2 million deaths worldwide in 2012
[1]. Lung, breast, prostate, pancreatic, stomach, liver, and colon cancer
are leading causes of cancer deaths around the world. Of all the cancer
related deaths, lung cancer is the leading cause worldwide, accounting
for around 1.59 million deaths in 2012 followed by liver (745,000),
stomach (723,000), breast (521,000) [2]. The current therapies for can-
cer treatment include chemotherapy, radiotherapy and surgery. Che-
motherapy continues to play an important role in treatment of cancer,
despite several advances in the field of surgery and radiotherapy [3].

Chemotherapy involves the use of chemotherapeutic drugs to inhib-
it or control the growth of cancer cells [4,5]. The cytotoxic agents how-
ever pose many limitations that may result in reduced effectiveness of
the chemotherapeutic agents [6–8]. The non-selective nature of most
of the therapeutic agents results in significant damage to the normal
cells. These agents also lack specific distribution in the body resulting
in insufficient penetration into the tumors causing toxicity to normal
healthy tissues and further limiting the dose and or frequency of dosing
[9,10]. Another important limitation associated with chemotherapeutic
drugs is the emergence ofmultidrug resistance (MDR) and ismainly the
result of two mechanisms viz. the drug efflux pumps on the cell mem-
brane and augmented anti-apoptotic mechanisms [11–13]. The devel-
opment of MDR in cancer cells due to increased efflux pumps leads to
a decreased intracellular concentration of drug ultimately resulting in
the failure of chemotherapy [9,14,15]. On the other hand, the anti-
apoptoticmechanismdeveloped by cancer cells enables them to survive
against the cytotoxic effect of chemotherapeutic agents [16,17]. The one
dimensional actionmechanism of single drug therapy often leads to the
activation of alternate pathways resulting in development of chemo re-
sistance and tumor relapse [18,19].

Combination therapy has been recommended for the treatment of
cancer due to its primary advantage of increased efficacy due to additive
or synergistic anticancer activity [20,21]. It is possible to achieve the
synergistic effect with the use of appropriate combination of chemo-
therapeutic agents which improves the therapeutic outcome and pa-
tient compliance due to reduced dose and decreases development of
cancer drug resistance [18,22,23]. RNAi mediated by siRNA and
miRNA has emerged as one of the most promising strategy for antican-
cer therapy. Nucleic acid based bioactive such as siRNA that can poten-
tially down regulate the gene expression has shown huge promise
under in vitro, in vivo and clinical trials for the treatment of cancer
[24]. The potential advantage of siRNA strategy includes target specific-
ity and ability to inhibit the expression of amutant carcinogenic protein
without affecting the wild type [25,26]. MiRNA is another potentially
vital group of nucleic acid based agents that has enormous potential
Please cite this article as: N.S. Gandhi, et al., Nanocarrier mediated delive
cancer therapy: Current progress and advances, J. Control. Release (2014)
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to be developed as an anticancer therapeutics [27–29]. MiRNAs have
been shown to play a very important role in various cellular processes
such as apoptosis, development and differentiation. MiRNAs also have
been shown to be mis-expressed in cancers and exert their effect as
oncogenes or tumor suppressors [30].

The objective of this article is to review various nanoformulation
approaches that have been adopted to deliver widely studied siRNA
and recent miRNA based combinations with chemotherapeutic drug
for cancer therapy. It is anticipated that this article will give an update
to formulation scientists about the progress done towards development
of siRNA/miRNA based combinations.

2. RNA interference (RNAi)

RNAi is a natural mechanism occurring in most eukaryotic cells in
which the double stranded ribonucleic acids (dsRNAs) undertake the
function of regulating gene expression [31]. It is a specific regulatory
mechanism, which helps in regulating various biological pathways
and protecting the body against various pathogens [32,33]. RNAi repre-
sents a novel way to treat diseases, whichwould not have been possible
with the conventional medicines [34]. The RNAi based medicine in-
volves delivery of double stranded siRNA or miRNA to the diseased
cells [31]. The RNAi sequences can be easily designed to target the spe-
cific genes. One of the important use RNAi based medicine is to target
some of the proteins which are involved in certain diseases and cannot
be targeted using conventional molecules, due to the lack of enzymatic
function or inaccessibility. Such non-druggable targets have been easily
targeted using siRNA/miRNA [31]. The two main types of RNAis, siRNA
and miRNA have been described in brief in the following sections.

2.1. Small interfering RNA

SiRNAs are chemically synthesized duplex which are 19–23 nucleo-
tide (nt) long having 2-nt-3′ overhang, comparable to that of endoge-
nous miRNAs. This allows them to be easily recognized by the enzyme
DICER and undergo further processing. The duplex siRNAs are then un-
wound by helicase activity of Argonaute. One of the two strands, a guide
strand is retained within the complex RNA inducing silencing complex
(RISC)while the other passenger strand undergoes degradation by exo-
nucleases. The RISC-siRNA complex then leads to degradation of mRNA.
The detailedmechanismof siRNA interference is explained in Fig. 1 [31].

2.2. Micro RNA

MiRNA are 20–24 nucleotide long, double stranded, endogenous RNA
molecules which also plays important role in regulating gene expression
[35,36]. MiRNA are involved in mediating the post-transcriptional
ry of siRNA/miRNA in combination with chemotherapeutic agents for
, http://dx.doi.org/10.1016/j.jconrel.2014.09.001
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Fig. 1. RNA interferencemechanism: siRNA: The siRNA pathway beginswith cleavage of dsRNA by enzyme DICER resulting in siRNA in the cytoplasm of cell [34,49]. The siRNA then binds
to Argonaute (AGO2) protein and RNA inducing silencing complex (RISC) [37]. One strand of the siRNA duplex (the passenger strand) is removed by AGO2 resulting in RISC containing
guide strand [50]. The activated RISC-siRNA binds to the complementary sequences on the mRNA and results in its cleavage and degradation [51]. Biogenesis of miRNA: The RNA
polymerase II or III is responsible for the production of primary-miRNAs (pri-miRNA) [36,52]. In the nucleus, the resulting pri-miRNAs are cleaved by themicroprocessor complex Drosha
[53]. The pre-miRNA is transported to the cytoplasm by Exportin 5 (XPO5) and the loop structure is removed by the Dicer complex (Dicer–TAR binding protein) resulting in miRNA or
miRNA duplexes [54,55]. One strand of the duplex is incorporated into AGO2 and RISC which targets mRNA and results in its degradation [56]. (Adapted with permission from [57]).
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silencing of genes [37]. miRNA is capable of controlling the expression of
more than onemRNA, a distinguishing feature from siRNA [38]. The bio-
genesis of miRNA begins with transcription by RNA polymerase II or III
producing primary miRNA (pri-miRNA) in the nucleus, which is further
processed by Drosha and the DiGeorge critical region 8 (DGCR8) to
yield a long nucleotide. It is transported to the cytoplasm where it is
processed further and similar to siRNA, forms an active complex with
RISC. This complex then binds to the mRNA leading to its degradation.
Fig. 1 illustrates the detailed biogenesis pathway of miRNA.

SiRNA/miRNA induces the gene specific cleavage through its com-
plementary pairing with mRNA and resulting in degradation of mRNA.
SiRNA/miRNA has the ability to knock down genes and overcome the
cellular pathways and help treat diseases caused by aberrant gene ex-
pression [39,40]. Results have been promising with the use of siRNA to
knock down the genes related to MDR mechanisms and improve the
sensitivity of resistant cancer cells to chemotherapeutic agents [9,41].
Hence, the sensitivity of cancer cell to chemotherapeutic agents can be
enhanced using combination therapy with siRNA which will help to
prevent the development of chemo resistance [42,43]. Simultaneously
inhibiting multiple targets using siRNAs of different nature and origin
is also an effective approach to treat cancer [43]. On the other hand it
has been found that miRNAs also play a very crucial role in tumorigen-
esis and drug resistance [44]. A singlemiRNAhas the potential to bind to
thousands of mRNA and can either act as a tumor suppressor genes
when down-regulateded or as an oncogene (oncomirs) when up-
Please cite this article as: N.S. Gandhi, et al., Nanocarrier mediated deliver
cancer therapy: Current progress and advances, J. Control. Release (2014)
regulated [45]. MiRNA have also been shown to be implicated in cancer
stem cells (CSCs) and epithelial–mesenchymal transition (EMT), which
are critically associatedwith cancermetastasis and drug resistance [46].

The pathogenesis of tumor is heterogeneous and progression occurs
due to the defects in various signaling pathways associated with tumor
tissues. The tumor cell signaling pathways primarily involves interac-
tion of growth factorswith receptors e.g. human growth factor receptor,
insulin-like growth factor receptor, etc., and thereby resulting in down-
ward cascade of signaling [47]. In certain cancer such as non-small cell
lung cancer (NSCLC), activation of oncogenes and growth factor signal-
ing plays a very decisive role and using different therapeutic siRNAs to
target molecular targets involved in tumor development can signifi-
cantly reduce the tumor growth [48]. Angiogenesis is also an important
process in progression and growth of tumor tissue. Based on specific
pathways involved in the cancer progression, the rationale selection of
siRNA or miRNA in combination with chemodrug will provide effective
treatment options. The siRNA and miRNA have similar properties such
as negative charge, instability in serum and cytosol as delivery target
site. The therapeutic concentration of miRNA or siRNA in tumor tissue
is required to elicit the anticancer effect and hence, the optimization
of nanoparticles in term of size, charge, release, stability, pharmacoki-
netic and pharmacodynamics properties needs to be performed [48].
Considering someof the abovementioned factors and other such factors
discussed later in the article, an appropriate nanoparticle system can be
selected to deliver the agents.
y of siRNA/miRNA in combination with chemotherapeutic agents for
, http://dx.doi.org/10.1016/j.jconrel.2014.09.001
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3. Problems with in vivo delivery of siRNA and miRNA

3.1. Biological instability

The short lived nature of siRNA and miRNA’s gene silencing effects
along with their poor stability in biological systems is one of the major
obstacles towards their successful application as therapeutic agents
[58,59]. The siRNA/miRNA are rapidly degraded by endo- and exonucle-
ases and quickly eliminated by kidney filtration due to their lowmolec-
ular mass (~13 kDa) [60,61].

Various strategies such as chemical modifications of the backbone,
glycation, nucleic acid locking, etc., have been investigated to improve
their stability under biosystems [59,60]. However, aforementioned mo-
tifs of attaining biological stability have its own allied limitations [62,
63], and hence successful use of siRNA/miRNA in cancer therapy
demands alternative approaches that can protect them from adverse
environmentwhile retaining their bioactivitywithout concomitant acti-
vation of immune system.

3.2. Stimulation of innate immune system

Long dsRNA has the ability to trigger sequence specific innate im-
mune system that primarily involves the activation of interferon (IFN)
system [64,65]. DsRNA was found to induce IFN responses by binding
to dsRNA activated protein kinase (PKR), 2′,5′-oligoadenylate
synthetase- RNase L system retinoic acid-inducible gene I (RIG-I) or sev-
eral Toll-like receptors (TLRs); which are mostly aimed at combating
viral pathogens [66,67]. These outcomes direct the need to explore a de-
livery system that can protect the exposure of such codes and prevent
initiation of immuno responsive elements within the body (i.e. to
avoid ‘off-target effect’). At the same time, itmust benoted that such de-
livery system must be capable to concomitantly deliver these bioactive
at desired site of action.

3.3. Off-target effects

Although originally thought to be highly specific, but similar to
miRNA, siRNA also has the ability to regulate large number of transcripts
[68,69]. The off targets effects are generally prominent when there is a
match between the seed region of siRNAs (positions 2–7) and se-
quences in the 3′ UTR of the off-target gene. There are several reported
modifications of siRNA that have shown to eliminate off-target effects
such as phosphorothioate or boranophosphate introduction, modifica-
tion of the 2′- position, etc. Thus, in order to minimize the off-target ef-
fects of siRNA several factors such as dose, backbone design and
structural modification must be taken into consideration [70].

4. Rationale behind adoption of RNAi based drug combination
therapies

Combination therapy with siRNA or miRNA significantly enhances
the sensitivity of chemotherapeutic drugs by sensitizing the genes in-
volved in developing the chemotherapeutic resistance [71]. Before
going into further details of strategies dealing with the delivery of
RNAi based chemo-combination, it is imperative to understand the
key mechanisms by which cancer cell attains chemoresistance. There
are two key mechanisms viz. efflux pump and non-efflux pump by
which the tumor cells aremore likely to develop chemo/drug resistance.
Following section briefly discusses these two mechanisms.

4.1. Emergence of cancer drug resistance: Mechanistic outlook

4.1.1. Membrane transporters or efflux pump alterations
Efflux pump alternation is the expression of an energy-dependent

drug efflux pump, known alternatively as P-gp or the multidrug trans-
porter (Fig. 2) (14, 15). MDR-1 gene is primarily responsible for
Please cite this article as: N.S. Gandhi, et al., Nanocarrier mediated delive
cancer therapy: Current progress and advances, J. Control. Release (2014)
F

activating the efflux pump. Other related genes such as MDR-1a and
MDR1b are also involved in similar activation process. P-gp efflux
pumps are one of the first members of adenosine triphosphate (ATP)-
dependent transporters family known as the ATP-binding cassette
(ABC). The P-gp efflux pumps are usually present on the cell membrane
and/or the nuclear membrane and possess the capability to bind either
to positive or neutrally chargedmolecules. Itmay benoted thatmajority
of chemotherapeutic drugs are either neutral or positively charged
under extra- or intra-cellular pH, and thus acts as a substrate for P-gp
pumps. Hence, after encountering P-gp pump, chemotherapeutic
drugs can be pumped out of the cell leading to a decreased effective con-
centration inside the cellular compartment [9,72]. This mechanism can
be thus stated as self-defense machinery, mainly exhibited by the can-
cer cells to protect them against the cytotoxic action of chemotherapeu-
tic drugs. In addition to this mechanism, cancer cells also activate
antiapoptic pathways as a protective mechanism.
E
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O4.1.2. Activation of anti-apoptotic pathways: A key cancer resistance
conduit

Apoptosis is most common type of programmed cell death, which is
also very vital for embryogenesis; tissue homeostasis and defense
against pathogens [73,74]. The activation of anti-apoptotic pathways is
yet another key defense mechanism that rescues cells from cell death.
A series of cascade signals activate apoptosis involving several proteins.
B-cell lymphoma-2 (BCL-2) is among the first apoptotic regulator to be
identified. Bcl-2 protein is encoded by the gene BCL-2 and it belongs to
Bcl-2 family, which has a major role in preventing apoptosis in healthy
cells by promoting cell survival rather than by driving cell proliferation
and it is correlated with cancer cell survival and resistance (Fig. 2). My-
eloid cell leukemia-1 (Mcl-1), a protein encoded by the gene MCL-1, is
another member of the class of BCL-2 that has been identified as an in-
hibitor of apoptosis and inducer of drug resistance by BCL-2 family [9,
75]. This article is mainly focused on the siRNA andmiRNA based deliv-
ery systems in the treatment of cancers. The drug resistancemechanism
is explained in detail elsewhere [72,76].
4.1.3. Strategies to overcome cancer resistance using RNAi based chemo-
therapeutic drug combinations

There are several strategies employed recently to overcome both in
efflux and non-efflux pump related MDR in the developed by cancer
cells [77,78]. Sensitization strategies using siRNA to knockdown the pri-
mary efflux pump receptors genes, encoding for proteins such as P-gp,
MRP have shown huge promise. Meng et al. synthesized silica nanopar-
ticles containing combination of siRNA against P-gp pump and doxoru-
bicin (DOX) to sensitize the DOX resistant KB-V1 cervical cancer cells.
Investigators studied the down regulation of the genes associated with
the activation of P-gp pump using siRNA. This strategy navigated the
cancer cells from resistant stage to sensitized stage and the delivery of
higher intracellular concentration of DOX resulted in increased antican-
cer activity [79].

Several sensitization strategies have been employed to overcome
non-efflux pump related MDR [80]. Strategies include inhibition of cell
survival pathways, altering transcription factors and silencing anti-
apoptotic factors using siRNA [9]. Cationic micelles have been used to
deliver siRNA targeting BCL-2 and docetaxel (DTX) in vivo to investigate
the synergistic tumor suppression effect against breast cancer [81].
Trilysinoyloleylamide based liposomes have also been used to deliver
anticancer drug suberoylanilidehydroxamic acid and siRNA targeting
gene encoding for Mcl-1 protein involved in anti-apoptotic defense
mechanisms against human epithelial cancer [82]. Other such promis-
ing approaches using siRNA in combination with chemotherapeutic
agent to overcome both efflux and non-efflux pump related genes for
effective treatment of cancer have been reviewed in detail in later
sections.
ry of siRNA/miRNA in combination with chemotherapeutic agents for
, http://dx.doi.org/10.1016/j.jconrel.2014.09.001
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Fig. 2.Mechanism of sensitization of resistant cancer cells by co-delivering siRNA and a chemotherapeutic agent. Therapeutic agents encapsulated in nanoparticles evade the efflux pump
via endosomal internalization. Once in the endosome, the specifically designed nanoparticles release siRNA/miRNA and drug in the cytosol resulting in the cytotoxic effect.
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4.2. Tumor angiogenesis: Rationale for using RNAi based combination

Experimental evidence suggests that tumor growth and metastasis
is also dependent on the angiogenesis, a process of formation of new
blood vessels [83,84]. The tumor after attaining a very small size further
develops new blood capillary networks to facilitate further tumor
growth [85]. Specific macrophages and certain angiogenic molecules
are involved in formation of newblood vessels [86,87]. The switch to an-
giogenic activity generally involves two stages—the prevascular and the
vascular phase [88,89]. There is a limited tumor growth in prevascular
phase, which may persist for several years, while the vascular phase is
usually associated with the rapid tumor growth with a high risk of me-
tastases [90,91].

In the event of tumor progression andmetastasis, vascular endothe-
lial growth factor (VEGF) is yet another potent pro-angiogenic factor.
The inhibition of the activity of VEGF leads to the suppression of various
factors that cause tumorigenesis viz, proliferation of endothelial cells,
angiogenesis and tumor growth. Recently, various chemotherapeutic
agents along with siRNA targeting VEGF gene have been explored
with high positive effects [48,92,93].

It is evident that the siRNA/miRNA are potential tool in a researcher's
armory for the treatment of cancer. However, the delivery of siRNA/
miRNA is still challenging and research efforts have been ongoing to im-
prove the delivery to tumor tissues. In this meadow, nanotechnology
based strategies represents promising mode to deliver siRNA/miRNA
in combinationwith chemotherapeutic drug to attain additive or syner-
gistic effect. Following section presents various nanotechnology based
approaches employed to deliver siRNA/miRNA in combination with
chemotherapeutic drug in the treatment of cancer.

5. Nanotechnology based approaches to deliver RNAi based
combinations

Nanotechnology is a multidisciplinary field covering various areas
from biology, engineering, chemistry and physics [94,95]. Nanotechnol-
ogy based therapeutics typically includes nanosized particles composed
of different entities such as lipids, polymers, inorganic materials, etc.
[96,97]. The term nano assembly is usually given to architect the range
in their diameter in the size range of 10 to 200 nm [98]. The enhanced
Please cite this article as: N.S. Gandhi, et al., Nanocarrier mediated deliver
cancer therapy: Current progress and advances, J. Control. Release (2014)
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permeability and retention (EPR) effect is a property of tumor tissue
which allows nanoscale molecules or particles to accumulate in the
tumor tissue compared to normal tissues. Typically for the successful
employment of theprolonged circulatory lifetimeand enhanced perme-
ation and retention (EPR) effect, nanoparticles of 20–100 nmare recom-
mended [99,100]. However, nanoparticles of b20 nmundergo clearance
via hepatic and renal routes of elimination. The tumor vasculature has a
pore cutoff size between 380 and780 nm [101]. Surface charge is also an
important factor which determines the stability and biodistribution of
the nanoparticles inside the body [102]. For example, it has been report-
ed that cationic and anionic liposomes activate the complement system
through different pathways compared to the neutral charged liposomes
[103]. Recently, Xiao et al. have reported that a slight negatively charged
nanoparticles (around −8.5 mV) helped in reducing the liver uptake,
prevent aggregation in the blood and deliver anti-cancer drugsmore ef-
ficiently to the tumor cells compared to the positive and negative coun-
terparts [102]. The variable results might be due to the inconsistent
particle sizes, different types of nanoparticles and the varying nature
of the surface charges. These studies suggest that the nanoparticle sur-
face property needs to be optimized for the surface charge to achieve
an enhanced intratumoral delivery.

Reticuloendothelial system (RES) including liver, spleen and other
parts are responsible for clearing the nanoparticles from the system
[104]. Apart from the criteria of having particle size approximately
100 nm and optimized surface charge, another important property the
nanoparticle should possess is the hydrophilic surface which reduces
the clearing fromRES system [105]. The attachment of polyethylene gly-
col (PEG) on the surface of nanoparticles helps significantly in reducing
the RES uptake and increases the circulation lifetime of the nanoparti-
cles compared to the uncoated nanoparticles . The aggregation of nano-
particles also reduces significantly as PEGylation helps avoiding the
interaction with serum and tissue proteins [106].

The potential advantages of nanotherapeutic strategy includes :
(a) higher delivery of loaded therapeutic agents, (b) can be delivered
through various routes of administrations including oral and inhalation,
and (c) can be used to deliver both hydrophilic and hydrophobic thera-
peutic moieties. The intravascular deliverable nano-vectors represent
themajor class of nanotechnology based systems used to deliver thera-
peutic agents for cancer therapy. Various carriers such as liposomes
y of siRNA/miRNA in combination with chemotherapeutic agents for
, http://dx.doi.org/10.1016/j.jconrel.2014.09.001
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[107], polymers poly (D,L-lactide-co-glycolide) (PLGA) [108,109], poly
lactic acid (PLA) [110,111], poly capro lactone (PCL) [112–114]),
dendrimers [115,116], and silica [117–119] have been used to deliver
the siRNA based combinations to treat cancer. ThemiRNA based combi-
nation therapies are in its early stage of development. Various carriers
such as cationic lipoplexes [120], polyethylenimine (PEI) bound to
iron oxide magnetic nanoparticles (MNP) [121], PLGA [122] have been
used to deliver miRNA for cancer therapy. The following section of arti-
cle systematically reviews the work done in the field of nanocarrier
based approaches for the delivery of RNAi based combinations.

5.1. Inorganic nanoparticles based siRNA combinations

Inorganic nanoparticles represent an efficient alternative due to the
lower toxicity [123] and also can be modeled to possess the controlled
release properties [124]. In perspective of drug delivery, bioactives can
be incorporated inside inorganic nanoparticulate systems without any
chemical modifications of bioactives [125]. The inorganic nanoparticles
that have been used for delivery of siRNA/DNA comprise of silica, calci-
um, gold, magnesium, strontium, quantum dots, etc. [126]. Inorganic
nanoparticles possess several versatile properties suitable for the cellu-
lar delivery including biocompatibility, controlled release of therapeu-
tics agents, and capability of targeted drug delivery. The inorganic
nanoparticles can be used for various routes of administration including
nasal, parenteral, intra-ocular, etc. The inorganic nanoparticles possess
ability to accumulate in cells without being recognized by P-gp, one of
the main mediators of MDR, resulting in the increased intracellular
concentration of drugs [127]. The various siRNA and chemotherapeutic
agent combinations delivered using inorganic nanoparticles are
discussed below.

One such inorganic material mesoporous silica based nanoparticles
(MSNs) has been widely investigated as carriers for the targeted drug
delivery system [128,129] (Table 1). Apart frombeing chemically stable,
it is safe, biocompatible and biodegradable [130,131]. MSNs possess
several advantages over other inorganic carriers such as having large
pore volumes to encapsulate higher amounts of drugs along with the
property of improved stability associated with their inorganic oxide
framework [132]. It has also been observed that MSNs can easily escape
the endolysosomal compartment and release the content in the cyto-
plasm [133,134]. Thus, MSNs are capable of releasing the content into
the cytoplasm along with serving as delivery vehicles.

Taratula et al. have developed a lung tumor targeted drug delivery
system (DDS) based on MSN [135]. The MSN carrier was used to co-
deliver anticancer drugs [DOX or cisplatin (CIS)], suppressor of pump
resistance (siRNA targeting MRP-1 mRNA), and suppressor of non-
pump cellular resistance (siRNA targeting BCL2 mRNA) using tumor
targeting moiety luteinizing hormone releasing hormone (LHRH) pep-
tide. The fluorescencemicroscopy and RT-PCR studies revealed efficient
intracellular delivery of DOX and successful release of siRNA in cyto-
plasm. The half maximal inhibitory concentration (IC50) dose of MSN
based DDS carrying DOX and CIS (IC50 = 1.5 μg/ml) was five times
higher compared to LHRH targeted MSN-drug complexes carrying
both BCL2 and MRP1 siRNA (IC50 = 0.3 μg/ml). The inhalation delivery
of LHRH targeted MSN-drug complexes carrying both BCL2 and MRP1
siRNA (LHRH-PEG-siRNA-DOX-MSN) showed that 73.6% of MSN was
retained in lung compared to 5% when intravenously (i.v.) injected
[135]. Also, after i.v. administrationMSN-based DDSwas found to be ac-
cumulated mainly in liver (73%), kidneys (15%) and spleen (7%) while
after inhalation it accumulates only 17%, 9% and 1% in liver, kidneys
and spleen respectively [135].

As mentioned previously, drug resistance can be observed if P-gp is
overexpressed, because MDR-1 will lead to the formation of efflux
pump which will pump out the chemotherapeutic agent [152]. Meng
et al. developed MSN as a carrier which could simultaneously deliver
siRNA targeting P-gp and DOX to the KB-V1 cervical cancer cells leading
to increased intracellular concentration of DOX [79]. The MSN was
Please cite this article as: N.S. Gandhi, et al., Nanocarrier mediated delive
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further coated with PEI which helped in conjugation with siRNA. It
was discovered that the simultaneous delivery of siRNA andDOX result-
ed in increased intracellular concentration of DOX and that DOX could
be released from the lysosome by a proton-sensitive mechanism [79].

Meng et al. also further used MSN, functionalized by a
polyethyleneimine–polyethylene glycol (PEI-PEG) copolymer to deliver
DOX and P-gp targeting siRNA. On i.v. administration of the PEI-PEG
coated DOX-siRNA MSN, it was observed that ∼8% of the administered
particle dose was retained in the tumor site. It was discovered that
there was significantly enhanced (80%) tumor inhibition with PEI-PEG
coated DOX-siRNA MSN compared to DOX (62%) alone or scrambled
siRNA (62%) alone. It was also found that DOX associated systemic
side effects; including cardio toxicity was reduced after the co-
delivery. There was also a significant P-gp knockdown by siRNA from
the MSN at various tumor sites and which was also found to be linked
to the regions where DOX was released intracellularly [136].

Calcium phosphate (CaP), the inorganic components of biological
hard tissues are biocompatible and are not toxic to the mammalian
cells [126]. Li et al. utilized this property of CaP and formulated lipid
coated calcium phosphate (LCP) nanoparticles for the efficient delivery
of siRNA constructs [153,154]. Li et al. further developed anisamide-
targeted LCP nanoparticles to efficiently target sigma receptor-
expressing NSCLC and deliver siRNA into the cytoplasm (Fig. 3). In this
study, a range of pooled therapeutic siRNAswere chosen [humanhomo-
logue of mouse double minute 2 (HDM2), c-Myc and VEGF] and inves-
tigated for their efficacy in inhibiting A549 and H460 NSCLC. The size
and zeta potential of the targeted LCP nanoparticles was found to be
around 38.6 ± 3.6 nm and 29.1 ± 1.3 mV, respectively. It was found
that LCP nanoparticles did not form aggregates when incubated in 50%
v/v serum inferring bio stability of CaP nanoformulations. The effect of
targeted pooled siRNA combinations (HDM2/c-Myc/VEGF = 1:1:1)
containing LCP nanoparticles was observed on A549 tumor cells and it
was found that it inhibited gene expression of HDM2, c-Myc and
VEGF,with up to 87.6% silencing observed in case of HDM2. The flow cy-
tometry analysis of this siRNA combination therapeutics revealed that
therewas a significant increase in apoptosiswith the targeted LCP nano-
particle group compared to the non-targeted LCP nanoparticle group.

On i.v. injection into A549 xenograft mice, the targeted pooled
siRNA(HDM2/c-Myc/VEGF = 1:1:1) LCP nanoparticles accumulated
mainly in the tumor cells, with only moderate levels in other organs
such as liver and kidney, demonstrating significantly increased tumor
penetration and uptake. On treatment with targeted pooled siRNA LCP
nanoparticles, there was a significant reduction in tumor growth in
H460 and A549 xenograftedmice compared to the non-targeted pooled
siRNA LCP nanoparticles. The toxicity assay revealed that pooled siRNA
LCP nanoparticle formulation was non-toxic as the levels of secreted
liver enzymes Aspartate aminotransferase and alanine amino transfer-
ase were all unchanged and also there was no organ damage [48].

To overcome the limitations of vectors to deliver siRNA and pDNA
specifically to cytoplasm and nucleus respectively, Canine et al. also de-
signed a novel genetically engineered bio polymeric based platform
technology termed as FDNT [155,156]. The originally proposed polymer
consisted of a DNA condensing and endosomolytic domainwith repeat-
ed units of arginine- histidine, a pH-dependent fusogenic peptide to de-
stabilize endosomal membrane, a HER2 targeting antibody and M9
nuclear localization signal (NLS) these.

Same group of investigators furthermodified the biopolymer to suc-
cessfully deliver siRNA to cytoplasm and pDNA to cell nucleus [157]. The
authors found that FDNT/pEGFP complex was able to successfully deliv-
er pDNA to the nucleus mainly due to the presence of NLS and on the
other hand NLS lacking FDT was able to successfully reach cytoplasm
and deliver its genetic contents. The nanoparticles formed with FDNT/
GFP-siRNA and FDT/GFP-siRNA was found to be around 121 ± 7 and
140 ± 5 nm in size respectively. The cell toxicity assays were used to
evaluate the synergistic effects of FDNT/pSR39 complexes plus
gancyclovir in combination with FDT/BCL2-siRNA complexes and
ry of siRNA/miRNA in combination with chemotherapeutic agents for
, http://dx.doi.org/10.1016/j.jconrel.2014.09.001
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t1:1 Table 1
t1:2 Co-delivery of siRNA in combination with chemotherapeutic drug and/or nucleic acid based reagent for the treatment of cancer.

t1:3 siRNA/miRNA Drug Type of nanocarrier Cell lines In vivo model targeting Targeting moiety/peptide References

t1:4 siRNA targeting BCL2 and
t1:5 MRP-1

DOX/CIS Mesoporous silica nanoparticle A549 human lung adenocarcinoma Murine A549 lung cancer Orthotopic
model

Active LHRH peptide [135]

t1:6 siRNA targeting P-gp DOX mesoporous silica nanoparticles MDR KB-V1 human cervical carcinoma – Passive – [79]
t1:7 siRNA targeting P-gp DOX PEI-PEG functionalized mesoporous silica

nanoparticles
MCF-7/MDR—breast cancer Murine MCF-7/MDR breast cancer Xeno-

graft model
Passive – [136]

t1:8 siRNA targeting mTERT PTX HTCC nanoparticles LLC—lewis lung carcinoma – Passive – [137]
t1:9 siRNA targeting GFP DOX G(4)-PAMAM-PEG-DOPE dendrimers C166 cells—yolk sac endothelial – Passive – [138]
t1:10 siRNA targeting Luc gene DOX (G3) poly (L-lysine) OAS dendrimer U-87 glioblastoma – Active RGD peptide [139]
t1:11 siRNA targeting BCL-2 Docetaxel PEG-PLL-PLLeu cationic micelles – Murine MCF-7 breast cancer Xenograft

model
Passive – [81]

t1:12 siRNA targeting MCL-1 and
GL2

SAHA TLO cationic liposomes KB epithelial cancer Murine KB epithelial cancer Xenograft
model

Passive – [82]

t1:13 siRNA targeting VEGF PTX PDMAEMA–PCL–PDMAEMA cationic micelles PC-3 human prostate cancer and MDA-
MB-435-GFP breast cancer

– Passive – [92].

t1:14 siRNA targeting VEGF and c-
Myc

DOX Lipid polycation DNA nanoparticles MDR NCI/ADR-RES ovarian tumor Murine NCI/ADR-RES ovarian cancer xe-
nograft model

Passive – [140]

t1:15 siRNA targeting c-Myc DOX Liposome-polycation-DNA nanoparticles HT-1080 fibrosarcoma Murine HT-1080 fibrosarcoma xenograft
model

Active PEGylated NGR (aspargine-
glycine-arginine)

[141]

t1:16 siRNA targeting BCL2 and
t1:17 MRP-1

DOX DOTAP cationic lipid nanoparticles MDR lung cancer
MDR A2780/AD ovarian cancer

– Passive – [142].

t1:18 siRNA targeting MCl-1 MEK inhibitor
PD032590

Cationic liposomes KB epithelial cancer Murine KB epithelial cancer xenograft
model

Passive – [143]

t1:19 siRNA targeting VEGFR and
EGFR

CIS PEI complexes – Murine A549 NSCLC xenograft model Passive – [93]

t1:20 siRNA targeting X linked in-
t1:21 hibitor of apoptosis

PTX Deoxycholic acid-PEI complexes HCT-116 colorectal cancer Murine HCT-116 xenograft model Passive – [144]

t1:22 siRNA targeting BCL-2 DOX Cationic PEI-PCl nanoparticles C6 Glioma Bel-7402 human hepatoma Murine C6 glioma xenograft model Active Folic acid [145]
t1:23 siRNA targeting P-gp PTX PLGA-PEI nanoparticles JC mouse mammary cancer Murine BALB/c JC breast cancer xenograft

model
Active Biotin [146]

t1:24 siRNA targeting MCL-1 PTX Cationic solid lipid nanoparticles KB epithelial cancer Murine KB epithelial cancer xenograft
model

Passive – [147].

t1:25 siRNA targeting Plk1 PTX PEG-b-PCL-b-PPEEA micelleplex MDA-MB-435 breast cancer Murine MDA-MB-435 s breast cancer xe-
nograft model

Passive – [148].

t1:26 siRNA targeting BCl-2 S-1 Lipoplexes DLD-1 colorectal adenocarcinoma Murine DLD-1 colorectal adenocarcinoma
xenograft model

Passive – [149].

t1:27 iMdr-1-shRNA iSurvivin-
shRNA

DOX Poly (b-amino esters) based nanoparticles MCF-7 human breast adenocarcinoma Murine BALB/c MDR MCF-7 breast adeno-
carcinoma xenograft model

Passive – [150]

t1:28 siRNA targeting HMD2,c-
Myc

VEGF siRNA Lipid coated calcium nanoparticles A549 adenocarcinoma and H460 lung
carcinoma

Murine A549 and H460 NSCLC xenograft
model

Passive – [48]

t1:29 siRNA targeting c-Myc and
MDM2

VEGFR mir-24a Liposome-polycation-hyaluronic acid – Murine B16F10 melanoma xenograft
model

Active scFv [151]
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Fig. 3. Schematic representation of non-targeted and targeted LCP nanoparticles adapted
with permission from Ref. [48].
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observed statistically significant enhanced cell death in SKOV3/GFP
breast cancer cells [157]. However, transfection efficiency is relatively
lower with inorganic nanoparticles and hence surface functionalized
architects continually being suggested to improve their transfection ca-
pacity. Further studies are needed to establish this class of nanocarriers
for the successful delivery of RNAi combinations.

Despite of progress in the formulation and evaluation of inorganic
nanoparticles [158], a standardized and reproducible method is still
needed to assess the efficacy and toxicities. In order to develop safer
and efficacious nanotechnology based formulations the efficacy and
toxicity evaluation of the inorganic nanoparticles is essential. In addi-
tion, there is need for systematic studies focused on the pharmacokinet-
ics of the inorganic nanoparticles to evaluate themechanismunderlying
toxicities.
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Fig. 4. Schematic illustration of the formation of mixed micellar system using G (4)-
PAMAM-D-PEG-DOPE/PEG-DOPE mixed micellar system. A poly (ethylene glycol) -
dioleoylphosphatidyl ethanolamine (PEG-DOPE) modified G (4)-PAMAM nanocarrier
used to deliver siRNA targeting green fluorescence protein. (Adapted with permission
from [138].)
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Chitosan is a modified natural carbohydrate polymer prepared by
the partial N-deacetylation of chitin, a natural biopolymer derived
from crustacean shells such as crabs, shrimps and lobsters [159]. Chito-
san nanoparticles have gained more attention as drug delivery carriers
because of their stability, low toxicity, simple and mild preparation
method [160]. It is found that capacity of chitosan to enhance the ab-
sorption and permeation of drugs at GI mucosal sites is compromised
due to deprotonation at physiological pH [161]. It has also been found
that chitosan gets easily degraded in the lysozyme in the serum [162,
163]. Ma Guang-hui et al. developed a partially quaternized derivative
of CS N-((2-hydroxy-3-trimethylammonium) propyl) chitosan chloride
(HTCC) to deliver poorly water soluble drugs by oral route.

Wei et al. used the HTCC nanoparticles (HNP) to deliver siRNA and
hydrophobic chemotherapeutic drug paclitaxel (PTX). The prepared
siRNA HNPs were found to be in the range of 130–145 nm and found
to have colloidal stability. The co-delivery system (HNP/siRNA/PTX) at
very lowdrug concentration (3 nmol/L of siRNA) significantly improved
the in vivo anticancer activity against lung carcinoma cells and showed
no significant side effects. The co-delivery system (HNP/siRNA/PTX) si-
multaneously delivered the two drugs into the cell which demonstrated
the synergistic effects exhibited by the formulation [137]. These are
among the few reports on successful application of chitosan based
nano-architect to deliver siRNA in combination with other drugs for
cancer therapy.

There has been progress achieved in the area of drug delivery using
chitosan nanoparticles [164,165]. Although, chitosan has been used to
deliver both hydrophillic and hydrophobic therapeutic agents and to
formulate multifunctional nanoparticles an investigation focused on
evaluation of chitosan based nanoparticles needs to be done. Also, fur-
ther exploration is warranted for toxicological evaluation considering
Please cite this article as: N.S. Gandhi, et al., Nanocarrier mediated delive
cancer therapy: Current progress and advances, J. Control. Release (2014)
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it's the Generally Regarded As Safe status by US Food and Drug Associa-
tion (USFDA) for in vivo use [166,167].

5.3. Dendrimers based siRNA combinations

Dendrimers, are monodisperse highly branched macromolecules
which are discovered in early 1980’ by Donald Tomalia and coworkers
[168,169]. Dendrimers are monodisperse, nanoscale sizes that matches
with the size of biomolecules [170]. Their size and molecular mass is
easily controllable and their solubility characteristics can be varied
based upon the nature of surface groups [171]. Dendrimer surfaces
may be functionally designed to enhance or resist trans-cellular, epithe-
lial or vascular permeability [172]. Mathematically defined numbers of
terminal surface groups (Z) present on dendrimers are suitable for con-
jugation of drugs, signaling groups and targeting moieties [173].
Dendrimers can also be employed to attain pH reliant release with a
slower release under normal physiological conditions and a burst re-
lease of loaded bioactive at the acidic tumor environment [173].
Dendrimers are routinely synthesized as tuneable nanostructure that
may be designed and regulated as function of their shape, size, surface
chemistry and interior void space [203].

Several polyamine polymers have been explored as carriers for
siRNA delivery including poly(amido amine) (PAMAM) dendrimers.
The PAMAM dendrimers, also known as starburst dendrimers are the
first one to be investigated which included ammonia as the core [174].
Cationic dendrimers have been used as non-viral delivery vectors for ef-
ficient siRNA delivery [175]. In a similar investigation on dendrimers,
Minko et al. developed tumor targeted delivery system using surface-
engineered poly (propyleneimine) dendrimerswith siRNA caged inside
the dendrimers (Fig. 4). PEGylation and caging modification stabilized
the system and extended its systemic circulatory lifetime [175].

Recently Kaneshiro et al. prepared symmetric octa (3-aminopropyl)
silsesquioxane (OAS) based poly (L-lysine) octasilsesquioxane
dendrimers (nanoglobules) having a globular morphology, a rigid
structure and a highly functionalized surface. Kaneshiro et al. also
used the nanoglobules to form conjugate with large number of Gd (III)
chelates to prepare nanoglobular MRI contrast agents [176]. The gener-
ation 3 (G3) poly(L-lysine) OAS dendrimer was used to develop
Arginylglycylaspartic acid (RGD) targeted nanoglubules for co-delivery
of DOX and siRNA targeting firefly luciferase. The DOX was conjugated
to the nanoglobular surface via a biodegradable disulfide spacer and
further cyclic RGDfK peptide (RGD) was conjugated via a PEG (2000)
spacer to yield G3-[PEGRGD]-[DOX] conjugate. SiRNA was further
ry of siRNA/miRNA in combination with chemotherapeutic agents for
, http://dx.doi.org/10.1016/j.jconrel.2014.09.001
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complexedwith G3-[PEG-RGD]–[DOX] conjugate to form a targeted co-
delivery system. Cytotoxicity studies in U87 glioblastoma cells revealed
that targeted G3-[PEGRGD]-[DOX] showed enhanced cytotoxicity than
the non-targeted control G3-[DOX] and free DOX.

Fluorescence confocalmicroscopy in U87 glioblastoma cells revealed
that the G3 conjugates were effective in facilitating the intracellular up-
take of siRNA. It was observed that targeted conjugates, G3-[PEG-RGD]-
[DOX] and G3-[PEG-RGD) resulted in reduced intracellular uptake of
siRNA compared to non-targeted G3 nanoglobule and G3-[DOX],
which may be due to the interaction of higher positive surface charge
on non-targetedG3nanoglobule andG3-[DOX]with negatively charged
cell surface. The targeted nanoglobular drug conjugate G3-[PEGRGD]-
[DOX] mediated intracellular gene silencing efficiency of an anti-Luc
siRNA was evaluated in U87 glioblastoma cells and it was found that
the siRNA complexes of G3-[PEG-RGD]-[DOX] resulted in the enhanced
gene silencing efficiency (75%) compared to siRNA G3-[PEG-RGD]
(50%), which also attests to the fact that anticancer drug and siRNA
can be loaded onto dendrimeric nanoglobules and conjugated with
targeting agent for intracellular co-delivery of chemotherapeutics and
siRNA [139].

In another study, Biswas et al. modified G(4) PAMAM nanocarrier
with poly (ethylene glycol)–dioleoylphosphatidyl ethanolamine (PEG-
DOPE) to synthesize a new construct G(4)-PAMAM-PEG-DOPE. This
construct was used to deliver siRNA and hydrophobic drug (DOX) to
the aveolar adenocarcinoma cells. The siRNA complexed with
dendrimerswas stable and exhibited complete protection against enzy-
matic degradation, compared to free siRNAwhich showed partial insta-
bility in 1 h and complete enzymatic digestion within 6 h [138].

Dendrimers represents a versatile nanocarrier for chemists towards
fabrication of siRNA/miRNA nanoformulations with amendable termi-
nal structure to attain prolonged circulatory lifetime, sustained release
of bioactives and targeting potential [177,178]. Also the dendrimers
have a higher loading capacity for the delivery of the drugs into tumor
tissues. However, more persuasive as well as comprehensive statistics
acknowledging the safety-toxicity issues of dendrimers are primarily
warranted to ascertain this nanocarrier as a pragmatic alternative, par-
ticularly in the field of cancer therapy.

5.4. Cationic nano micelles based siRNA combinations

Recently, the cationic micelles have been widely explored in the de-
livery of drugs and RNAi based combinations [92,179]. The cationic mi-
celles are nanoscopic core/shell structures formed by amphiphilic block
copolymers [180]. The inherent and modifiable properties of micellar
architect makes them well suited for drug delivery applications. The
key advantages of nanomicelles include solubilization of poorly water
soluble molecules, sustained release, and protection of encapsulated
bioactives from degradation and metabolism [181]. Peptide based cat-
ionic micelles have been studied lately as gene transfection vectors
due to their biocompatibility and biodegradability. Cationic micelles
are showing a hugepromisewhen it comes to delivery of various hydro-
phobic and hydrophilic drug, but faces stability issueswhich needs to be
overcome for it to reach the clinical trials.

Deng et al. synthesized novel cationic micelles, primarily based on
hybrid polypeptide copolymers poly(ethylene glycol)-b-poly(L-ly-
sine)-b-poly(L-leucine) (PEG-PLL-PLLeu) to effectively transfect genes
[182]. The same group used the cationic micelles to encapsulate nega-
tively charged siRNA (BCL-2) and hydrophobic DTX and investigated
the synergistic tumor suppression effect against breast cancer cells
and the ability to simultaneously deliver siRNA and DTX.

The siRNA and DTX co-loaded nanoparticles were around 121.3 nm
in size and zeta potential was 20.48mV. A reduction in cell proliferation
to 8.9% was observed with siRNA and DTX co-loaded nanoparticles. A
synergistic inhibitory effect of the DTX and siRNA combination on
tumor growthwasdemonstrated by siRNA andDTX co-loaded nanopar-
ticles against breast cancer cell. The survival rates of the nude mice
Please cite this article as: N.S. Gandhi, et al., Nanocarrier mediated deliver
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receiving siRNA and DTX co-loaded nanoparticles were significantly en-
hanced compared to the mice receiving PBS, or the two therapeutic
agents alone [81].

In another study based on cationic micelles, Shim et al. synthesized
oligolysine-based cationic lipid derivatives and encapsulated siRNA
(targeting green fluorescence protein) and anticancer drug
suberoylanilidehydroxamic acid (SAHA) for co-delivery [82]. The
trilysinoyl oleylamide (TLO) based cationic liposomes was mainly made
up of DOPE, which served as the lipid component and is also a fusogenic
peptide which enhances the cellular delivery of siRNA. The siRNA loaded
lipoplexes were found to be in the range of 190–230 nm and zeta poten-
tial of 67.2 ± 12.0 mV. The zeta potential of SAHA loaded TLOL
(trilysinoyloleylamide liposomes) was 19.7± 0.4mV after complexation
with luciferase (siGL2). After treatment of KB cells with siMcl1/pSTLOL
(PEGylated SAHA trilysinoyloleylamide liposomes) the non-viable epi-
thelial cancer cells were increased by 2.6–3.4 fold compared to siMcl1/
pTLOL and siGL2/pSTLOL treatment respectively. siMCl1/pSTLOL also
exhibited significantly enhanced in vivo anticancer activity. The combina-
tion of siGL2 complexedwith pSTLOL and SAHA also showed no lethality
or abnormal behavior upon i.v. administration [82].

There have been many reports of use of polydimethylaminoethyl
methacrylate (PDMAEMA) for gene delivery mainly due to its relatively
low toxicity and high buffer capacity [183,184]. Zhu et al. developed cat-
ionic micelles based on PDMAEMA–PCL–PDMAEMA triblock copoly-
mers for the combinatorial delivery of PTX and siRNA (Fig. 5).
Reversible addition-fragmentation chain transfer (RAFT) polymeriza-
tion of dimethylaminoethyl methacrylate (DMAEMA) was used to pre-
pare the PDMAEMA–PCL–PDMAEMA triblock copolymers. The particle
sizes of micelles of PDMAEMA–PCL–PDMAEMA triblock copolymers
were found to be in the range from 53.6 to 132.2 nmwith positive sur-
face charges ranging from +29.3 to +35.5 mV. The PDMAEMA–PCL–
PDMAEMA triblock copolymer micelles were less toxic than 25 kDa
PEI and also biodegradable, which indicates their reduced long term
toxicity. The co-delivery of VEGF siRNA and PTX using PDMAEMA–
PCL–PDMAEMA micelles resulted in significantly decreased VEGF ex-
pression in human prostate carcinoma PC-3 cells compared to delivery
of VEGF siRNA alone [92].

Cheng et al. developed a folate conjugated ternary copolymer, FA–
PEG–PEI–PCL, of poly (ethylene glycol) (PEG), PEI, and PCL, which was
capable of self-assembling into cationic micelles and co-deliver siRNA
targetingBcl-2 gene in combinationwithDOX. The copolymer exhibited
reduced cytotoxicity and increased siRNA/drug delivery performance.
The particle size was found to be around 191 nm and zeta potential
was found to be around +6.51 mV. The co-delivery of siRNA targeting
Bcl-2 gene and DOX resulted in synergistic effect with enhanced DOX
induced apoptosis in SKOV-3 breast cancer cells due to the down regu-
lation of anti-apoptotic Bcl-2 gene by siRNA [185].

Despite the vast literature on successful application of cationic mi-
celles for RNAi based systems deliverance, surprisingly there are only
few studies focused systematically on the physicochemical properties
of siRNA/miRNA micellar systems [186,187]. Hence, looking towards
immense potential and versatility, more systematic approach is war-
ranted to evaluate these nanosystems for delivery of RNAi based combi-
nations. This literature gap also widened the scope of formulation
scientists to look for alternative delivery approaches that has more clin-
ical as well as commercial production like “liposomes.”

5.5. Lipid based nanoparticles/liposomes

Liposomes are spherical structures in which the inner aqueous layer
is covered by outer lipid bi layers [188]. Liposomes are biocompatible
and can be used to deliver both hydrophilic and hydrophobic drug
[189]. The periphery of liposomes can be modified to render them
long circulatory lifetime and site specific delivery to tumor tissues. Lipo-
somes are especially effective in treating diseases that affect the phago-
cytes of the immune system because the liposomes tend to accumulate
y of siRNA/miRNA in combination with chemotherapeutic agents for
, http://dx.doi.org/10.1016/j.jconrel.2014.09.001
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in the phagocyteswhich recognize them as foreign invaders [190]. Lipo-
somes size, charge and other characteristics can be altered according to
the drug and the desired site of action [190]. Liposomes provide a great
opportunity to deliver therapeutic agent for cancer therapy and have
been widely used for this purpose [189].

5.5.1. Lipid based nanoparticles/liposomes siRNA combinations
Chen et al. developed targeted cationic lipid-polycation-DNA (LPD)

nanoparticles, containing PEG, 1,2-dioleoyl-3-trimethylammonium-
propane (DOTAP) and tethered with targeting moiety anisamide to en-
capsulate siRNA [191]. However, cationic lipids have poor entrapment
efficiency in encapsulating drugs like doxorubicin. To overcome this
problem, the same group developed multifunctional anionic liposome-
polycation-DNA (LPD-II) nanoparticles, comprised of anionic lipids to
deliver VEGF siRNA and DOX simultaneously into MDR ovarian cells.

The LPD-II nanoparticles were modified with anisamide, which is a
ligand of sigma receptor and is overexpressed in ovarian cancer cells.
The PEGylated LPD-II nanoparticles were found to be in the range of
20–50 nm with a spherical morphology. The co-delivery of VEGF
siRNA and DOX using targeted nanoparticles with guanidium contain-
ing cationic lipid (DSAA) was resulted in enhanced growth inhibition
of NCI/ADR-RES Adriamycin resistant ovarian tumor, probably due to
enhanced DOX uptake. An approach of silencing the MDR expression
was used to inhibit the growth of tumor cells. The co-delivery of c-
Myc siRNA and DOX resulted in enhanced uptake of DOX into cells,
probably by downregulating both c-Myc and MDR expression in NCI/
ADR-RES ovarian cancer cells. The c-Myc mRNA and protein expression
of the NCI/ADR-RES ovarian cells were also found to be significantly re-
duced [140].

Chen et al. further developed a core/shell type of nanoparticle formu-
lation, called liposome-polycation-DNA complex (LPD) consisting of cat-
ionic liposomes and polycation condensed DNA to deliver plasmid DNA
or siRNA to tumor cells in vivo [191,192]. The samegroup further utilized
the LPD nanoparticles and modified with PEGylated aspargine–glycine–
arginine (NGR) peptide, for targeted co-delivery of c-Myc siRNA and
Please cite this article as: N.S. Gandhi, et al., Nanocarrier mediated delive
cancer therapy: Current progress and advances, J. Control. Release (2014)
EDOX. The c-MycmRNA levels were significantly reduced after treatment
of HT-1080 Fibrosarcoma cells with siRNA containing LPD-PEG-NGR
nanoparticles. TheWestern blot analysis and immunostaining results in-
dicated that LPD-PEG-NGR containing c-Myc siRNA can promote cell
death in the tumor cells and the apoptosis effect was targeting peptide
dependent. Since it has been found that DOX can easily bind to DNA
which is a part of LPD, DOX formed a physical complex with LPD
siRNA nanoparticles. After complexation with DOX the average size of
the LPD-PEG-NGRDOXnanoparticles was 188±29 nm and the zeta po-
tential was 27.2 ± 1.0 mV. The combination of DOX and siRNA
coformulated in LPD-PEG-NGR resulted in significant improvement in
tumor growth inhibition compared to free DOX and c-Myc siRNA in
LPD-PEG-NGR [141].

In another study Saad et al. developed novelmultifunctional cationic
liposomal nanoparticles, to deliver DOX and siRNA targeted to MRP1
and BCL2 mRNA. DOTAP based cationic liposomes were prepared
using ethanol-injection method and later were used to encapsulate
and complex DOX and siRNA respectively. The positively charged
DOTAP based DOX:siRNA complexes were found to be around 500 nm
with a surface charge of around +4 mV.

The fluorescence studies clearly demonstrated that the cationic lipo-
somes were able to penetrate the cancer cells and deliver DOX and
siRNA into the cytoplasm. It was also found that the delivery of two
siRNA, BCL-2 and MRP1 by cationic liposomes resulted in significant
suppression of targeted mRNA: BCL2 and MRP-1 confirming the effec-
tiveness of the combination delivery. The delivery of combination of
DOX and siRNA targeted to BCL2 and MRP1 by liposomes significantly
enhanced the apoptosis in MDR human lung cancer cells compared to
the level of apoptosis achieved by each component of liposomes when
applied separately. The IC50 dose of the combination of DOX with both
siRNA was found to be 20% of that compared to free DOX and the cyto-
toxicity was almost 4.1 times enhanced than liposomal DOX [142].

In a study by another group, Suh et al. developed a novel amino acid
derived lipid N,N″dioleylglutamide (DG) and formulated cationic lipo-
somes to deliver siRNA [193]. Kang et al. further formulated cationic
ry of siRNA/miRNA in combination with chemotherapeutic agents for
, http://dx.doi.org/10.1016/j.jconrel.2014.09.001
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DG-containing liposomes (DGL) for the co-delivery of Mcl1 siRNA and
MEK inhibitor PD032590 and investigated in vitro and in vivo anticancer
activity against epithelial cancer cells. The size of siRNA complexes with
PD032590 loaded DGL (PDGL) was around 229.5 ± 2.6 nm while the
zeta potential was around 16.5± 2.0mV. It was found that theMcl1 ex-
pression and pERK1/2 levels were reduced after the cellular co-delivery
of siMcl1 and PD0325901 using PDGL and PD0325901 specifically af-
fected proteins involved in the Raf/MEK/ERK signaling pathway, signif-
icantly decreasing the levels of pERK1/2. The in vivo effects of the siRNA
PDGL complex in KB epithelial cancer cell bearing mice revealed that
Mcl1 levels and pERK1/2 levels were significantly decreased by siMcl1
andMEK inhibitor PD0325901. The treatment of micewith siMcl1 com-
plexed with PDGL resulted in significant decrease in tumor size by 79%
compared to control group [143].

AlthoughPEI complexes conjugatedwith PEGhave showngood trans-
fection as well as silencing effect in combination with siRNA, it often in-
duces severe toxicities to cells through necrosis or apoptosis [194].
Hence, there is a need to develop alternative cationic polymers which ex-
hibit minimal or lack of cytotoxicities and able to efficiently deliver siRNA
and chemotherapeutic agents. Kim et al. developed a cationic solid lipid
nanparticle (cSLN) system to deliver siRNA (VEGF and GFP) [195]. Same
group utilized 1,2-dioleoyl-sn-glycero-3-ethylphosphocholine-based
cSLN to deliver PTX and human MCL1-specific siRNA (siMCL1) (Fig. 6).
The PTX loaded nanoparticles (PTX-SLN) had average particle size about
140.4 ± 12.9 nm while on complexation with siRNA the size increased
to 183.1 ± 12.0 nm. The MCL1 mRNA levels were significantly reduced
on delivery of siMCL1 using PTX-SLN and also the survival of cancer
cells was found to be lowest. The intratumoral co delivery of PTX and
siMCL1 using PTX-SLN resulted in increased inhibition of epithelial
tumor growth [147] .

5.5.2. Lipid based nanoparticles/liposomes based miRNA combinations
MiRNA therapeutics development represents a new and promising

strategy for the treatment of cancer [120]. Only limited studies have
been published on the nanoparticle mediated delivery of miRNA in re-
cent past [151,196]. The lipid based miRNA combination delivery for
the treatment of cancer is summarized below.

Chen et al. developed liposome-polycation-hyaluronic acid (LPH)
nanoparticle formulationmodifiedwith GC4 (phage identified internal-
izing) single-chain variable fragment (scFv) that target tumor sphere
cells, a tumor-targeting humanmonoclonal antibody for systemic deliv-
ery of siRNA and miRNA into experimental lung metastasis of murine
B16F10 melanoma model. The size and zeta potential of the siRNA and
miRNA encapsulated LPH nanoparticles were around 170 nm and
10.9 ± 4.8 mV. The targeted nanoparticles showed efficient cytosolic
delivery of the fluorescein isothiocyanate (FITC) labeled siRNA in
B16F10 tumor cells. The protein expression of c-Myc, MDM2, and
VEGFR was suppressed in the B16F10 lung metastasis, after the
U
N
C

Fig. 6. Schematic representation of cationic solid lipid nanoparticles complexed with siRNA. A
permission from [147]).
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combined delivery of siRNAwith GC4 targeted nanoparticles, indicating
simultaneous silencing by siRNAs.

It was discovered that the growth of themetastasis noduleswas sup-
pressed after the combined siRNA delivery by the GC4 targeted nano-
particles and also the tumor load decreased to 30%. The combination
of siRNAs andmiR-24a delivery by GC4 targeted nanoparticles additive-
ly inhibited tumor growth as the tumor load decreased to about 20%
compared to 30% and 50% when treated with siRNAs and miR-34a
alone. MiR-34a down regulates the surviving expression in the lung
metastatic tumor. The PEGylated siRNA andmiRNA GC4 targeted nano-
particles showed minimal or no toxicity as the pro-inflammatory
markers [interleukin (IL)-6, IL-12, and interferon (IFN)-γ] were not in-
duced and the hepatotoxicity marker (aspartate aminotransferase and
alanine aminotransferase) levels were same in the C57BL/6 mice [151].

These studies briefing the delivery of miRNA combinations for can-
cer therapy indicated the use of lipid based nanocarrier. However, de-
tailed investigation pertaining to its physical, biophysical and storage
stability is urgently warranted to evaluate the use of lipid based
nanoconstructs for delivery of miRNA based combinations. The investi-
gations to determine the toxicity should be performed with special em-
phasis on long term exposure toxicities in animals, and humans to
optimize existing technologies for clinical use [197].

5.6. Polyethyleneimines co-blocks based siRNA combinations

Positively charged cationic polymers have been widely studied as
vectors to efficiently deliver gene to the cancer cells [198]. PEI is one
such cationic polymer that has been extensively studied as non-viral
vector for efficient gene delivery [199,200]. It has been proven that PEI
is responsible for the proton sponge effect inside the endosome
resulting in rupturing of the endosomal membrane and helping DNA/
siRNA–PEI complex to release [201,202]. The major disadvantage with
PEI is its cytotoxicity,whichhas been to some extent eliminated by coat-
ing with human serum albumin [203] and PEGylation [204,205].

Boussif et al. explored the use of PEI for siRNA delivery and found
that the positively charged PEI-siRNA complex protected the siRNA
from degradation in vivo and facilitated subsequent siRNA release
from endosomes due to proton sponge effect, after uptake by cellular
endocytosis mechanisms [206]. Chen et al. used the PEI complexes to
formulate PEI-siRNA (VEGFR2 and EGFR) complexes and evaluated
in vivo antitumor effects in combination with CIS in murine A549
NSCLC tumor xenograft models. The combination of VEGFR2 siRNA
+ EGFR siRNA + CIS was resulted in significant downregulation of
VEGFR2 and EGFRmRNA levels compared to siRNAs administered indi-
vidually [93].

Chae et al. proposed a novel polymeric conjugate system comprising
of a molecular amphiphile (bile acid) and a cationic polymer PEI to me-
diate gene transfection [207]. The increased transfection, which
) Empty solid lipid nanoparticles. B) PTX loaded solid lipid nanoparticles (adapted with

y of siRNA/miRNA in combination with chemotherapeutic agents for
, http://dx.doi.org/10.1016/j.jconrel.2014.09.001
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occurred via membrane translocation of the polyplex particles was in-
dependent of endocytosis and energy. Same group utilized the micelle
forming property of the conjugate for the co-delivery of PTX and
siRNA targeting X linked inhibitor of apoptosis (XIAP) gene [144]. The
deoxycholic acid-PEI, DA3 of around 88.4 nmwith spherical morpholo-
gy was used as a platform for the co-delivery of siRNA and drugs. The
combination of PTX andDA3 siRNAdemonstrated an enhanced cytotox-
ic effect on the HCT-116 colorectal cancer cells with around 71% reduc-
tion in cancer cell viability compared to 54% and 45% observed with
PTX/DA3 and DA3/siRNA combination respectively. The intratumoral
injection of the combined formulation (PTX/DA3/siRNA) demonstrated
a significantly enhanced inhibitory effect on tumor growth and also
completely impeded the tumor growth [144].

In another study, Cheng et al. developed a novel diblock copolymer
of PCL and linear PEI (PEI-PCL) and assembled into biodegradable cat-
ionic nanoparticles to encapsulate BCL-2 siRNA and DOX. The PEI-PCL
nanoparticles were further coated folic acid–polyethylene glycol and
poly (glutamic acid) (FA-PEG-PGA) on the surface of cationic PEI-PCL
nanoparticles to target folate receptor in C6 glioma cells and impart sta-
bility to themultifunctional nanoparticles (Fig. 7) [208]. The multifunc-
tional nano-assembly co-loadedwith siRNAandDOXwas about 184nm
in size and having a positive surface charge of +5.1 mV. The nano-
assembly was also found to be stable in serum, showed preferable
drug release profile and increased transfection efficiency in human hep-
atoma Bel-7402 cell lines. The folate-targeted multifunctional nano-
assembly simultaneously delivered siRNA and DOX into C6 cells
resuting in a synergistic effect. At 24 h post injection of DOX-PCE/BCL-
2/FA showed increased fluorescences of DOX and siRNA in tumor tissue
sections from rats compared to adjacent normal tissue. The folate
targeted co-delivery of DOX and siRNA resulted in significant tumor
growth inhibition compared to non-targeted formulations [145].

Recently, Huang et al. developed polymeric micelles based on PEI-
stearic acid (SA) grafted polymer. The PEI-SA micelle provides with
the advantage of incorporating hydrophilic moieties in hydrophilic
shellwhile thehydrophobic drugs can be incorporated in the hydropho-
bic core. The co-loading of anti-VEGF siRNA and DOX in themicelles re-
sulted in the significant reduction in the hepatoma growth. The siRNA
binding efficiency was significantly increased with the PEI-SA micelles
compared to PEI alone. SiRNA delivered with themicelles exhibited im-
proved stability and cellular uptake efficiency compared to the free
siRNA [209].

5.7. Polymeric nanoparticles based siRNA combinations

Polymeric nanoparticles have unique physicochemical properties
such as ultra-small and controllable size, larger surface area to mass
ratio, and functionalizable structure [210]. The polymeric nanoparticles
have been shown to alter and improve the pharmacokinetic and phar-
macodynamic properties of various bioactive molecules. The above
mentioned properties of polymeric nanoparticles can be applied to
overcome some of the limitations in traditional drug delivery
U
N

Fig. 7. Schematic illustration of the formation of multifunctional nanoassembl

Please cite this article as: N.S. Gandhi, et al., Nanocarrier mediated delive
cancer therapy: Current progress and advances, J. Control. Release (2014)
E
D
 P

R
O

O
F

approaches [211]. Polymeric nanoparticles have been used in vivo to
protect the drug in the systemic circulation, and to deliver the drug at
a controlled rate to the site of action while minimizes undesirable side
effects [212]. Following section mainly describes various polymer
based nanoparticles used to co-deliver siRNA and chemotherapeutic
agents.

PLGA nanoparticles have been proved to be biocompatible and non-
toxic in several studies [213,214]. In another study, Patil and Panyam
found that PLGA nanoparticles alone resulted in poor encapsulation of
siRNA and thus introduced PEI in the polymer matrix to successfully in-
crease the siRNA encapsulation [215]. Same group further used targeted
PLGA-PEI nanoparticles to encapsulate siRNA targeting P-gp and PTX
functionalized with biotin to target breast cancer cells. Scanning elec-
tron microscopy studies and dynamic light scattering studies showed
that PTX-siRNA nanoparticleswere spherical in shapewith average par-
ticle size of about 228 ± 22 nm respectively. The biotin functionalized
PTX-siRNA nanoparticles were having a negative surface charge
(−12.1 ± 0.3 mV). The co-delivery of siRNA and PTX using nanoparti-
cles improved cytotoxicity in drug resistant JC breast tumor cell line
compared to nanoparticles containing PTX alone. The combination
treatmentwith PTX-siRNA nanoparticles resulted in significant increase
in PTX accumulation in JC tumor cell lines. On i.v. injection of the biotin
conjugated dual agent nanoparticles in mice bearing tumors, a signifi-
cant tumor growth inhibition was observed, compared to the non-
targeted dual agent nanoparticles [146].

Sun et al. developed an amphiphilic biodegradable triblock copolymer
poly (ethylene glycol)-b-poly (ε-caprolactone)- b-poly (2-aminoethyl
ethylene phosphate) PEG-b-PCL-b-PPEEA based system called as
“micelleplex.” The triblock polymer having the ability to self-assemble
and form micellar nanoparticles, with hydrophobic core comprised of
PCL and PPEEA and PEG as cationic shell and hydrophilic corona respec-
tively (Fig. 8). The negatively charged siRNA and hydrophobic PTX was
encapsulated in the micellar nanoparticles to form a “two-in-one”
micelleplex. The cellular uptake studies using rhodamine (Rho) and fluo-
rescein (FAM) labeled PTX and siRNA, respectively; demonstrated
micelleplex delivered the drug and siRNA into the cells simultaneously.
SiRNA targeting polo-like kinase 1 (Plk1) packaged micelles
(micelleplexsiPlk1) demonstrated dose dependent knockdown of the ex-
pression of target gene Plk1, at 62.5 nMand125 nMwhich led to 32% and
78% knockdown respectively. Also simultaneous delivery of siPlk1 and
PTX by PTXmicelleplexsiPlk1 demonstrated synergistic inhibition of the
proliferation of MDA-MB-435s cancer cells. PTXMicelleplexsiPlk1 was
able to increase cell apoptosis to ∼58% with formulations containing
0.005 μg/ml PTX and 125 nMsiPlk1 compared to∼16%with siPLK loaded
Micelleplex siPlk1 [148].

In recent years, a novel oral fluoropyrimidine derivative, designated
S-1, consisting of three pharmacological agents Tegafur (TF), 5-chloro-2,
4-dihydroxypyrimidine, and potassium oxonate in a molar ratio of
1:0.4:1, has been studied extensively for its effectiveness in treating var-
ious cancers [216]. However it showed a limited anticancer activity as a
single agent mainly due to the ability of cancer cells to evade apoptosis.
ies comprising of DOX and siRNA. (Adapted with permission from [208].)

ry of siRNA/miRNA in combination with chemotherapeutic agents for
, http://dx.doi.org/10.1016/j.jconrel.2014.09.001
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Fig. 8. A schematic illustration of the formation of micellar nanoparticles (adapted with permission from [148]).

13N.S. Gandhi et al. / Journal of Controlled Release xxx (2014) xxx–xxx
U
N
C
O

R
R
E
C

To overcome this problem, Nakamura et al. used S-1 in combination
with siRNA targeting Bcl-2 (antiapoptotic protein). The SiRNA was en-
capsulated in PEG coated lipoplexes and on simultaneous administra-
tion with S-1 induced significant breast tumor growth suppression
[149].

Poly (b-amino esters) (PAEs) are biodegradable and have been used
as vehicles to deliver RNA [217,218]. In order to improve its gene deliv-
ery efficiency Yin et al. prepared disulfide bond containing PAE, poly
[bis(2-hydroxylethyl)-disulfide-diacrylate-b-tetraethylenepentamine]
(PAP). The intracellular reductive glutathione and thioredoxin will re-
sult in cleavage of the disulfide bond and release the contents. The effect
of combination of PAEs-based RNAi and DOX was investigated on mice
xenograft model bearing MDR lung cancer. The combination of chemo-
therapy DOX and two RNA (iMdr-1-shRNA and iSurvivin-shRNA) was
resulted in a synergistic effect on overcoming MDR [150].

The complexity of polymeric nanoparticles asmulticomponent three
dimensional structures requires careful designing and engineering
[219]. To achieve reproducible formulations it is also important that
scale-up and manufacturing processes are systematically studied [220]
. The safety and efficacy of the nanoparticles has to be carefully exam-
ined in various preclinical and clinical studies as it can be easily influ-
enced by change in the nanoparticle properties [219].

5.8. Polymerosomes based siRNA combinations

Polymersomes are the polymeric vesicles that undergo self-
assembly in hydrophillic solutions from block copolymers and have
been widely studied as potential drug delivery candidate since last
one decade [221,222]. The polymersomes were able to conjugate bio-
logically active ligands, such as avidin, antibodies and biotin, to their
surface and, thus, provide targeted therapy and imaging strategy [223]
. It was reported that polymersome could be used in controlled release
of multiple drugs due to its EPR effect and relatively higher drug load-
ings into polymersome compared with liposomal formulation.
Polymersome encapsulating DOX and/or PTX was widely researched
as a treatment for cancer. Overall, polymersomes have great delivery
potential owing to their advantages, such as robust and larger shell en-
hancing drug loading and stability, and possibility of enhanced drug
targeting and prolonged circulatory lifetime [224].

Past work has highlighted peptide-functionalized polymersomes as
a highly promising targeted delivery system. Polymersomes seem to
possess most of the mandatory attributes required for successful
siRNA/miRNA delivery. Its aqueous core allows successful loading of hy-
drophilic nucleotides sequences, while their release can be effectively
controlled through either oxidation-sensitive or hydrolysis-sensitive
block copolymer amphiphiles [225]. Polymersomes were reported to
Please cite this article as: N.S. Gandhi, et al., Nanocarrier mediated deliver
cancer therapy: Current progress and advances, J. Control. Release (2014)
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carriers [226]. In addition, copolymer degradation can generate surfac-
tants that promote endolysosomal release as already exploited in the
nuclear delivery of a DNA-intercalating drug [227].

In an early report, Pangburn investigated co-encapsulation and de-
livery of siRNA inside peptide-functionalized polymersomes composed
of poly (1,2-butadiene)-b-poly (ethylene oxide) (PRb). The authors pri-
marily concluded PRb peptide-functionalized polymer vesicles to be a
promising system for siRNA (targeting Orai3 gene) delivery to specifi-
cally attain cell kill in T47D breast cancer cells, while preserving viability
of noncancerous MCF10A breast cancer cells. Reports are also available
that support polymersomes to be primarily releasing their payload in
the early endosomal and successful escape from endosomes to cytosolic
compartments. These report suggested a promisingfirst generation rep-
lica for targeted delivery of siRNA [228].

Kim et al. described oligonucleotides and siRNA (targeting LaminA/C
protein) co-loaded polymersomes and demonstrated their efficient de-
livery into A549 lung adenocarcinoma cells. Fluorescent-oligos and
fluorescent-copolymer were utilized for visualizing the cellular uptake
and nuclear delivery of cargo. The authors demonstrated the efficient
knockdown of the lamin protein in cultured cancer cells with oligo/
siRNA loaded polymerosomes with selective nuclear localization and
cell specific expression activity in mdx mouse model. It was inferred
that the surfactant generated by the degradation of the carrier provides
a means of escape of the payload from the confining endolysosomal
compartment and facilitates the desired spatial relocalization of re-
leased oligonucleotide to the nucleus as well as functionally active
siRNA in the cytosol [222].

Kim et al. also reported that combination therapy via co-delivery of
siRNAs and an anticancer drug (DOX) can be a promising strategy due
to the synergistic effect [225]. In this study, Bcl-xL siRNA and DOX are
encapsulated into designed methoxy-PEG-block-poly(D,L-lactic acid)
(mPEG-b-PLA) block copolymer polymersomes. Cytotoxicity evaluation
of Bcl-xL siRNA and DOX co-encapsulated polymerosomes (CPsomes)
showed enhanced inhibition of cell growth and apoptosis in MKN-45
and MKN-28 human gastric cancer cell lines than that of siRNA alone
and DOX loaded formulation. These results demonstrated that co-
delivery of siRNA and chemodrugs using polymerosomes results in
synergistic activity and indicates the potential of polymerosomes as ef-
ficient nanocarriers for siRNA based combination therapy [225].

The in vivo toxicity of delivery r systems has always been of crucial
apprehension. Previous studieswith polymersome indicate amaximum
tolerated dose that exceeds 35 mg/ml after systemic injection and no
measurable cytotoxicity to C2C12 and BAEC endothelial cell lines
[229]. It is also imperative to make a note that in in vivo studies with
polymerosomes containing siRNA-DOX, the final concentration of
y of siRNA/miRNA in combination with chemotherapeutic agents for
, http://dx.doi.org/10.1016/j.jconrel.2014.09.001
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Fig. 9. Lipid nanoparticle for systemic delivery (adapted from online alnylam
pharmaceuticals).
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copolymer injected intomdxmice was comparatively low (at1 mg/ml),
and increased doses needs to further evaluated [225].

The configuring capability of architect and properties of
polymersome has considerably projected these nanoarchitects for deliv-
ery of RNAi based combinations. Further, the aptitude to polymersome to
get tailored for targeting chemistries makes them an ideal platform for
the encapsulation of a broad range of therapeutic molecules with
RNAis based therapeutics (like dyes, nucleic acids, proteins). Further, it
will also be an interesting area of research to comparatively assess the
delivery attributes of long worm-like micelles with polymerosomes.

Themain goal of delivery of siRNA/miRNA/drugs using a nanocarrier
is to protect the therapeutic agents against degradation and also to de-
liver them at the target site i.e. tumor cells. In addition, the use of
nanocarriers should also have reduced toxicity while maintaining the
therapeutic effects of therapeutic agents and should allow ease of at-
tachment of a targeting ligand [230]. However, none of the nanocarriers
mentioned above fulfil all the criteria mentioned above [230]. Some
nanocarriers such as dendrimers and liposomes facilitate incorporation
of hydrophobic and hydrophilic agents while face the problem of low
biodegradation and drug leakage respectively. Polymeric micelles on
the other hand allow incorporation of hydrophobic therapeutic agents
but the toxicity of degradation products needs to be considered. The
inorganic nanoparticles such as silica are easy to fabricate and
functionalize while there is a lack of data on their long term toxicity.
The translation application of these nanoparticles with defined dosing
regimen for the treatment of cancer evaluated under preclinical setup
is lagging. A number of factors such as, difficulty in synthesizing the
nanocarriers in large quantities for clinical trials along with the regula-
tory obstacles warrant further investigations to translate the
nanocarriers from bench to bedside [231]. With the progress made in
nanotechnology combined with polymer chemistry one can hope for a
solution to overcome these hurdles. Meanwhile we have to follow the
strategy of “Horses for courses,” where depending upon the target and
the therapeutic agent a specific nanocarrier can be selected and used
for the treatment of cancer.

6. Ongoing clinical trials on RNAi based combinations: Current
status

Silenseed Ltd. is conducting a Phase II study with a siRNA drug in
combination with chemotherapy to treat advanced pancreatic cancer
(Table 2). The National Cancer Institute reports that the disease
accounted for 38,460 deaths in 2013 with 45,220 new cases reported
and is responsible for 6% of cancer deaths each year. The study involved
administration of chemotherapy (gemcitabine) and single dose of
siG12D LODER in which siRNA targeting mutated-Ki-ras2 Kirsten rat
sarcoma viral oncogene homolog (KRAS) oncogene KRASG12D
(siG12D) was encompassed in a small biodegradable polymeric matrix.
Upon administration, siGD12 inhibited transcription of KRAS proteins
and resulting in reduction in the pancreatic tumor growth. KRAS is
found to be associatedwith tumor cell proliferation and reduced surviv-
al and is also found to bemutated in over 90% of human pancreatic duc-
tal adenocarcinomas (PDAC) [232].

Another Phase I study reported for the treatment of pancreatic can-
cer involving administration of PEGylated liposomal siRNA in combina-
tion with CIS [232]. SiRNA targeting ERCC1 was selected as excision
Table 2
Clinical trials for siRNA based combinations.

Targeting Company DDS Dr

Passive Silenseed
Ltd.

Biodegradable capsule containing
siRNA + Chemotherapy

siG

Passive Silenseed
Ltd.

PEGylated liposomal siRNA
+ chemotherapy

siR
ER

Passive Alnylam Lipid based nanoparticle carrier system SiR
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repair cross-complementation group 1 (ERCC1), which is involved in
DNA repair mechanism leading to CIS resistance. The increased expres-
sion of ERCC1 results in removal of CIS-induced bulky adducts from the
cancer cells. The inhibition of transcription of ERCC1mRNAby the siRNA
will help reduce or eliminate the CIS resistance and lead to CIS-induced
apoptosis and ultimately reduction in tumor size.

Alnylam Pharmaceuticals in partnership with Tekmira developed a
lipid nanoparticle carrier system encapsulating two siRNAs to target
mRNA of vascular endothelial growth factor (VEGF) and kinesin spindle
protein (KSP) mRNA (Fig. 9). It is the first dual targeted RNAi drug,
which targets two pathways with two different siRNAs, thus increasing
the potential therapeutic effect. Stable nucleic acid particle (SNALP) car-
rier encapsulating the two siRNAs and is passively targeted against liver
cancer [233]. Preliminary pharmacodynamics data suggest ALN-VSP02
was able to show anti-VEGF effect in majority of treated patients and
when administered i.v. was well tolerated in most of the 28 initial pa-
tients [232]. The progress of RNAi combinations from lab to clinical set-
tings requires efficacy and safety evaluation under preclinical trials.
Further, in coming years more RNAi based combination based formula-
tions are anticipated to enter in clinical trials with successful transfor-
mations of the products in commercial markets.

7. Conclusion and future directions

The co-delivery of siRNA/miRNAwith chemotherapeutic agents pro-
vides promising option to overcome chemo resistance. Clear evidences
are given by the recent reports that combination delivery of siRNA/
miRNA and drug using nanoparticles are indeed helpful in inhibiting
the tumor growth compared to siRNA, miRNA or drug alone. Various
nanocarriers have been developed to deliver siRNA and drug; however
these nanocarriers are also not devoid of limitations. The ideal
nanocarrier system should protect the drug and RNAi therapeutic
agent from the circulatory environment and efficiently deliver the ther-
apeutic agents to tumor cells. There is also a need to study the safety
profiles of the various carriers used in the in vivo delivery of these ther-
apeutic agents with special focus on their toxicity and immune re-
sponse. SiRNA/miRNA can play first line role in the combination drug
ug Indications Status Reference

12D LODER + Gemcitabine Advanced pancreatic
cancer

Phase
II

[232]

NA (targeting
CC1) + Cisplatin

Pancreatic cancer cells Phase I [232]

NA (VEGF) + siRNA (kSP) Liver cancer and metastatic
liver disease

Phase I [233]

ry of siRNA/miRNA in combination with chemotherapeutic agents for
, http://dx.doi.org/10.1016/j.jconrel.2014.09.001
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delivery system. In a combination therapy including various nucleic acid
base reagents, siRNA/miRNA play the primary role in inhibiting the
growth of tumor cells by targeting various genes which are involved
in the tumor growth, progression and or survival. While in combination
with drug, siRNA/miRNA can play a secondary role inwhich it can target
various genes which are involved in developing chemo resistance and
thus overcoming or reducing the drug resistance in tumor cells thereby
enhancing the anticancer activity.

The earlier reports of the clinical trials of the combination delivery
consisting of siRNA/miRNA and anticancer agents are very promising,
however there are few number of nanoparticle systems based on
siRNA/miRNA have been approved by FDA. There are several obstacles
in the clinical development of RNAi-based therapeutics. Themajor chal-
lenges for RNAi-based therapeutics include minimizing the potential
off-target effects related to the sequence of both dsRNA strands and
controlling the specificity of the siRNA. The pharmacokinetic and phar-
macodynamic issues have also not been well defined in most of the
studies related with the in vivo siRNA delivery. The siRNA/miRNA target
cell machinery that is common to both normal and tumor cells, thus
there is also a need to develop targeted delivery systems to overcome
the associated side effects. Furthermore, there are financial risks for
the pharmaceutical companies as the delivery of these RNAi based
agents are challenging and the cost of manufacturing and scale up of
products are potentially higher. It also has to be taken into account
that an alteration ofmultiple genes, mutations of proteins, and associat-
ed downstream cascade are involved in the pathogenesis of cancers. To
deliver effective therapeutic concentrations of RNAi using targeted
nanocarriers to the tumor cells, a dose adjustment studies also have to
be performed.

It is anticipated that the research on combination delivery of RNAi
therapeutic agents and chemotherapeutic drugs will progress with in-
crease in the knowledge and innovative delivery strategies. With con-
tinuous development the combination delivery system will ultimately
lead toward availability of effective therapies for cancer. Despite ad-
vancement of siRNA based combination therapies to Phase II and
Phase III trials, there are limitations associated with siRNA combination
delivery. The clinical trials of siRNA based combinations for the cancer
therapy has shown how far these approaches are used, although there
are many hurdles needs to be overcome for using the novel delivery
technologies.
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