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Abstract 
 
Endothelium, a thin monolayer of specialized cells lining the lumen of blood vessels is 
the key regulatory interface between blood and tissues. Endothelial abnormalities are 
implicated in many diseases, including common acute conditions with high morbidity 
and mortality lacking therapy, in part because drugs and drug carriers have no natural 
endothelial affinity. Precise endothelial drug delivery may improve management of these 
conditions. Using ligands of molecules exposed to the bloodstream on the endothelial 
surface enables design of diverse targeted endothelial nanomedicine agents. Target 
molecules and binding epitopes must be accessible to drug carriers, carriers must be 
free of harmful effects, and targeting should provide desirable sub-cellular addressing of 
the drug cargo. The roster of current candidate target molecules for endothelial 
nanomedicine includes peptidases and other enzymes, cell adhesion molecules and 
integrins, localized in different domains of the endothelial plasmalemma and 
differentially distributed throughout the vasculature. Endowing carriers with an affinity to 
specific endothelial epitopes enables an unprecedented level of precision of control of 
drug delivery: binding to selected endothelial cell phenotypes, cellular addressing and 
duration of therapeutic effects. Features of nanocarrier design such as choice of epitope 
and ligand control delivery and effect of targeted endothelial nanomedicine agents. 
Pathological factors modulate endothelial targeting and uptake of nanocarriers.  
Selection of optimal binding sites and design features of nanocarriers are key 
controllable factors that can be iteratively engineered based on their performance from 
in vitro to pre-clinical in vivo experimental models. Targeted endothelial nanomedicine 
agents provide antioxidant, anti-inflammatory and other therapeutic effects unattainable 
by non-targeted counterparts in animal models of common acute severe human disease 
conditions. The results of animal studies provide the basis for the challenging translation 
endothelial nanomedicine into the clinical domain. 
 
Key words: Drug delivery; vascular immunotargeting. 
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1. Introduction: drug delivery systems for specific interventions in 
endothelial cells. Targeted delivery to intended sites enhances the mechanistic 
precision, efficacy and safety of action of drugs [1-5]. Drug delivery systems (DDSs) 
devised for this goal use carriers including multi-molecular structures (e.g., liposomes, 
polymersomes, dendrimers, nanoparticles, micelles and others) assembled from 
elements – both distinct and modular - providing drug loading/unloading, masking, 
targeting and other functions of DDS [6-16]. 

 
 Permutations of these elements of DDS’s design yield a diversity of size, shape, 

morphologies, chemical structures, stability, physical and surface properties, ability to 
change in response to microenvironment, elude undesirable interactions in the body, 
etc. [17-20]. These parameters of DDS’s design govern its characteristic behavior in the 
body and its interaction with its target - binding, uptake, sub-cellular addressing and 
release of drug (Fig.1). 

 
 

 
 Fig. 1. Parameters of design of drug delivery systems and carriers that 

define their functional characteristics. These DDS features influence diverse aspects 
and phases of drug delivery: circulation, pharmacokinetics and biodistribution; target 
recognition and anchoring; subsequent intracellular delivery and drug release; duration, 
beneficial and adverse effects of the DDS. Some design parameters influence distinct 
aspects of DDSs performance, whereas other parameters influence many aspects. For 
example, lateral mobility of ligands predominantly influences anchoring on the target, 
whereas carrier’s geometry influences available routes of administration, circulation, 
targeting and uptake by target and non-target cells.  
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On the other hand, biological factors, both systemic and local, modulate and in 
many cases govern characteristics of DDSs behavior and interaction with the target. For 
example, the heart rate and status of defense systems modulate the PK of carriers, 
while perfusion of the target tissue, accessibility of binding sites and their function all 
affect targeting. Furthermore, pathological factors typical of the condition that a DDS is 
devised to treat often cardinally alter these biological factors, in turn affecting targeting. 

 
Therefore, no single DDS can optimally serve diverse therapeutic goals. Each 

disease condition, therapeutic goal and characteristics of drugs ask for a unique set of 
DDS’s parameters optimally serving every phase of drug delivery – administration, 
circulation, targeting, sub-cellular addressing and effect in the given disease, and, in 
fact, in each individual patient. 
 

The endothelium represents an important target for therapeutic interventions[21-
24]. A thin monolayer of endothelial cells lining the vascular lumen forms a regulatory 
interface between blood and tissues. Via strategic location and its numerous functions, 
the endothelium is involved in the pathogenesis of many human maladies. It is a key 
therapeutic site in cardiovascular, pulmonary, neurological, oncologic, metabolic, 
rheumatologic, and many other conditions, including acute dangerous conditions that 
have no current therapeutic options.  

 
 Design of DDS targeted to the endothelium (“endothelial nanomedicine”) is a field 
of biomedicine in which many challenges and opportunities are distinct from the various 
other realms of nanomedicine. In this context it is illuminating to draw comparisons 
between non-oncological endothelial nanomedicine and the dominant field of drug 
delivery - oncological nanomedicine, or drug delivery to cancer cells (Table 1) [25-27]. 
The top priorities for oncological drug delivery are maximal selectivity for tumor cells 
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and effectiveness of tumor cell killing.  Thus, if the DDS itself has incidental toxicity to 
the target cell (including endothelium in the tumor vasculature), that is a bonus. In 
contrast, the typical cargo drugs for endothelial nanomedicine are relatively benign. 
Therefore, the criteria for targeting selectivity are not as stringent as in oncology. 
Systemic effects (e.g., anti-inflammatory) may be a bonus in many conditions in the 
realms of "endothelial nanomedicine". However, in contrast with oncology, target cell 
toxicity is not at all tolerable in endothelial nanomedicine. Another contrast between 
endothelial and oncological nanomedicine is the targeting challenges.  Targeting tumors 
is impeded by the major problems of accessibility of DDS to the internal portions of 
tumors and the heterogeneity of malignant cells.  These targeting challenges may 
ultimately necessitate the use of cocktails of anti-tumor drugs targeted to multiple 
markers. In contrast, the endothelium is readily accessible to blood, with far less 
heterogeneity than tumors [28]. Thus, the fields of endothelial and oncological 
nanomedicine have markedly different constraints, and thus will likely necessitate quite 
divergent solutions. Drug targeting to endothelium in tumor vasculature in some aspects 
shares similarities with oncological nanomedicine and in some aspects – with 
endothelial nanomedicine, thereby forming a distinct area of oncological drug delivery.   

 
The endothelium plays a major role in numerous impactful diseases. Among 

these conditions are adult respiratory distress syndrome (ARDS), sepsis, thrombosis, 
disseminated intravascular coagulation (DIC) and bleeding disorders, ischemia-
reperfusion (I/R, including myocardial infarction, stroke, transplantation, 
cardiopulmonary bypass and other "tourniquet" syndromes), hypertension, restenosis, 
atherosclerosis, diabetes, arthritis, and many others [29-34]. These maladies involve, to 
varying degrees, endothelial-regulated stresses such as inflammation, clotting, hypoxia, 
abnormal blood floow, oxidative stress, local abnormal metabolism, drug processing, 
and more [35-37].  

 
This review focuses on dangerous and common acute pathological conditions 

lacking therapy. We will mention only in passing chronic conditions involving the 
endothelium.  The treatment of acute diseases with endothelial nanomedicine is well 
positioned for translation into the clinical domain, and our hope is this review of the 
basic and pre-clinical literature will help focus the drive to clinic use.  

 
2. Vascular endothelium. Endothelium is an integral vascular tissue formed by 

highly specialized "epithelial-like" cells. Similar to epithelia, endothelia line extended 
tissue interfaces. Endothelial cells line the lumen of blood and lymphatic circulatory 
systems, heart chambers and valves, and cavities in the central nervous system. This 
article focuses on endothelium in blood vessels.   

 
Endothelial cells form a continuous thin monolayer lining the vascular lumen. In 

blood vessels --- arteries, capillaries and veins --- endothelium and its basal membrane 
form the tunica intima, or inner layer, surrounded in arteries and veins by the tunica 
media (containing smooth muscle and other vascular cells) and the external tunica 
adventitia (loosely organized components of extracellular matrix containing nerves and 
blood vessels feeding the vessel wall, called the vasa vasorum). Endothelial cells can 
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be found only in the intima. In capillaries they represent the only continuous cellular 
elements, reinforced by external pericytes and other cell types [38].  

 
Endothelial cell dimensions vary from roughly square ~30-50 x 30-50 micron in 

capillaries to elongated shape ~10-20 x 40-50 micron in the arteries, where endothelial 
cells align with flow direction due to hydrodynamic forces. Endothelial cells are flat, with 
thickness varying from a few microns in the nuclear region to less than one micron in 
the part of cellular body lacking organelles, through which gas exchange occurs.  

 
The blood vessel endothelium in most organs is presented in the form of a 

continuous cellular monolayer with tight yet dynamic intercellular junctions. In the liver 
and spleen, the endothelial monolayer is discontinuous, with an average size of 145 nm 
intercellular openings into the hepatic sinuses and micron-sized gaps in the splenic 
pulp, through which large macromolecules including medium-size chylomicrons and 
blood cells, respectively, are able to migrate from the blood to these organs of the 
reticulo-endothelial system (RES) [39-41]. In the renal glomeruli and some other 
specialized vascular areas, endothelial cells have fenestrae, with and without 
diaphragms, allowing transcellular transport [42].          

 
For a long time after its discovery in the 19th century, the endothelium was 

viewed only as a lubricating inner vascular layer preventing adhesion of blood elements 
to the vessel wall. Studies of the last few decades revealed that, in addition to this 
important role, endothelial cells exert many sensory and executive functions. These 
functions include control of vascular permeability, adhesiveness, contractility and 
formation of new vessels (angiogenesis), sensing of mechanical forces related to blood 
flow and vessel contraction, interaction of blood components with vessels and 
underlying tissues, blood metabolism, clotting and fluidity, and gas exchange. Via 
control of these multifaceted features, the endothelium helps to execute the main 
functions of cardiovascular and pulmonary systems; namely, delivery of needed 
substances to tissues, waste removal and immune surveillance. Therefore, the 
endothelium is the key regulatory interface between the blood and extravascular 
tissues. 

 
2.1. Blood fluidity and clotting. The endothelium regulates blood fluidity by a 

variety of mechanisms [43]. First, the endothelium forms a non-adhesive surface coated 
with a layer of negatively charged glycocalyx that mechanically prevents collisions of 
blood elements with the vascular wall and keeps away blood cellular elements via this 
mechanical barrier and electrostatic repelling. Second, endothelial cells express surface 
glycoproteins that inhibit blood clotting. Examples include, endothelial thrombomodulin, 
which binds thrombin and converts it from a pro-thrombotic to an anti-thrombotic agent, 
and endothelial CD39/NTPDase-1, which degrades the platelet agonist ADP. Third, the 
endothelium secrets and facilitates the enzymatic activity of plasminogen activators 
urokinase and tPA, which form plasmin that in turn cleaves fibrin. Fourth, small 
molecules released from endothelial cells, namely, nitric oxide (NO, a gas molecule 
formed from arginine by nitric oxide synthase, NOS) and prostacyclin (a prostaglandin 
enzymatically produced from arachidonic acid) both inhibit platelets. Under normal 
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circumstances these mechanisms provide uninterrupted blood flow in the vascular 
system. 

 
In contrast to this flow-facilitating role of normal endothelium, in sites of vascular 

damage, endothelial cells instead support clotting, with the teleological goal of 
preventing bleeding [44, 45]. In this role, endothelial cells expose pro-coagulant 
molecules phosphatidyl serine (PS), inhibitors of plasmin and its activators, and release 
glycoproteins that stimulate blood clotting and platelet activation, such as von 
Willebrand factor and P-selectin from intracellular stores (Weibel-Palade bodies). 
Further, the endothelium ceases its anti-clotting activities listed above, for example, via 
inactivation and/or shedding of regulatory proteins such as thrombomodulin.               

  
2.2. Transport across the vessel wall. Endothelial cells control transport to and 

from parenchyma the compounds circulating in blood, including natural carrier 
molecules, nutrients, and cells [46-48]. Both transcellular and pericellular (intercellular) 
mechanisms are involved in endothelial transport. In the former case, endothelial cells 
bind natural carrier molecules (albumin, lipoproteins, transferrin, etc) via cognate 
receptors, which enter vesicles formed from the plasmalemma in the ensuing endocytic 
pathways, some of which transfer these cargo molecules to the parenchyma. 
Leukocytes (white blood cells, WBC) also can use these vacuolar-vesicular organelles 
(VVO)m forming dynamic channels through endothelial cells for extravasation in 
response to some agonists. However, the majority of leukocyte transport occurs via 
reversibly widening inter-endothelial junctions, i.e., via pericellular pathway. 

  
The endothelium delivers to tissues blood plasma components constitutively 

using the transcellular fluid uptake pathways of pinocytosis. Transient widening of 
intercellular junctions provides qualitative increases in plasma exudation in response to 
pathological agents. Some pathological mediators, for example, VEGF, predominantly 
stimulate transcellular fluid transport via formation in the endothelial luminal surface of 
fenestrae directing fluids to VVO-type channels. Some mediators, e.g., thrombin, 
predominantly open intercellular junctions. Understanding these mechanisms is vital for 
vascular nanomedicine, because of their key role in inflammation and edema, as well as 
the potential utility for drug delivery from blood to tissues.  

 
2.3. Regulation of vascular tone and blood pressure. Endothelial cells 

produce vasoactive molecules that diffuse to the tunica media and regulate contraction 
of vascular smooth muscle cells (SMC) by regulation of actin-myosin interaction and 
signal transduction via SMC receptors. Nitric oxide and prostacyclin enzymatically 
produced by endothelial cells inhibit SMC contraction, thereby causing vasodilation and 
reduction of blood pressure [49].  

 
A contrasting role is provided by several endothelium-produced vasoconstrictors.  

Angiotensin-converting enzyme (ACE), a transmembrane ecto-peptidase anchored on 
the luminal endothelial surface, cleaves two amino acids from an inactive precursor in 
plasma, angiotensin I, producing a potent pro-contractile, pro-inflammatory and pro-
proliferative peptide, angiotensin-II. In addition, ACE cleaves and thus inactivates a 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
VRM 

Targeted endothelial medicine. 

 8 

vasodilating peptide, bradykinin. Furthermore, endothelial cells produce a short peptide, 
endothelin, the most potent vasoconstricting agent (on the molar basis). The balance 
between vasodilating and vasoconstricting mediators produced by the endothelium may 
either suppress or stimulate vascular contraction [45]. 

  
2.4. Control of host defense and inflammation. Endothelial cells provide 

important regulatory functions in many cellular and humoral mechanisms of innate and 
adaptive immune defense. For example, endothelial surface glycoproteins such as 
Decay Acceleration Factor (DAF) and CD59 inhibit activation of complement and thus 
prevent vascular injury. Another key immune role of endothelial cells is their binding and 
recycling of immunoglobulins via endothelial FcRn receptors supports prolonged 
circulation of IgG, needed for continuous immunological surveillance. Perhaps the 
greatest immune role of the endothelium is its interaction with WBCs.  In inflammation, 
endothelial cells release cytokines and chemokines that activate and attract WBC and 
guide their transmigration from blood to tissues via exposure of cell adhesion molecules 
[45].  

A notable role of the endothelium in the immune system is binding of WBCs to 
endothelial cells via cell adhesion molecules.  This process is particularly interesting for 
endothelial nanomedicine, as many DDSs recapitulate such endothelial binding to effect 
drug delivery. Adhesion molecules involved early in WBC-endothelium interaction 
include the P- and E-selectins, glycoproteins transiently exposed on the endothelial 
lumen via mobilization from intracellular stores (Weibel-Palade bodies) and also 
produced by de novo in response to pathological stimuli. Inducible selectins mediate 
low-affinity binding and deceleration of WBC rolling. Firm adhesion is provided by 
leukocyte binding via β1 and β2 integrins to Inter-Cellular Adhesion Molecule-1 (ICAM-1) 
and Vascular Cell Adhesion Molecule-1 (VCAM-1), which are constitutively expressed 
by quiescent endothelial cells and up-regulated in sites of inflammation and other 
vascular pathologies. Stably expressed platelet-endothelial cell adhesion molecule 1 
(PECAM-1), which interacts with its leukocyte homolog at the endothelial cell-cell 
borders supports leukocyte diapedesis [50].   

 
2.5. Reception and transmission of chemical and mechanical signals. Via 

an extremely rich repertoire of receptors, endothelial cells receive myriad chemical and 
physical signals from blood and tissues, and transmit these signals to the blood, tunica 
media, and tissue parenchyma. Chemical signals include oxygen and CO2, vasoactive 
agents (e.g., peptides and prostaglandins), transporting molecules (e.g., albumin, 
lipoproteins, and transferrin), pathological mediators (cytokines, reactive oxygen 
species, and proteases including thrombin), nutrients, and hundreds of other natural 
and injected compounds. In addition to sensing chemicals, endothelial cells sense and 
transmit the physical forces of flow shear stress via sensor systems including 
glycocalyx, caveolae, cytoskeleton and integrins interconnected with components of 
extracellular matrix and intercellular junctions (in particular, PECAM-1).       

 
3. Drug delivery to endothelial cells: general principles. 
3.1. Passive vascular targeting. Carriers may accumulate in sites of interest via 

diverse mechanisms, some of which do not involve target affinity. Mechanical retention 
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underlies the mechanism of several types of such non-affinity or "passive targeting". For 
example, nanocarriers are mechanically retained in stagnant blood in the vasculature 
upstream of sites of ischemia or thrombotic occlusion. Rigid particles larger than a few 
microns such as albumin microspheres are mechanically entrapped in the 
microvasculature downstream of the injection site via first-pass uptake. Even small (<50 
nm in diameter) particles, if hydrophobic, charged, or possessing non-specific affinity for 
proteins, tend to agglomerate in blood and resultant aggregates behave as large 
particles. Cationic particles bind to the negatively charged glycocalyx on the surface of 
endothelial and other accessible cells. Finally, circulating particles may accumulate in 
tissues that exhibit elevated vascular permeability due to inflammation, angiogenesis, or 
tumor growth.  

 

Additional approaches not involving ligand-mediated binding to defined targets 
are evolving. For example, a high-throughput variable synthesis of lipid-based 
nanocarriers yielded numerous DDSs varying in shape and surface features, showing 
distinct patterns of biodistribution in animals [51]. The mechanisms underlying such 
particles’ homing to given organs remains to be understood. Most likely it involves 
interaction with endothelial cells directly or indirectly, via intermediary blood 
components. Another strategy for "passive" endothelial DDS is hitchhiking on the 
surface of red blood cells (RBCs) [52]. RBCs may carry some types of nanoparticles in 
circulation, diverting their clearance by the liver and spleen to transfer to the 
endothelium predominantly in the pulmonary vasculature. The mechanism, selectivity, 
cellular targets and effects of chemical combinatorial and RBC-hitchhiking approaches 
need to be better understood to gauge their potential clinical utility.  

 
"Passively targeted" DDS may deliver cargoes to vascular areas downstream of 

the injection site and may have translational advantage vs. more complex DDS 
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containing affinity ligands (Figure 2). However, mechanisms that do not involve specific 
affinity to a target provide very little, if any, control of the intracellular localization of drug 
cargoes [53]. Blood perfusion will eliminate a major fraction of drugs released from 
carriers that are not guided for delivery into the target cells. Further, vascular drug 
delivery relying on the carrier's mechanical retention may hinder vessel's patency and 
affect vascular cells, causing adverse effects typical of embolism.  

 
Figure 2. ‘Passive’ vs. ‘active’ delivery of nanomedicine agents to vascular 

endothelium. Passive delivery relies on mechanisms bypassing affinity interaction with 
defined molecules. They include adhesion and uptake in the vessels due to size, 
charge, rigidity, or amphiphilic features of the carrier itself, carrier agglomerates, or 
carrier-adsorbing intermediary molecules in blood. Affinity targeting is provided by 
ligands that can be conjugated to the DDS surface in molecular configurations 
permitting diverse modes of specific anchoring of DDS onto the target surface and 
subsequent cellular uptake. 

 
3.2. Active targeting mediated by affinity ligands. “Active targeting” offers 

arguably a more precise and safer approach. Active targeting is typically achieved by 
conjugating DDSs to ligand molecules that bind to the endothelial [23, 24, 54-57]. 
Antibodies and their derivatives including single chain antigen binding fragments (scFv), 
nutrients, hormones, receptor ligands, peptides, aptamers, and nucleic acids have been 
explored as targeting ligands for vascular DDSs [21, 58-61].  

 
DDSs using this approach can use monovalent and multivalent binding, as well 

as binding to multiple endothelial determinants and epitopes, providing versatile 
mechanisms for target recognition. Furthermore, the mode of DDS anchoring and the 
nature of the endothelial “target determinant” (binding epitope on the endothelium) 
dictate drug delivery to specific vascular areas and endothelial sub-cellular 
compartments, and mediate additional effects. Numerous studies in animal models and 
a few clinical studies [23, 62-70] showed that affinity-guided DDSs enable targeting of 
diverse agents to normal and pathological endothelium [71-74].  

 
The intravenous routes bypassing the liver direct the first pass of blood to the 

lungs [75]. The pulmonary vasculature represents ~25% of the total endothelial surface 
in the body and receives the entire cardiac output (through the lower pressure 
pulmonary arterial system), whereas all other organs share a fraction of cardiac output 
through the high pressure systemic arterial system. This privileged perfusion pattern 
and enormous surface area favors pulmonary accumulation of pan-endothelial ligands. 
An infusion via the conduit vessel favors uptake in the downstream microvasculature 
[75, 76].  

 
4. Endothelial target determinants.  
4.1. Approaches to define endothelial determinants. Immunostaining, FACS, 

Western blotting, PCR and high-throughput approaches of functional genomics and 
proteomics help to detect and localize proteins enriched in target tissue (Fig. 3). 
However, target determinants must meet several criteria that cannot be characterized 
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by these standard methods. Proteomics of the plasmalemma separated from the 
vasculature of organs of interest [77] and selection of homing ligands using phage 
display libraries in animals and in cadavers provide additional important insights in 
target accessibility on the cell surface [78-80].  

 
The endothelium is accessible to blood, but accessibility to particles depends on 

binding site localization and vascular conditions [81]. For example, target determinants 
are less suitable for binding to DDSs if the epitopes are located in close proximity to the 
plasmalemma, masked by the glycocalyx, or buried in intercellular junctions or in 
plasmalemma invaginations [82]. Shedding of glycocalyx in pathology exposes 
endothelial ICAM-1 [83].  On the other hand, adherent leukocytes and thrombi may 
mask parts of the endothelial surface [84]. Accessibility is especially important for large 
multivalent carriers. 

 

Anchoring of a carrier may affect functions of the target determinant either in an 
adverse or beneficial fashion. For instance, targeting to thrombomodulin is likely to 
increase the risk of thrombotic and inflammatory side effects. For other molecules, the 
benefit/risk ratio depends on the clinical context. For example, inhibition of ACE may be 
a bonus in treatment of hypertension and inflammation. On the other hand, ACE and 
APP are peptidases that cleave mediators including bradykinin [85]; unintended 
elevation of bradykinin may aggravate vascular edema. Cross-linking of target 
molecules may cause their shedding, uptake, changes in their functionality adverse 
endothelial activation, or other vascular disturbances. 
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Figure 3. Approaches endothelial determinants search. A variety of high 

throughput ‘omics’ approaches allow detection and localization of target determinants. 
Ultimately, such target determinants must be assessed by creating DDSs that bind the 
determinants, and then assessing the resulting biodistribution and therapeutic efficacy 
in vivo. 

 
4.2. Endothelial uniformity and heterogeneity. Endothelial cells throughout the 

body share a few characteristics. These include luminal location, flat shape, and pan-
endothelial molecular markers enriched in or unique to endothelium (e.g., 
thrombomodulin, E-selectin, VE-cadherin, PECAM-1, etc). However, endothelial cells in 
distinct organs and types of vessels each have unique morphologic and functional 
differences [86, 87]. Distinctive features and markers of endothelial cells typical of 
certain organs, types of endothelia, and vascular areas provide the mechanistic basis 
for drug targeting (Fig. 4).  

 
Arterial endothelial cells are elongated and contain extensive long bundles of 

actin stress fibers, whereas short cortical actin fibers are more typical of the 
microvascular endothelial cells which have a "cobble stone" appearance. In large 
arteries, endothelial cells in the branching points, exposed to turbulent blood flow, have 
different gene expression profiles from their counterparts localized in less disturbed 
vascular areas [88]. Pulmonary and cardiac endothelial cells contain numerous 
caveolae, while cerebral endothelium is lacking these organelles and fenestrae. 
Distribution of endothelial markers varies in the vasculature. For example, ACE and 
thrombomodulin are greatly enriched in the capillaries, especially in the lungs, whereas 
the endothelial-specific glycoprotein EPCR is enriched in large vessels.   
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Figure 4. Topological and phenotypic parameters of endothelial targeting 

determinants. “Topological” characteristics of the target molecule include the type of 
blood vessel the target molecule is found on, the tissue types in which it is expressed, 
and its subcellular localization. “Phenotypic” parameters are the dynamic states in which 
the target molecule’s expression or localization changes, such as normal physiological 
processes like angiogenesis or during pathological processes like inflammation .  

 
4.3. Constitutive vs. inducible endothelial determinants. Constitutively 

expressed endothelial surface molecules (e.g., PECAM, ACE, and APP) seem ideal for 
prophylactic drug delivery. Some, including ACE [89], disappear from the endothelium in 
pathological conditions, which inhibits targeting [90, 91]. Constitutive molecules stably 
exposed in the lumen, such as PECAM, can be used for prophylactic and/or therapeutic 
delivery [84].  

 
Endothelial phenotype changes under pathological conditions. Pathologically 

activated endothelial cells contract, open intercellular gaps, form or lose caveolae and 
fenestrae (depending on types of insult), shed their glycocalyx and endothelial-specific 
glycoproteins, and expose abnormal molecules including inducible adhesion molecules. 
Pathological endothelia tend to lose specific constitutive markers such as ACE and 
commonly exhibit features such as leakiness and expression of common pathological 
markers (e.g., VCAM-1 and selectins). In contrast to constitutive molecules, inducible 
counterparts expressed or exposed to the lumen in pathological sites (e.g., APN, TEM-
1, VCAM-1, and selectins) are less likely to find prophylactic utility but seem preferable 
for diagnostic imaging and therapeutic interventions [23, 55, 64, 92, 93].  

 
4.4. Candidate endothelial targets for nanomedicine. Table 2 introduces an 

incomplete list of endothelial surface determinants that in theory may be used for drug 
targeting. They are localized in diverse plasmalemma domains. For example, PECAM 
and VE-cadherin are localized in cell-cell borders [94, 95] whereas VCAM-1 and ICAM-
1 are found in micro-domains of the cellular apical surface [96-98], special types of 
membrane ‘rafts’ [99]. Glycoprotein GP85 localizes to the luminal surface of the 
plasmalemma that belongs to a thin organelle-free part of the endothelial cell separating 
alveoli from blood [100, 101]. APP and PV-1 are located in caveolae [102].  

 
Table 2. Selected endothelial target determinants for drug delivery. 

 
Target  Vascular 

localization 
Cellular localization Functions Regulation 

Constitutive 

ACE 
(CD143) 

Ubiquitous, 
enriched in the 
lung capillaries 

Cell surface, single pass 
type I membrane protein 

Plays a key role in rennin-
angiotensin system, regulates 
blood pressure. Converts Ang I 

into Ang II and degrades 
bradykinin. 

Catalytic activity is 
increased by chloride. 

TM 
(CD141) 

Ubiquitous, 
specific for 

endothelium  

Cell surface, single pass 
type I membrane protein 

Receptor for thrombin, 
participates in the generation of 

activated protein C. 

Pathological factors affect 
TM expression.  

Cell Adhesion Molecules 

PECAM-1 
(CD31) 

Ubiquitous  Cell junction, lateral 
border recycling 

Leukocyte trans-endothelial 
migration; anti-apoptotic 

Stable expression 
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compartment repulsion signaling from 
phagocyte 

ICAM-1 
(CD54) 

Ubiquitous Tetraspanin 
microdomains on cell 

surface, single pass type I 
membrane protein 

Leukocyte firm arrest and trans-
endothelial migration; 

immunological synapse 
formation. Ligand of LFA-1, 

MAC-1 

Up-regulated in 
inflammation 

VCAM-1 
(CD106) 

Inflamed 
vascular 

endothelium 

Tetraspanin 
microdomains on cell 

surface, single pass type I 
membrane protein 

Leukocyte firm arrest and trans-
endothelial migration. Ligand of 

VLA-4 

Up-regulated in 
inflammation 

E-selectin 
(CD62E) 

Inflamed 
vascular 

endothelium  

Cell surface, single pass 
type I membrane protein 

Leukocyte rolling  Up-regulated in 
inflammation 

P-selectin 
(CD62P) 

Inflamed 
vascular 

endothelium 

Cytosol: Weibel-Palade 
bodies of endothelial 

cells, alpha-granules of 
platelets 

Leukocyte rolling Upon activation by 
agonists transported 
rapidly to cell surface 

Caveolar 

APP Enriched in 
pulmonary 

endothelium. 
Expressed in 
heart, liver, 

kidney 

Enriched in caveolae on 
the luminal surface of 
endothelial cells; lipid-

anchored to cell 
membrane 

Metalloprotase that plays a role 
in inflammation; cleaves and 

inactivates circulating 
polypeptides such as bradykinin 

Unknown 

PV1  
(PLVAP) 

Expressed in 
many tissues 

Endothelial fenestrae and 
caveolae  

Forms aperture in fenestrae and 
caveolae, regulation of 

microvasculature permeability 

Up-regulated by VEGF  

Angiogenesis and tumor-related 

APN 
(CD13) 

Vasculature of 
tissues that 

undergo 
angiogenesis 
and in multiple 

tumor types 

Cell surface, single pass 
type II membrane protein; 

cytosol 

Metabolism of regulatory 
peptides, processing of peptide 
hormones (angiotensin III and 

IV, neuropeptides, and 
chemokines) 

Estradiol and interleukin-8 
decrease APN activity in 

vitro 

Integrins 
αvβ3, αvβ5, 

α5β1 

Enriched in 
tumor vessels 

and other types 
of angiogenesis   

Cell surface Angiogenesis  αvβ3 is up-regulated by 
bFGF, TNF 

αvβ5 is up-regulated by 
VEGF, TGF-a 

 

Abbreviations: EC – endothelial cells, ACE – angiotensin-converting enzyme, TM - 
thrombomodulin, PECAM - platelet-endothelial cell adhesion molecule, ICAM - 
intercellular adhesion molecule; VCAM – vascular cell adhesion molecule; APN – 
aminopeptidase N; APP – membrane-bound aminopeptidase P; TEM-1: tumor 
endothelial marker-1; PV-1 – plasmalemma vesicle-associated protein.  

 

4.4.1. ACE and thrombomodulin. Initial efforts in endothelial drug targeting 
focused on two constitutive targets, ACE [67, 73, 91, 103] and thrombomodulin (TM) [56, 
104]. ACE, a luminal transmembrane endothelial glycoprotein, produces Ang II, a 
vasoconstricting, pro-oxidant, pro-thrombotic and pro-inflammatory peptide [105, 106]. 
Some ACE antibodies do not affect its activity, while others inhibit ACE and cause its 
shedding [103, 107]. This “side effect” may be beneficial in treatment conditions 
associated with hypertension, oxidative stress and inflammation [24, 108, 109]. The 
pulmonary vasculature is enriched in ACE: ~100% vs. <15% of endothelial cells are 
ACE-positive in the alveolar as compared with the extra-pulmonary capillaries [91]. 
Oxidants, cytokines and other pathological agents suppress ACE expression and thus 
inhibit targeting to ACE [110, 111].  

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
VRM 

Targeted endothelial medicine. 

 15 

The pulmonary accumulation of isotope-labeled ACE antibodies has been 
visualized in real time after IV injection in diverse animal species including primates and 
humans [62, 91, 112]. Reduction of the pulmonary uptake of anti-ACE is an indicator of 
endothelial disturbance in models of endotoxemia, edema, and ischemia-reperfusion 
[84, 111, 113]. Limited clinical studies using thoracic imaging revealed that pulmonary 
uptake of isotope-labeled anti-ACE is reduced in the patients with sarcoidosis, in 
comparison with healthy volunteers [62].  

 
Endothelial cells internalize ACE antibodies [108, 114]. Antibodies to rat, mouse, 

cat, primate and human ACE showed effective and selective accumulation in the 
pulmonary vasculature after IV injection in these species [73, 91, 112, 115]. Pilot safety 
tests did not reveal overt harmful effects of injection of anti-ACE in animals and humans 
[62, 103]. ACE targeting holds promise for endothelial delivery of imaging, antioxidant, 
genetic materials and other agents. Further, hetero-conjugates that consist of antibodies 
to both ACE and a viral surface protein attenuate the virus’s natural tropism to non-
endothelial cells and redirect it towards endothelial cells [116]. Such anti-ACE/anti-virus 
conjugates have been used for re-targeting of viral gene therapy to endothelial cells in 
culture [112] and the pulmonary endothelium in rats [70, 116]. Combining this targeted 
delivery with insertion of an endothelium-specific promoter augments the pulmonary 
specificity of transgene expression by several orders of magnitude [70]. Using this 
approach for transfection of pulmonary endothelium by viral gene delivery of genes 
encoding NO-synthase and bone marrow morphogenetic protein type 2 receptor showed 
a reduction of spontaneous pulmonary hypertension [117] and hypoxic pulmonary 
hypertension [118].   

 
Thrombomodulin (TM), a transmembrane glycoprotein expressed on the luminal 

surface of the endothelium, converts thrombin into an anti-thrombotic and anti-
inflammatory enzyme [119].  TM antibodies accumulate in the lungs after IV injection 
and have been employed in animals for targeting of liposomes, genetic materials, model 
enzymes and isotopes to the pulmonary endothelium [120]. Pulmonary accumulation of 
125I-anti-TM was reduced to 50% of basal level in mice with acute lung injury [90], 
consistent with loss of thrombomodulin in the pathologically altered pulmonary 
endothelium [121]. However, targeting may inhibit TM activity and compromise 
important endothelial functions and provoke thrombosis [122, 123].  

 

4.4.2. Caveolae. Caveolae are flask-shaped (~50 nm in diameter) invaginations in 
the  plasmalemma involved in endothelial intracellular trafficking and signaling. Caveolae, 
similarly to lipid rafts, are enriched in cholesterol and sphingolipids, but unlike the rafts also 
contain the protein caveolin-1. Caveolae are dynamic structures forming caveolar 
endosomes and transporting ligands via this endocytic vesicular pathway into and across 
the endothelium [124].  

 
Ligands binding to some caveolar determinants accumulate in the lungs after 

systemic vascular administration, quickly pass the endothelial barrier, and get into the 
pulmonary interstitium. Antibodies of determinants localized to caveoli, including amino 
peptidase P (APP) and the glycoproteins GP60 and GP90 accumulate in the pulmonary 
vasculature in rats after intravenous injection, enter endothelial intracellular vesicles and 
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traverse endothelial barriers [23]. Caveoli-mediated endocytosis and transcytosis are 
involved in endothelial transport functions [125-130].  Interaction of a protein ligand (e.g., 
antibodies) leading to receptor clustering in caveoli further activates endocytosis and 
transcytosis [131, 132]. Caveoli seem to be involved in trans-endothelial transport of 
albumin [133, 134], a process further stimulated by albumin nitration that may take place 
during oxidant stress [135]. In addition, antibodies to the glycoprotein PV-1, which forms 
diaphragm-like structures in caveolae and fenestrae, also accumulate in the pulmonary 
vasculature with exceptionally high affinity, yet conjugation to 100 nm particles obliterates 
targeting, most likely due to inaccessibility of PV1 to even relatively small carriers [136]. 
Caveolae have been reported to be able to merge into “caveolosomes” engulfing large 
particles, but it is unclear to what extent data obtained in static cell cultures reflect this 
aspect of endothelial physiology in vivo [102, 137, 138] 

 
4.4.3. Inducible cell adhesion molecules: selectins and VCAM-1. These 

molecules are normally absent on the vascular lumen, but become exposed on 
pathologically activated endothelium and facilitate adhesion of leukocytes[139]. 
Pathological mediators cause mobilization of intracellular P-selectin to the endothelial 
surface within 10-30 min [140] and induce de novo synthesis and surface expression of E-
selectin [141] and VCAM-1 [142] within several hours. E-selectin and VCAM-1 seem to be 
more readily expressed in activated endothelia of non-pulmonary vasculature, e.g., in the 
dermal microvasculature [143].  

 
These determinants are good targets for delivery of agents to activated 

endothelium [57, 144]. Endothelial cells constitutively internalize selectins via clathrin-
coated pits [145-147],  permitting entry into endothelial cells of anti-E-selectin targeted 
liposomes [148], anti-inflammatory drugs [148, 149] and genetic materials[150]. P-selectin 
targeted compounds also bind to activated platelets [151]. Selectins and VCAM-1 are 
exposed transiently and at relatively low surface density. Hence, robustness of the targeting 
may be sub-optimal for therapies requiring delivery of large doses of drugs. These 
determinants might be optimal for diagnostic visualization of activated endothelium in 
inflammation using isotopes [92] or ultrasound contrasts [151, 152].  

 
4.4.4. Stable and up-regulated cell adhesion molecules (CAMs). CAMs are 

also good targets for drug delivery [37]. ICAM-1 or PECAM-1 antibodies and antibody-
targeted drugs and drug-loaded carriers bind to endothelial cells in vasculature and exert 
biodistribution and effects typical of pan-endothelial targeting in models of thrombotic, 
oxidative, inflammatory, cancer, and genetic conditions [37]. Inducible and stable CAMs are 
attractive targets for therapeutic and prophylactic drug targeting, respectively [37, 153]. 
Inflammation enhances targeting of nanocarriers to ICAM-1.  

 
Endothelial cells do not internalize PECAM-1 antibodies, and rapidly recycle ICAM-

1 antibodies to the surface [154]. This enables intravascular retention of monovalent fusion 
proteins targeted to CAMs, including fibrinolytic urokinase [155]. However, multivalent 
conjugates and carriers enter endothelial cells via inducible CAM-endocytosis [156]. 
Therefore, ICAM-1 and PECAM-1 offer flexibility for drug delivery to different endothelial 
compartments. 
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5. Control of DDS targeting. Specifics of design and molecular configuration of 
ligand-coated carriers dictate the targeting outcome. Here we consider several examples of 
such regulatory influences.  

  
5.1. Multi-ligand coated nanocarriers. Nanomedicine agents may utilize more 

than one target recognition mechanism. Attractive intellectually, this sophisticated approach 
may further complicate the translational aspects, but, at least in theory, may provide unique 
new functional features to the DDSs. Combining on the carrier ligands that bind to different 
determinants may boost targeting to pathological endothelium. Carriers coated by 
antibodies to inducible adhesion molecules providing the selectivity (selectin, VCAM-1, 
ELAM) and antibodies supporting anchoring via less specific high-density molecules (ICAM, 
PECAM), have been tested in vitro in models of co-immobilized antigens [157] or cytokine-
activated cells [158]. In studies with particles targeted to inflamed vasculature using ICAM-1 
and P-selectin, greater binding was achieved with dually targeted particles relative to 
particles targeted to P-selectin or ICAM-1 alone [157, 159, 160]. Targeting liposomes to E-
selectin and either VCAM-1 or ICAM-1 on cultured endothelial cells has also been 
reported[158]. Maximal binding was observed with equimolar ratios of both ligands [158, 
161, 162].  

 
The dual targeting has also shown promising results in imaging inflammation in 

mice using contrast particles targeted to P-selectin/VCAM [163] or P-selectin/ICAM-1 [164]. 
Of note, in imaging the target/non-target ratio is more important than the absolute level of 
delivery, which may favor better outcome with dual-targeting even with relatively low 
absolute levels of targeting. A dual targeting strategy employing carriers carrying antibodies 
to both ICAM and transferrin receptors has recently been tested in vivo and showed 
promising results: each of the ligands apparently promoted targeting to the vascular area of 
its destination, i.e., nanocarriers could be directed to the inflamed pulmonary vasculature 
via ICAM and to cerebral vasculature via the transferrin receptor [165].  

 
5.2. Collaborative endothelial targeting. Ligands binding to distinct epitopes on 

the same target molecule may influence each other, for example, inhibiting binding to 
adjacent epitopes [107, 166, 167]. Recently, it has been found, however, that distinct 
monoclonal antibodies directed to adjacent epitopes in the extracellular moiety of PECAM, 
stimulate binding of each other [168]. This unusual finding can be explained by an increase 
in accessibility of an epitope to its ligand due to conformational changes in the PECAM 
molecule induced by binding of a paired “stimulatory” ligand. Utilizing this strategy, an 
improved therapeutic effect was realized with increased activity of an scFv targeted to 
PECAM on endothelial cells [168].  

 
5.3. Ligand surface density. Targeting of a carrier depends on the surface 

density of the ligand. In turn, the optimal surface density of a ligand depends on features of 
the carrier and the ligand itself (size, orientation, affinity, density, etc.) and of the target 
determinant (membrane localization, glycocalyx, environment, clustering, etc.). Ligand-
coated carriers with higher avidity do not necessarily provide the best targeting. Unlike free 
ligands, they require congruency with target molecules for multivalent binding, which does 
not necessarily correspond to the maximal ligand density. In some cases, an excessive 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
VRM 

Targeted endothelial medicine. 

 18 

ligand density may inhibit the binding via “ligand overcrowding” that may inhibit individual 
ligand molecules from achieving the optimal orientation or congruency with target 
molecules [169, 170]. Beyond a certain optimal level, further elevation of ligand density may 
result in decreased in targeting [169, 171].  

 
Varying ligand surface density may help enhance the signal-to-noise ratio of the 

target tissue, i.e., boost the selectivity of detection of pathological endothelium. For 
example, controlled reduction of a carrier's avidity to ICAM-1 (achieved by reducing 
antibody surface density) enhances the selectivity of targeting to and PET imaging of the 
inflamed pulmonary vasculature in animal models [136, 172]. In the case of ICAM-1 and 
other markers that are expressed in normal endothelial cells but upregulated in disease, it 
may be useful to use carriers with “marginal” avidity, sufficient to anchor on cells with 
pathologically elevated but not normal level of expression of the marker.  

 
5.4. Carrier geometry. Geometry parameters - i.e., size, shape and plasticity of 

the DDS carrier - modulate all aspects of its function, including suitability to administration 
routes, behavior in circulation and interactions with target and non-target cells. Overall, 
spherical carriers smaller than tens of nanometers can be injected using diverse vascular, 
muscular and dermal routes, whereas carriers larger than few hundred nanometers can be 
administered via large vessels and airways [173-177]. The shape further modulates 
delivery: for example, non-spherical carriers circulate longer and avoid uptake by defense 
cells more effectively than spherical counterparts, whereas propeller-shape nanoparticles 
reach more deep deposition sites in the airways than spherical ones [81, 178].   

 
Effects of the geometry on active targeting mediated by carrier's anchoring on the 

cells of interest are beginning to emerge in the literature [179-182]. The interplay between 
size, geometry and plasticity of the carrier, ligand's affinity, spatial freedom and density, and 
nature of the target determinants - accessibility, clustering, surface density - is immensely 
complex. For example, larger carriers may have advantages of higher avidity attained by 
formation of multiple engagements, and disadvantages of limited access and enhanced 
detaching dragging force of blood [81, 174, 183].   

 
Generally, the absolute level of endothelial targeting (e.g., number or mass of 

nanocarriers bound per cell or organ) increases with size into the micron range due to more 
effective multivalent anchoring. However, beyond a certain optimal size, targeting specificity 
(i.e., ratio of tissue uptake of targeted vs. non-targeted formulations) may deteriorate due to 
mechanical uptake and other non-specific interactions of large particles with endothelium. 
For example, within the size range from <100 nm to a few microns, maximal specificity of 
targeting to the pulmonary endothelium in mice has been observed with synthetic and 
protein-based nanocarriers with sizes of 100-300 nm, targeted to ICAM [184] or PECAM 
[185].  

 
The carrier’s shape is also an important factor. Elongated carriers display higher 

specificity of targeting to vascular endothelium vs. spherical counterparts [184]. Nanorods 
targeted to ICAM and the transferrin receptor showed more effective endothelial targeting 
than spherical counterparts in static culture of brain endothelial cells [186]. In vivo, ICAM 
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targeted disks accumulated in the pulmonary vasculature in mice with higher specificity vs. 
spheres [184], whereas ICAM-targeted filomicelles accumulated in lungs less effectively 
than spheres, although with similar targeting specificity [187].  

 
6. Intracellular endothelial delivery. Binding to the target should provide 

desirable sub-addressing of the drug. A conventional strategy is to direct targeting to 
surface molecules involved in natural endocytic pathways. For example, antibodies against 
gp90, a 90 kDa glycoprotein located in the caveoli, and compounds conjugated to these 
antibodies enter vesicular organelles from caveoli [23]. In contrast, liposomes targeted to E-
selectin, a transmembrane glycoprotein that is taken up by clathrin-mediated endocytosis 
[146, 147], enter cells via this pathway and traffic to lysosomes [148, 149]. Similarly, 
antibodies to VCAM-1 are internalized by endothelial cells and addressed in the lysosomes 
via clathrin-mediated endocytosis [149, 188] and anti-VCAM conjugated compounds 
generally follow this fate [189-191]. Antibodies to the transferrin receptor (TfR) and 
compounds conjugated with TfR ligands also enter cells via this pathway, similarly to the 
endogenous ligand transferrin [192].  

 
Binding to molecules involved in endocytosis usually favors uptake, though not 

necessarily via the same endocytic pathway. Phagocytosis and pinocytosis take particles 
and fluid, respectively, into micron-size vesicles, typical of host defense cells. Clathrin- and 
caveolar endocytosis take particles smaller than 100 nm [93]. Static endothelial cells in vitro 
may engulf large carriers via engorged fused vesicles (e.g., "caveolosomes") and may exert 
unconventional pathways (e.g., associated with GPI-anchored proteins, bound growth 
factors, etc.), but most of these findings remain to be confirmed and elucidated in vivo 
[124]. Most ligands and ligand-targeted carriers entering via vesicular pathways traffic to 
the lysosomes, whereas some ligands traffic to the Golgi apparatus or the endoplasmic 
reticulum, or across the endothelial cells via transcytosis. Several endothelial determinants 
have been identified including receptors and enzymes, elements of the glycocalyx and 
specific domains in the plasmalemma [68, 109, 193, 194]. In particular, cell adhesion 
molecules are good determinants for delivery of drugs to selected endothelial 
compartments [28, 37].    

 
Ligands binding to distinct epitopes of the same molecules may enter cells 

differently. Selection of ligands facilitating cellular uptake is a mostly empirical task [195, 
196]. Using a phage-display library, a series of peptides binding to VCAM-1 epitopes was 
identified, some of which have shown enhanced uptake [191]. VCAM-1 binding peptides 
undergoing enhanced endocytosis provided improved imaging of vascular inflammation in 
animal models [190, 191]. Phage display and other high-throughput methods facilitate 
selection of internalizable ligands [197-199].  

 
6.2. Uptake of free ligands vs ligand-coated carriers. In many instances, 

carriers coated by molecules of a ligand enter cells similarly or even more effectively than 
free ligands [200]. An extensive clustering or re-clustering of receptors by multivalent 
carriers eliciting strong endocytic signaling seems as a plausible explanation. Generally, 
this high carrier avidity is viewed as favorable for intracellular delivery. However, coating a 
nanocarrier with internalizable molecules does not necessarily result in internalization. The 
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uptake of too large a carrier may require prohibitively extensive mobilization of cell 
membrane and cytoskeleton. Coupling ligands to carriers impedes their interaction with 
receptors and epitopes inaccessible to the particles of such size. Conjugation of ligands of 
caveolar epitopes to carriers larger than the diameter of the neck of caveolae (50 nm) 
abolishes endothelial targeting [201].   

 
On the other hand, endothelial cells do not internalize free antibodies to PECAM 

and ICAM, yet internalize multivalent conjugates targeted to these adhesion molecules[93]. 
CAM-endocytosis is mediated by series of unique cellular signaling pathways leading to 
formation of ceramide-rich domains at the plasmalemma and formation of actin stress 
fibers. Contrary to constitutive endocytosis that is continuously used by natural ligands, the 
CAM pathway is believed to be “dormant” until induced by certain pathogens, leukocytes, 
and drug targeting systems [156]. CAM-endocytosis delivers cargoes to the lysosomes 
markedly slower than other vesicular pathways [202]. Lysosomal delivery is ideal for 
treatment of the lysosomal storage diseases and in cases where the lysosomal acidic pH 
and hydrolytic environment induces release of membrane-permeable drugs or provides 
escape from this compartment [203]. Efficacy, rate and destination of carriers entering 
endothelial cells via CAM-endocytosis are modulated by selection of epitopes on CAMs, 
and carrier geometry.  

 
CAM-endocytosis provides internalization of carriers of different sizes and shapes 

(50 nm - 10 micron, spherical and elongated) [156, 184]. Internalization is modulated by 
carrier geometry and selection of epitopes on the target determinant. ICAM targeted disks 
enter endothelial cells more slowly than spherical counterparts, whereas intracellular traffic 
is controlled by size: smaller particles arrive to the lysosomes faster [184].  

 
Intracellular uptake of carriers varies depending on which specific epitope on the 

target determinant is engaged [82]. For example, nanocarriers directed to distinct PECAM 
epitopes are internalized and trafficked by endothelial cells differently. One out of four 
antibody-coated nanocarrier formulations failed to enter the endothelium despite high level 
of binding to cells [82]. Further, the kinetics of vesicular trafficking from early endosomes to 
lysosomes varied among different types of PECAM-targeted nanocarriers despite the fact 
that they all entered cells with a similar rate (T½ was close to 20-30 min and max uptake 
reached 80-90%) [82].   

 
6.3. Biological modulation of carrier intracellular delivery. The functional 

status of target cells and their microenvironment modulate endocytosis. Thus, activated 
endothelium internalizes ICAM-targeted nanocarriers faster than quiescent endothelium 
both in vitro and in vivo [204]. A few studies addressed the role of flow in endothelial uptake 
of non-targeted nanoparticles [205, 206]. Further, studies in flow chambers revealed that 
prolonged exposure to flow leads to inhibition of endocytosis of nanocarriers targeted to 
ICAM and PECAM [204, 207]. The trend corroborates with in vivo data showing less 
effective internalization of ICAM-targeted nanocarriers in arterioles vs. capillaries, i.e., by 
endothelial cells adapted and not adapted  to shear stress, respectively [204]. In contrast, 
exposure to acute shear stress (which happens in reperfusion and in physiological hyper-
perfusion in exertion) stimulated endocytosis of PECAM-targeted nanocarriers [207].  
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Findings in cell culture and in genetically modified mice revealed that binding of 

nanocarriers to ICAM-1 in endothelial and other cell types activates the enzyme(s) 
metabolizing sphingomyelin in the plasmalemma, stimulating endocytosis of coated carriers 
ranging in size from <100 to >1,000 nm in diameter [208]. This does not happen in 
sphingomyelinase-deficient cells and animals; however, carriers coated with both anti-ICAM 
and the enzyme, devised to deliver enzyme replacement therapy in Neimann-Pick 
syndrome, do get internalized [209]. Co-immobilization of sphingomyelinase with ligands 
anchoring carriers to transferrin receptor permitted internalization of carriers larger  than 
200 nm [210].  

 
6.4. Trans-endothelial delivery. Some ligands of receptors involved in 

endocytosis via clathrin-coated pits such as TfR [211] and caveoli, such as APP [132, 212, 
213] are capable of crossing the endothelial barrier, providing pathways for trans-
endothelial transport of carriers with sizes suitable for these endocytic vesicles (<100 nm). 
For example, antibodies to caveolar APP undergo fast transport across the endothelium, 
but particles >100 nm do not enter this pathway [102]. The effects of engaging these 
determinants must be more fully understood [65, 129, 214]. Some disease conditions, 
including inflammation, may affect this pathway [93, 201, 215-218].  

 
CAM-mediated endocytosis allows entrance of objects up to several microns. 

Gastrointestinal epithelial cells, which normally express ICAM, uptake ICAM-targeted 
carriers (~100 nm diameter spheres) via this pathway and transport the carriers across the 
cellular monolayer without cell damage or disruption of intercellular junctions in vitro [219]  
and in vivo thereby providing oral delivery of nanocarriers into the vascular compartment 
[220]. It is plausible that similar transcellular pathways operate in the vascular endothelium 
as well. 

 
7. Endothelial targeting and effects of nanomedicine agents in pre-clinical 

studies. The literature reporting effects of various drugs targeted to endothelia is extended 
and diverse. As mentioned in the Introduction, we focus this review on acute diseases, 
which, in our opinion, are more favorable targets for nanomedicine. In this section we 
analyze endothelial nanomedicine for inflammation, oxidative stress, enzyme deficiency 
and thrombosis. We omit studies in cell culture unless they represent an important phase 
for studies in animal models of human pathology.    

 
7.1. Antioxidants. Vascular oxidative stress is a common mechanism of a 

plethora of human diseases [30-32, 34]. Surplus reactive oxygen species (ROS), such as 
superoxide anion O2

.- and H2O2, released from activated leukocytes and endothelial cells,  
induce tissue damage, vascular dysfunction [221, 222], and pro-inflammatory signaling 
[223-227]. Detoxification of endothelial ROS is an important goal [109, 228] that, in theory, 
can be achieved using antioxidants including superoxide dismutase (SOD) and catalase 
[109, 193]. Alas, so far all antioxidant therapies have failed in clinical trials, likely due to lack 
of appropriate delivery.  
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Diverse antioxidant DDSs have been designed. Antioxidant DDSs employing PEG, 
PEG-based pluronic, and PEG-nanocarriers display improved circulation, systemic 
bioavailability, and therapeutic effects in animal models of stroke, inflammation and 
radiation injury [229-237]. Antioxidant formulations that bind to the glycocalyx and 
plasmalemma have been devised and reported to alleviate oxidative stress in cell cultures 
[238-241] and, to a more limited extent, in animal models [242-246], including models of 
myocardial ischemia [236, 247]. ROS act on the nanometer scale and precise delivery of 
antioxidants to desirable cells and compartments is required. For example, intra-tracheal 
delivery of antioxidants alleviated oxidative stress in the airways but not in the lung 
vasculature [248, 249]. However, untargeted agents do not have specific endothelial affinity 
[227] and precision is needed for interception of cellular ROS [250].  

 
Targeting antioxidants to determinants, including ACE and CAMs [251, 252], 

achieves this goal in vitro [253, 254] and in numerous studies in animal models of acute 
oxidative stress, providing immediate protective effects that last for several hours after a 
single dose delivery [255]. Antioxidants targeted to ACE, PECAM and ICAM provided 
protective effects superior to non-targeted formulations in models of acute pulmonary 
oxidative stress caused by infusion of ROS or ischemia-reperfusion [69, 256-263].  

 
CAM-targeted SOD or SOD mimetics alleviated ROS toxicity in endothelial cells 

[252, 264, 265], normalized vasoconstriction in mice [259], attenuated VEGF-induced 
endothelial leakage [266] and inhibited cytokine-induced endothelial ROS flux and 
inflammatory activation in cells and mice via quenching of O2

.- signaling in endothelial 
endosomes [227]. Endosomal SOD delivery blocked NFκB signaling activation by both 
cytokines or TLR agonists and the protection was significantly more effective when SOD 
delivery was combined with NO donors [267]. CAM-targeted catalase alleviated endothelial 
leakage caused by H2O2 [266], alleviated vascular [114] oxidative stress [268] and 
pulmonary ischemia-reperfusion [258, 259] including lung transplantation in rats and larger 
animal species in models including a warm ischemic period [262, 263]. Thus, targeting 
antioxidants to the endothelial endosomes enables potent interception of pro-inflammatory 
signaling [227, 266, 267, 269]. 

 
A number of techniques have been devised to further enhance the therapeutic 

effects of endothelial-targeted antioxidants.  For example, adding pharmacological agents 
that modulate vesicular trafficking delays lysosomal degradation of CAM-targeted 
antioxidant enzymes [154, 270]. Another technique to prolong antioxidant enzyme half-life 
employed polymer nanocarriers permeable for ROS but not to proteases.  When such 
encapsulated antioxidant enzymes were targeted to endothelium, they provided immediate 
and prolonged protection in vitro and in vivo [271-274]. A final technique to improve 
antioxidant half-life is the use of CAM-targeted liposomes loaded with either non-enzymatic 
antioxidant catalysts or inhibitors of enzymes producing ROS.  Such liposomes produced 
antioxidant effects and alleviate endotoxin-induced acute pulmonary inflammation in 
animals [275]. To further the gains made by the above techniques, the mechanism of anti-
inflammatory effect of antioxidants targeted to endothelial endosomes must be further 
elucidated. Recent studies in animal models show that mechanisms includes both 
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interception of intracellular signaling of superoxide and enhancement of anti-inflammatory 
activity on nitric oxide-mediated pathways [227, 267]. 

  
7.2. Anti-inflammatory agents (AIA). In addition to the anti-inflammatory effects 

of endothelial targeting of antioxidants, this approach is useful for delivery of other anti-
inflammatory agents. For example, thrombomodulin (TM) naturally exerts multifaceted 
direct and indirect anti-thrombotic and anti-inflammatory activities. Fusing TM with single 
chain fragments of antibodies to PECAM affords more effective TM replenishment therapy 
than using soluble TM, due to endothelial targeting and anchoring in the natural 
microenvironment [276]. Interestingly, targeting of a scFv/TM fusion to ICAM was even 
more effective than to PECAM, likely due to the fact that the former CAM is localized in the 
endothelial plasmalemma next to the natural molecular partner of TM, namely, endothelial 
protein C receptor, EPCR [277]. However, co-targeting of scFv/TM and scFv/EPCR to 
adjacent PECAM epitopes provided the maximal effect, due to a combination of the 
collaborative enhancement of targeting and juxtaposition of two enzymatically partnering 
proteins, TM and EPCR [278]. These results have been observed in a mouse model of 
severe acute lung injury caused by endotoxin challenge that reflects some key pathological 
features of human ARDS, a common morbid condition with >30% mortality that has no 
current pharmacological therapy.  

   
The effect of some classical AIAs either require or can be improved by targeting. 

For example reducing the dose of steroids such as dexamethasone (Dex) may help 
alleviate its side effects of hypertension, hyperglycemia, osteoporosis and adrenal 
insufficiency. Currently, steroids are used mainly as a bridging therapy for the acute phase 
of chronic conditions such as rheumatoid arthritis. The endothelium is a key regulatory 
tissue in inflammation and targeting it may enable more potent and specific anti-
inflammatory therapy. In this vein, targeted liposomes and nanogels have been shown to 
deliver encapsulated dexamethasone to the pulmonary vasculature and alleviate 
edematous acute lung injury in a mouse model of endotoxin challenge [279, 280]. It is 
tempting to postulate that this approach is translatable to the treatment of human ARDS.    

 
However, the majority of studies focus on chronic inflammation: atherosclerosis, 

arthritis, glomerulonephritis and alike. Inducible cell adhesion molecules are widely used in 
this domain. For example, VCAM-targeted liposomes loaded with an anti-inflammatory 
prostaglandin, PGE2, injected daily for two weeks in mutant mice genetically prone to 
"atherosclerosis" showed ~50% higher uptake in inflamed sites vs. untargeted formulations, 
and, quite astonishingly, reversed atherosclerotic lesions to the extent that mutant mice 
survived to old age despite being fed a high-fat diet [281]. In a rat model of renal 
inflammation, E-selectin-targeted Dex-liposomes showed greater uptake in inflamed 
kidneys and alleviated inflammatory markers by 60-70 % vs non-targeted controls, with 
negligible side effects typical of Dex [282]. In a mouse model of ocular inflammation, 
selectin-targeted Dex-liposomes accumulated in the inflamed eye within five minutes of 
injection and suppressed expression of pro-inflammatory genes in the tissue, whereas non-
targeted liposomes showed negligible accumulation and effect [283].  Targeting to E-
selectin improved delivery of Dex-liposomes to activated dermal and renal endothelium in 
animal models of inflammation of skin [284] and kidneys [285]. In the latter model, E-



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
VRM 

Targeted endothelial medicine. 

 24 

selectin targeted Dex-liposomes reduced renal expression of pro-inflammatory genes and 
proteins and renal injury without affecting blood glucose level [285].  

 
E-selectin- and ICAM-targeted nanoparticles carrying siRNA silencing 

inflammatory mediators suppressed their expression in cell culture [286]. Cationic lipid-
based formulations of siRNA targeted to E-selectin silenced VE-cadherin in activated 
endothelial cells in vitro [287]. E-selectin-targeted adenovirus homed to the kidneys and 
down-regulated inflammatory molecules in a mouse model of glomerulonephritis [286]. 
Targeting to selectins favors endocytosis, whereas using membrane-permeating moieties 
and pH-dependent disruption of intracellular vacuoles may enhance the efficacy of siRNA 
transfer from endocytic vacuoles to the cytosol. However, it is important to note that such  
endosomal-disrupting features may produce adverse effects on the endothelial cells. 
Therefore, it will be important to learn from the burgeoning field nanocarriers designed for 
safe and effective delivery of nucleic acid agents [288, 289].  

 
Other targets are explored as well, including integrins. In a rat model of arthritis, 

Dex-loaded liposomes targeted by RGD peptide accumulated in inflammatory sites, 
providing protective effects superior to non-targeted Dex-liposomes [290]. RGD-targeted 
liposomal delivery of anti-inflammatory siRNA to the endothelium was also studied in mice 
[291]. 

 
7.3. Enzyme replacement therapies. Lysosomal delivery is problematic for many 

biotherapeutics, unless the cargo is protected from degradation, but a lysosomal 
destination is necessary for drugs that are supposed to act in this organelle, such as drugs 
for lysosomal storage diseases (LSD) [292]. 

 
The LSDs are morbid conditions caused by dysfunction of lysosomal enzymes, in 

most cases due to mutations, leading to accumulation of the enzyme substrate and cellular 
abnormalities throughout the body [293-295]. Enzyme replacement therapy (ERT) relies on 
repetitive injections of recombinant enzymes [296-298]. Cells take up lysosomal enzymes 
via mannose and/or mannose-6-phosphate receptors [299-301]. In the absence of gene 
therapy, ERT is the only treatment of LSD [298, 302], such as type B Niemann-Pick 
disease (NPD), caused by a mutation of acid sphingomyelinase (ASM), leading to 
deposition of sphingomyelin and cholesterol [303].  

 
The endothelium suffers damage in LSDs, which aggravates inflammation and the 

injury to other tissues [292]. Delivery of lysosomal enzymes to endothelium is not efficient 
and management of vascular abnormalities in LSDs is ineffective [302, 304]. In order to 
overcome this hurdle, ICAM was used as a target for nanoparticles carrying lysosomal 
enzymes [203]. ICAM expression by endothelial cells is up-regulated in the inflammation 
typical of many LSDs [305-308]. Coupling ERT to ICAM-targeted nanocarriers (~100nm) 
enhanced delivery and effects in animal models of LSD, and the results were similar for 
carriers made of polystyrene [203] and biodegradable PLGA [209]. Delivery by ICAM 
targeted carriers can be optimized by the carrier’s geometry: spherical 100-200 nm carriers 
offered more effective lysosomal delivery and effects than discoid or micron-size spherical 
particles [184].  
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This approach was extended for endothelial delivery of ERTs for other LSDs, 

including a cell culture model of Fabry disease [309] and in models of Pompe disease in 
cell culture and in vivo in mice, where ICAM-targeted endothelial delivery of ERT markedly 
improved delivery of the deficient enzymes in the heart, spleen and brain, and provided an 
unprecedented ~600 fold increase in the lung delivery vs non-targeted formulations [310]. 

 
Lysosomal enzyme delivery by nanocarriers targeted to ICAM was more effective 

than targeted to transferrin receptor (TfR, entering cells via clathrin endocytosis) [311], 
whereas carriers targeted to both ICAM and TfR showed different organ distribution vs. 
non-targeted ERT and either mono-targeted carriers [165]. Interestingly, ICAM-targeted 
multivalent nanocarriers induced ASM activity in target cells, facilitating membrane turnover 
and endocytosis. The potential utility and significance of these findings are worth further 
investigations [292].    

 
7.4. Anti-thrombotic agents (ATA). Pathologically altered vessels are prone to 

thrombosis due to suppression of natural anti-thrombotic mechanisms in the endothelium 
[312]. Anchoring of recombinant anti-thrombotic proteins such as TM and plasminogen 
activators (tissue type, tPA, or urokinase, uPA) on the endothelial lumen may help to 
compensate for this dysfunction. Vascular gene transduction of these proteins in animal 
models supports this notion [313]. Targeting of anti-thrombotic proteins to the endothelial 
surface seems a more practical approach for short-term thromboprophylaxis in acute 
settings in patients with a high propensity for thrombosis, particularly in settings where the 
risk of bleeding prohibits the use of systemic anticoagulation.  

 
In early studies, anticoagulants cross-linked to E-selectin antibody bound to 

cytokine-activated endothelial cells and inhibited thrombin [144]. In animal studies, tPA and 
uPA conjugated with antibodies to endothelial determinants preferentially accumulated in 
the pulmonary vasculature after intravenous injection in rats [101, 314]. However, 
endocytosis removed the drugs from the vascular lumen, where they need to exert their 
activity, thereby limiting therapeutic effect in vivo [57]. 

 
Endothelial cells do not internalize antibodies to PECAM and ICAM, hence tPA 

conjugated with these ligands accumulated and dissolved clots in the pulmonary 
vasculature after systemic injection [315]. Further, fusion with recombinant antibody scFv 
(fragments, comprising variable domains of heavy chain VH and light chain VL) yields 
monovalent, homogeneous and relatively small targeted biotherapeutics. PECAM scFv 
fused with urokinase (scFv/uPA) accumulated in the pulmonary vasculature after injection 
in mice, resided in the pulmonary lumen for hours in active form [251, 258, 316] and 
augmented local lysis of pulmonary emboli in a mouse pulmonary thrombotic model108. 
Further, scFv/uPA accumulated in the cerebral vasculature after injection via carotid atery, 
dissolved cerebral clots and improved reperfusion without hemorrhagic complications, 
mitigating post-thrombotic brain edema in a mouse model of cerebral embolism [76].  

 
Urokinase is produced naturally as a pro-enzyme, scuPA [317]. In the presence of 

fibrin, endogenously formed plasmin cleaves the Lys158-Ile159 peptide bond in scuPA, 
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converting it into active uPA. However, thrombin inactivates uPA by cleaving Arg156-
Phe157, negating its effect at sites of active thrombosis [318]. Deleting Phe157 and Lys158 
solves these problems yielding a plasmin-resistant mutant activated by thrombin (uPA-T) 
[319], used to produce thrombin-activated PECAM-targeted scFv/uPA-T [276].  This fusion 
protein accumulated in the lungs, provided potent thromboprophylaxis in mouse models of 
lung thrombosis and ischemia/reperfusion, attenuated pulmonary fibrin deposition and 
restored arterial oxygen tension, to a significantly greater extent than scFv/uPA [276]. 

 
The suppression of TM is a characteristic of many vascular pathologies including 

sepsis. Some success has been found with a replacement therapy using soluble 
recombinant TM and activated protein C (APC) [320]. TM fused with a tissue factor 
antibody has potent antithrombotic activity in a rat model [321]. Yet, utility of these 
biotherapeutics is limited by fast disappearance from the vascular lumen. In order to solve 
this problem, a PECAM-targeted scFv/TM fusion has been produced and shown to bind 
and reside on the endothelial surface, accumulate in the pulmonary vasculature, and 
attenuate thrombosis and tissue damage in mouse models of lung ischemia-reperfusion 
and endotoxin-induced acute inflammatory lung injury to a greater extent than non-targeted 
soluble TM, without causing bleeding (a known liability of APC treatment) [322]. 

 
Thus, endothelium-targeted thromboprophylaxis triggered by a pro-thrombotic 

enzyme illustrates a novel approach to time- and site-specific regulation of “on demand” 
reactions that can be modulated for therapeutic benefit. In clinical settings, this strategy of 
targeting anti-thrombotic drugs to the endothelial surface may provide local 
thromboprophylaxis in patients with an acute risk of thrombosis and it may also prevent clot 
extension. 

 
8. Conclusion. The field of targeted drug delivery to the endothelium has shown 

steady growth and has become one of the key subfields of nanomedicine. From the 
standpoint of pharmaceutical sciences, the endothelium is an important target, barrier, and 
also victim of drugs. From the medical perspective, it is the site of intended 
pharmacological interventions in a plethora of human maladies. Three decades of research 
in endothelial nanomedicine have yielded both important general principles and specific 
details that can guide the design of endothelial drug delivery systems. 

 
8.1. Advantages of targeting. Defined and mechanistically understood 

endothelial targeting of drugs is an intellectually exciting, practically challenging and 
translationally promising avenue. Recent advent of combinatorial chemical carrier libraries 
reiterated the fact that carriers may accumulate in vascular areas of interest via fortuitous 
mechanisms that do not require specific binding to identified target molecules. Yet, such an 
identification is vital for understanding the nature, localization, function, pathological tole, 
trafficking, and effects – both intended and unintended - of the endothelial nanomedicine 
agent. Not only is this necessary for analysis of the potential efficacy and benefit/risk ratio 
in a given medical context, but it also diversifies immensely delivery options: in fact, 
anchoring to adjacent epitopes of the same surface molecule may provide quite different 
delivery and effects of the same nanomedicine agent. 

 



AC
C

EP
TE

D
 M

AN
U

SC
R

IP
T

ACCEPTED MANUSCRIPT
VRM 

Targeted endothelial medicine. 

 27 

The experience of the last two decades instructs us to pay more attention to 
mechanistic aspects of the drug delivery systems and the role of biological factors in DDS’s 
performance. Most likely, nanocarriers showing “fortuitous” accumulation and delivery of 
cargoes to and into endothelia in any given organ have some unidentified mechanisms for 
recognition of endothelia in corresponding vascular areas – either direct, or mediated by 
natural ligands acquired from plasma. Their identification represents an intriguing and 
promising direction, which will likely yield new knowledge, similarly to other high-throughput 
approaches for defining potential vascular targets and ligands. No doubt, the more 
diversified the list of such targets, the more precise drug delivery is possible – both in 
spatiotemporal terms and in the context of biomedical applications.  

 
8.2. Experimental models. Endothelial nanomedicine research has amassed a 

potent arsenal of methods and approaches developed for creating and studying drug 
delivery systems, including tools for imaging, chemical and recombinant conjugation, and 
immense synthetic abilities. Among these methods, the utility of experimental models for 
endothelial targeting deserves a specific analysis.  

 
Endothelial cell cultures, such as human umbilical vein endothelial cells (HUVECs, 

used in many thousands studies since seventies), offer relatively straightforward high-
throughput experimental models with controlled conditions. However, deprivation of the 
natural microenvironment associated with transfer of endothelial cells from in vivo to in vitro 
leads to loss of phenotypic characteristics - both archetypical and the local individuality of 
endothelia in vascular areas of interest. For example, endothelial cells’ content of ACE and 
caveolae drop to a fraction of their natural level within a single passage under static culture 
conditions. Thus, cell culture studies are prone to artifacts of cell "bastardization" and non-
physiological treatments.  

 
Studies in isolated blood vessels and organs allow us to address specific 

mechanistic questions, but are low-throughput and short-term. Advanced sophisticated cell 
models reflect some key features of the tissue microenvironment: flow and vascular 
geometry for endothelial cells, stretch for smooth muscle and epithelial cells. Both flow 
adaptation and exposure to abrupt changes of flow in endothelial cell culture profoundly 
alter both endothelial physiology and hydrodynamic parameters of DDSs interaction with 
cells. For example, exposure to chronic physiological shear stress and turbulent flow or 
ischemia-reperfusion changes endothelial signaling and redox status. Experimental models 
that address these aspects of endothelial nanomedicine represent important advances (yet 
usually at cost of lowering the throughput). Systems using microfluidic, permeable 3D 
matrices with controlled elasticity, co-culturing of different cell types and other elements of 
tissue engineering (organ-on-chip) are rapidly evolving and may find utility in the design of 
targeted therapeutics imitating corresponding biological aspects of the vascular system.  

 
In vivo models provide the ultimate proving grounds for targeting, but they are 

confounded by uncontrolled systemic and local factors, high cost, and several other 
downsides. However, expensive and time-consuming animal studies are vital for the design 
of DDS. Studies in naive animals characterize pharmacokinetics and biodistribution 
(PK/BD), metabolism, targeting, and toxicity. Studies in animal models of human disease 
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reaffirm these parameters and test the benefit/risk ratio of drug-loaded and drug-free 
carriers. Yet, animal models do not always recapitulate human PK/BD, disease, and 
treatment. Mice provide high-throughput models including mutants lacking or expressing 
genes of interest, but interspecies differences may be large. For example, nanoparticles are 
directly cleared from the body of rodents by hepatic excretion into the bile, which does not 
occur in large animals [323].   

 
A major new model system for endothelial nanomedicine is the perfusion of 

isolated human organs that have been declined for human transplantation.  Such a model 
allows for the testing of targeting at physiological conditions, with controlled content of the 
perfusion fluid, for testing carriers targeted by ligands binding to human molecules. The 
data obtained in such explanted human will be directly applicable to clinical use in organ 
transplantation. Using human organs not suitable for transplantation will allow us to 
measure and localize tissue uptake and test protective and adverse effects in organs 
morphologically, histologically, by biochemical analysis of tissue homogenate, and with 
analysis of the level of endothelial cell-injury markers shed in the perfusion solution. The 
human organ model thus represents the key translational phase of targeted endothelial 
nanomedicine.  

 
8.3. Challenges, opportunities and perspectives. A little more than a quarter 

century ago, even the cohesive concept of drug delivery to endothelium did not exist, let 
alone specific approaches that would work in vivo. Since the first reports of endothelial drug 
targeting via angiotensin-converting enzyme and thrombomodulin in the late eighties, many 
candidate target molecules have been identified. Some left the race (ciao, 
thrombomodulin), but others still have good chances to enable precise delivery of certain 
agents to certain endothelial compartments in certain vascular areas for treatment of 
certain disease conditions.  

 
Endothelial nanomedicine is poised to enter into the clinical domain in the near 

future, likely within several years, yet translational challenges are paramount. We must 
better understand biological aspects required to achieve endothelial-targeted 
pharmaceuticals. To provide tangible benefits, they must be free of intolerable side effects. 
These concerns are especially serious in treatment of very ill patients with severe acute 
diseases such as ARDS and massive stroke. DDSs may alter the toxicity of the cargo 
and/or incite their own side effects: systemic (e.g., due to interactions with host defense or 
blood clotting), off-target (e.g., due to unintended toxicity in clearing organs), or in intended 
therapeutic sites. The latter is especially undesirable in the context of endothelial 
nanomedicine, but may occur due to enhanced local concentration or harmful interactions 
of delivery systems with target cells, including interference with functions of the target 
molecule determinants. 

 
The perspectives are glowing. The challenges are immense. They encompass 

many disciplines and require seamless interdisciplinary collaboration. It seems safe to 
postulate that iterative engineering of endothelial nanomedicine agents will soon optimize 
their efficacy and safety to the point when the scientific aspects of the problem (such as 
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permeation of biological barriers) will be replaced by the translational issues – production, 
cost, approval, and practical use.  
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Table 1. Drug targeting outlook in different fields. 

Oncology 

 

Heart, lung and blood diseases 

 

Challenges: 

Heterogeneity of targets and diseases 

Poor target accessibility 

Challenges: 

High benefit/risk bar and low ROI 

Limited investments and research 

Specific paradigms: 

Toxic drugs, collateral damage 

Maximal specificity of targeting needed 

Side effects to target are welcome 

Specific paradigms: 

More benign drugs vs. oncology 

Systemic effects often welcome 

Side effects to target unacceptable 

Advantages: 

Dominant field of drug targeting 

Side effects are often beneficial 

Low benefit/risk bar and high ROI 

Advantages: 

Huge medical need (I/R, ARDS) 

Common mechanisms and targets 

Target accessibility to blood 
 

 

 

 


