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Nanoparticle drug delivery to the tumor is impacted by multiple factors: nanoparticles must evade clearance by
renal filtration and the reticuloendothelial system, extravasate through the enlarged endothelial gaps in tumors,
penetrate through dense stroma in the tumormicroenvironment to reach the tumor cells, remain in the tumor tis-
sue for a prolonged period of time, and finally release the active agent to induce pharmacological effect. The phys-
icochemical properties of nanoparticles such as size, shape, surface charge, surface chemistry (PEGylation, ligand
conjugation) and composition affect the pharmacokinetics, biodistribution, intratumoral penetration and tumor
bioavailability. On the other hand, tumor biology (blood flow, perfusion, permeability, interstitial fluid pressure
and stroma content) and patient characteristics (age, gender, tumor type, tumor location, body composition and
prior treatments) also have impact on drug delivery by nanoparticles. It is now believed that both nanoparticles
and the tumor microenvironment have to be optimized or adjusted for optimal delivery. This review provides a
comprehensive summary of how these nanoparticle and biological factors impact nanoparticle delivery to tumors,
with discussion on how the tumormicroenvironment can be adjusted and how patients can be stratified by imag-
ingmethods to receive themaximal benefit of nanomedicine. Perspectives and future directions are also provided.

© 2013 Published by Elsevier B.V.
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1. Introduction

Nanomedicine therapies are broadly defined as active pharmaceuti-
cal ingredients formulated in delivery vehicles exhibiting an average
size between 10 and 200 nm, and these encompass liposomes, micelles,
polymeric nanoparticles, dendrimers, andmacromolecules. Properly for-
mulated nanoparticles evade the 5 nm renal filtration cutoff [1–3] and
exhibit prolonged blood circulation, giving these particles an increased
opportunity to interact with tumor tissues. Unlike normal blood vessels
which feature a tightly sealed endothelium, tumor vasculature tends to
be abnormally permeable tomacromolecules andnanoparticles, and fur-
thermore, lymphatic drainage is generally impaired in tumors: as a result
of these pathological features, nanoparticles selectively accumulate in
this biological cul-de-sac. On the other hand, low molecular weight
drugs cannon-selectively diffuse through theendothelial layer of normal
tissues, inducing significant off-target toxicity at therapeutic doses. The
enhanced permeability and retention (EPR) effect is the central hypoth-
esis and science of nanomedicine, and tumors that present with high
permeability are good candidates for this class of therapy.

Nanoparticles display distinctive pharmacokinetics (PK) and
biodistribution (BD) compared to small molecules, and the altered
in vivo biofate in turn alters the toxicity and efficacy profile of each
drug. There are three major phases in nanoparticle drug delivery
(Fig. 1): (1) systemic circulation and reticuloendothelial system
(RES) interaction, (2) extravasation and tumor penetration, and
lastly, (3) interaction with the target cells. This review focuses on
the effect of nanoparticle composition and physicochemical proper-
ties on the interactions with the biological systems in these three
phases, and how those interactions affect nanoparticle biofate.
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2. Blood circulation and RES interaction

The first phase of delivery involves the systemic circulation and in-
teraction with the RES, a global system of macrophages in the liver,
spleen, and bone marrow, but with respect to nanoparticle clearance,
the liver and spleen are the most active. Macrophages are phagocytic
cells, and will engulf particles bearing recognized opsonins (serum
proteins) that have adsorbed to nanoparticles [4–6]. For example,
Nagayama et al. [7] demonstrated that the increased amount of comple-
ment protein C3 and immunoglobulin G (IgG) adsorbed onto the 50-nm
polystyrene nanoparticles in the serumwas directly reflected in the in-
creased rate of uptake of the nanoparticles by Kupffer cells. Factors af-
fecting opsonization and the RES interaction include PEGylation, size,
composition, zeta potential, and shape of nanoparticles. Interaction of
Please cite this article as: M.J. Ernsting, et al., Factors controlling the
nanoparticles, J. Control. Release (2013), http://dx.doi.org/10.1016/j.jconr
R
O

nanoparticles with the RES is a significant determinant of blood circula-
tion time and rates of clearance. Nanoparticles with a decreased blood
circulation time usually display reduced tumor uptake and efficacy.
E
D
 P2.1. Strategies to reduce RES interactions

2.1.1. Surface decoration
The most widely used surface decoration technique is introduction of

polyethylene glycol (PEG), which is a hydrophilic polymer, to the surface
of nanoparticles to reduce serum protein binding through a process of
steric hindrance. PEG has been deployed in various types of nanoparticles,
including liposomes, polymeric nanoparticles, and hybrid nanoparticles
[8]. Sadzuko et al. [9] reported that PEGylation led to a 3-fold reduction
in RES uptake, a 6-fold higher plasma area under the curve (AUC), and a
3-fold increased tumor uptake of a liposomal drug, leading to enhanced
antitumor efficacy. Similar results have been reported by others with dif-
ferent types of nanoparticles [10–12]. PEG creates a border around
nanoparticles and provides a nonspecific steric hindrance barrier
preventing access of proteins [13,14]. The molecular weight (MW) of
PEG and the amount used has an influence on performance. Fang et al.
[15] studied protein adsorption on 100–200 nm PEGylated nanoparticles
containing a range of PEG MW (2, 5, and 10 kDa), and determined that
10 kDa PEG was the most effective. Ernsting et al. [16] prepared
PEGylated cellulose drug conjugateswhich exhibited self-assembly prop-
erties dependent onhydrophobic/hydrophilic balance, and for this system
a2 kDa PEGwas optimal.Walkey et al. [17] utilized label-free liquid chro-
matography tandem mass spectrometry to determine serum protein
binding to gold nanoparticles possessing different surface PEG densities.
They reported that gold nanoparticles with different PEG densities attract
different clusters of serum proteins, and the cluster of proteins binding to
low PEG density particles (b0.16 PEG/nm2) facilitated macrophage up-
take. On the other hand, the cluster of proteins that bound to high PEG
density particles (N0.64 PEG/nm2) did not trigger serum-dependent
phagocytosis, and the uptake by macrophage was less efficient (Fig. 2).
While PEG reduces RES interactions, PEG also has an impact on particle
properties including stability and drug release, and for each composition
the MW and wt.% of PEG have to be experimentally optimized. This is a
well-known consideration in liposomal formulation: DSPE-PEG2000 is a
common component of PEGylated liposomes, but it has detergent proper-
ties, and will destabilize liposomes when exceeding 8 mol% [18].

Despite the benefits that PEG confers, PEGylation is suspected to
induce immune responses and hypersensitivity, especially when an
immunostimulatory agent is included such as siRNA and pDNA
[19–21]. Ishida et al. [22] and Judge et al. [23] demonstrated that the
pharmacokinetics, biodistribution and intratumoral penetration of
el.2013.09.013
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blood clearance of the second dose of PEGylated liposomeswas accelerat-
ed by spleen-dependent generation of specific anti-PEG IgM. Exploration
of alternative compositions to PEG is a relatively small field. Polyamino
acids (such as polyglutamic acid), glycopolymers, and polyoxazolines
(POx) have been shown to assist molecules and nanoparticles to evade
RES clearance [24,25].

Regardless of the mechanism by which PEG works and how well it
improves PK and BD, significant RES clearance is still an issue, with typ-
ically N50% of the injected dose (ID) ending up in the liver and spleen
after 48 h even for highly optimized PEGylated particles [13,14,26,27].

Rodriguez and colleagues [28] conjugated a “Self” peptide on to the
surface of a nanoparticle, and demonstrated that the macrophage-
mediated clearance of the nanoparticles was reduced, leading to N10-
fold prolonged blood circulation and ~4-fold increased tumor uptake
compared to the standard PEGylated nanoparticles. The “Self” peptide
U
N
C
O

R
R

Fig. 2. Schematic illustrating the influence of PEG density on serum protein absorption to go
synthesized goldnanoparticles graftedwith PEG at increasing density. As PEG density increases, P
how PEG density determines the amount and relative abundance of serum proteins absorbed to
proteins from cluster (green) adsorb preferentially. At low-intermediate densities (0.32–0.64 PE
sities (0.64–0.96 PEG/nm2), proteins fromcluster C (fuchsia) adsorb preferentially. At high PEGd
panel shows that at low PEG densities, macrophage uptake is efficient and serum-dependent. At
independent mechanism. Structures in the diagram are conceptualized for illustrative purposes

Please cite this article as: M.J. Ernsting, et al., Factors controlling the
nanoparticles, J. Control. Release (2013), http://dx.doi.org/10.1016/j.jconr
E
D
 Pwas computationally designed to mimic the function of human CD47,

which is a marker of self, impeding phagocytosis of self by signaling
through the phagocyte receptor CD172a.

2.1.2. Size and morphology
For a nanoparticle to exhibit prolonged circulation and leverage the

EPR effect, the lower limit of particle size is 5.5 nm, the renal filtration
cutoff size [29]. A second lower limit is imposed by liver filtration, as vas-
cular fenestrations in the liver are 50–100 nm, andparticles smaller than
50 nm will interact with hepatocytes. The upper limit of particle size is
influencedby two factors: tumor permeability and splenicfiltration. Vas-
cular fenestrations vary from 400 to 600 nm to microns [30] among tu-
mors. Liu et al. [4] investigated the BD of liposomes ranging from 30 to
400 nm: 4 h after injection, liposomes ranging from 100 to 200 nm
were 4-fold more concentrated in tumors compared to liposomes
ld nanoparticles and their subsequent uptake by macrophages. The top panel shows as-
EG volume decreases as a result of PEG–PEG steric interactions. Themiddlepanel illustrates
the gold nanoparticle surface after serum exposure. At low PEG densities (b0.32 PEG/nm2),
G/nm2), proteins from cluster B (blue) adsorb preferentially. At intermediate-high PEG den-
ensities (N0.96 PEG/nm2), proteins from cluster D (orange) adsorb preferentially. The lower
high PEG densities, macrophage uptake is driven predominantly by a less efficient serum-
. Adapted from ref [17].

pharmacokinetics, biodistribution and intratumoral penetration of
el.2013.09.013
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below 50 and above 300 nm. The liver uptake of particles below 50 and
above 300 nm was 25% ID, compared to 10% ID for 100 nm liposomes.
Further, particles greater than 400 nm in size were cleared in the spleen
(40–50% ID). Blood components passing through the splenic sinus must
pass through intercellular slits that rarely exceed 500 nm in width [31]
and although the size cutoff for each nanoparticle will depend on
deformability and shape, particles exceeding 300–400 nm tend to be
trapped [32]. Hrkach et al. [33] generated a comprehensive series of
PEG-polyester nanoparticles, examining 63 compositions ranging from
28 to 224 nm, ultimately selecting their lead formulation which was
100 nmin size. Generally, particles near 100 nm indiameter tend to rep-
resent an optimal range for leveraging the EPR effect and minimizing
clearance [3].Within a specific class of composition, sizewill impact pro-
tein adsorption and the resulting RES clearance. Fang et al. [15] reported
that the protein adsorption on the 80-nm particles (6%) was lower than
that on larger sizes (171 and 243 nm, 23 and 34%, respectively), because
smaller particles exhibit a higher surface density of PEG. As a result,
blood clearance of the 80 nm particles was twice as slow as with the
larger nanoparticles (171 and 243 nm). Moreover, the accumulation of
the 80 nm particles in the tumor within 24 hwas 2-fold that of the larg-
er nanoparticle formulations.

Particle shape is also a crucial parameter that can impact circulation
time and tumor accumulation. Champion andMitragotri [34] measured
the interaction of diversely shaped micro-sized polystyrene particles
with macrophages. They defined a dimensionless shape-dependent pa-
rameter related to the length normalized curvature,Ω (Fig. 3). Particles
were found to be internalized successfully when Ω ≤ 45° (ellipsoid or
sphere) via actin-cup and ring formation, with phagocytosis velocity
being inversely correlated to Ω (up to 45°); on the other hand, when
Ω N 45° (ellipsoid), cell spreading but not internalization occurs
(Fig. 3). In contrast, the contribution of particle size or volume to the
phagocytotic process was evidently lower compared to particle shape,
affecting the completion of particle internalization only when the parti-
cle volume is greater than that of the macrophage at Ω of ≤45°. They
also demonstrated that a form of worm-like polysytrene particles was
phagocytosed to a lesser extent by alveolar rat macrophages compared
to spherical particles of equal volume. The success of the high aspect
ratio particles in avoiding phagocytosis was attributed to the predomi-
nance of low curvature regions on the flat sides (Ω = 87.5°) over the
high curvature regions (Ω = 2.5°), which were only present at the
two discrete ends of the worm-like particles [35].

Altering particle shape away from the spherical has been shown to
enhance circulation time and influence particle disposition, as these
U
N
C
O

R

Fig. 3. Effect of target geometry inphagocytosis. (a) Scanning electronmicrographs (A–C) of cell
and fluorescent images after fixing the cells and staining for polymerized actinwith rhodamine
macrophage has spread over the flat side of an elliptical disk. D and F: Actin ring and cup, resp
occurred in the cell at site of attachment to flat side of an opsonized elliptical disk, but no actin
resents the average of tangential angles near thepoint of cell contact.Ω is the angle between Ŧ an
National Academy of Science, USA. (For interpretation of the references to color in this figure l

Please cite this article as: M.J. Ernsting, et al., Factors controlling the
nanoparticles, J. Control. Release (2013), http://dx.doi.org/10.1016/j.jconr
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particles exhibit altered hydrodynamic behavior that influences circula-
tion, transport in the blood flow, and finally BD. Discher and coworkers
[36] prepared filamentousmicelles (filomicelles) under simulated splen-
ic flow conditions, in which long filomicelles were formed by a solvent
evaporation self-assembly process using diblock copolymers of PEG and
the inert poly(ethylethylene) or biodegradable poly(ε-caprolactone):
thefilomicelles exhibited reduced uptake bymacrophages, and exhibited
persistent circulation for up to aweek, whichwas in strong contrast with
the spherical PEGylated stealth vesicles that were cleared within 2 days.
The unique hydrodynamic properties of filamentous, flexible micelles
allowed them to align with the blood flow, resulting in a substantial ex-
tension of the circulation time [36]. In another example, the circulation
time of liposomes in the size range of 100–150 nm was enhanced by
3.6-fold via the transformation of the spherical vesicles into a disk-like
vesicle [37].

2.1.3. Composition
Material hydrophobicity is commonly associatedwith the binding of

plasma proteins [38,39]. Semple et al. [40,41] demonstrated that lipo-
somes composed of neutral saturated lipids with carbon chains greater
than C16 bound to larger quantities of blood proteins compared with
their C14 counterparts. Moghimi et al. [42] demonstrated that the lipo-
somes rich in cholesterol bound less protein than cholesterol-free lipo-
somes due to increased rigidity in the lipid bilayer. Lipids present in the
liposomes also affect the pharmacokinetic parameters. It has been
shown that circulation half-life of liposomes typically increases as a
function of increasing lipid dose [43,44]. This effect is likely due to a de-
creased phagocytic capacity of RES macrophages after the ingestion of
high lipid doses or to saturation of opsonization of the circulating lipo-
somes [45].

2.1.4. Zeta potential
The net charge on a surface of a particle ismeasured as zeta potential

(ξ), and is an influential physical factor impacting PK and BD. Generally
speaking, negative particles (ξ ≤ 10 mV) exhibit strong RES uptake,
and positive particles (ξ N 10 mV) will induce serum protein aggrega-
tion: neutral nanoparticles (within ±10 mV) exhibit the least RES in-
teraction and the longest circulation [3]. Semple et al. [40,41] showed
that cationic liposomes bind 500–900 serum protein/mol lipid com-
pared to 100 serum protein/mol lipid bound by their neutral counter-
parts. Xiao et al. [46] demonstrated that nanoparticles with high
positive (N10 mV) or negative surface charge (≤10 mV)were efficient-
ly opsonized and cleared by the Kupffer cells from the blood circulation.
s and particleswere colored brownand purple, respectively. D–F are overlays of brightfield
phalloidin. A and C: Themembrane has progressed down the length of the particle. B: The
ectively, were formed as internalization begins after attachment. E: Actin polymerization
ring or cup was visible. (b) Definition ofΩ and its relation with membrane velocity. Ŧ rep-
d themembranenormal at the site of attachment. Adapted from ref [34]. Copyright (2006)
egend, the reader is referred to the web version of this article.)
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Levchenko et al. [47] reported similar results: particles exhibiting
ξ ≤ 40 mV exhibited N90% clearance in 10 min compared to b10%
clearance for the neutral particles (ξ ± 10 mV), and increased liver up-
take (60% ID versus b20%ID in 1 h) was implicated in the accelerated
clearance. Gessner et al. [48,49] observed an increase in plasma protein
adsorption with increasing surface charge density for negatively
charged polymeric nanoparticles. They also demonstrated that positive-
ly charged polystyrene nanoparticles predominantly adsorb proteins
with an isoelectric point (pI) b5.5, such as albumin, while negatively
charged particles adsorb proteins with a pI N 5.5, such as IgG [48,49].
Zhang et al. [50] reported that lipoplex (a positively charged complex)
formed aggregates in serum, leading to transient embolism in the
lungs, with ultimate clearance to the liver. In the Levchenko and
Zhang studies, PEGylation served to shield the charge effect [47,50], sug-
gesting that PEG may minimize opsonization not only through steric
hindrance but also charge shielding.

2.2. RES activity and personalized dose adjustment

Nanoparticles are cleared largely by the RES [3,51,52]. Therefore,
reduced RES activity will result in prolonged blood circulation of
nanoparticles, which will have an increased chance to interact with
other normal tissues, inducing side effects. La-Beck et al. [53] dem-
onstrated that patients with increased RES activity (increased pre-
cycle monocyte count) exhibited enhanced clearance for Doxil,
which is a PEGylated liposomal doxorubicin. Therefore, an individual
with reduced RES activity will display decreased clearance and in-
creased toxicity, whereas a patient exhibiting high RES activity will
experience increased clearance and reduced efficacy at the same
dose. These results suggest that: first, individual dose adjustment
according to the RES activity (possibly via pre-cycle monocyte
count) is needed to optimize the treatment andminimize the side ef-
fects of nanomedicines. Second, multiple dosing should be planned
carefully as the interaction between nanoparticles and the RES is bi-
directional [54]: the first dose of nanoparticles may suppress the RES
activity, reducing the clearance and increasing the toxicity of the
subsequent doses. For example, the blood clearance of Doxil in
human patients was shown to be reduced by 43% at the third dose
compared to the first dose, and the skin toxicity of Doxil appeared
after the third cycle [55].

3. Nanoparticle extravasation and retention in tumors

The second phase of delivery is nanoparticle extravasation from the
bloodstream and retention in the tumor tissue. This process is selective
for highly permeable tumors that lack lymphatic drainage.

3.1. Tumor vascular permeability and nanoparticle extravasation

Tumor blood vessels are dense, immature, chaotically branched, and
dilated [56], and early in cancer research it was observed that largemol-
ecules such as proteins were leaking out of tumors, suggesting
hyperpermeability [57–59]. It was further observed that blood-borne
macromolecules N40 kDa and nanoparticles could evade renal clear-
ance and leak into tumors [60]. In normal tissues (excepting the RES),
the contact layer between blood and tissues is continuous and well
sealed againstmacromolecules and particles [14], preventing extravasa-
tion of nanoparticles into most normal tissues with reduced off-target
toxicity [1]. This selective extravasation effect favors long-circulating
nanoparticles, as this passive targeting effect is an accumulative process.
This phenomenon has been observed in both animal and human tumor
biology. The earliest example was generated by the Maeda group
[2,61–63]: a styrene maleic anhydride polymer was conjugated to
neocarzinostatin (SMANCS), and patients treated with this therapeutic
were imaged by CT, with tumor accumulation of the therapy reading
10–200 times higher than normal tissues. Harrington et al. [64]
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demonstrated that 111In-labeled PEGylated liposomes selectively accu-
mulated in the liver, spleen, squamous cell tumor, cardiac blood pool,
and bowel using radiographic whole body measurements, confirming
the typical BD profile for long-circulating liposomes. Similar radiograph-
ic measurements in patients suffering from Kaposi's sarcoma confirmed
the selective BD of Doxil [64].

Despite the dramatically improved PK, BD, efficacy and safety profiles
of nanomedicines in preclinical models, most of them do not increase
overall survival of patients compared to the standard chemotherapy
[65]. Patients with HIV-related Kaposi's sarcoma or metastatic breast
cancer receiving doxorubicin or Doxil have similar overall survival
[66,67]. Similar results were shown for DaunoXome in treating patients
withHIV-relatedKaposi's sarcoma [68]. Although a couple of positive tri-
alswith nanomedicines have been reported, includingDoxil formetasta-
tic ovarian cancer [69] and Abraxane for metastatic breast cancer [70],
the benefit of nanomedicine in clinical patients has not been consistent.
Opaxio exhibited promising efficacy in preclinical models and in a small
number of cancer patients in early clinical trials, but failed in phase III tri-
alswhen the productwas tested in a large number of patients [71]. These
clinical results suggest that patients have significant variations in tumor
pathophysiology, which contributes to the variable therapeutic out-
comes, resulting in statistically non-significant results that mask the
benefit of nanomedicine. Particularly, heterogeneous tumor vasculature
is anticipated to lead to highly variable delivery of nanoparticles [65,72].
Ernsting et al. [73] recently reported that the tumor uptake and efficacy
of their nanoparticleswere linearly correlatedwith the tumor blood ves-
sel density (R2 N 0.9). The results suggest that extravasation of
nanoparticles is dependent on the tumor vasculature, which has a high
degree of variation that results in varying tumor extravasation. It is be-
coming widely accepted that only a selected population of patients
with highly permeable tumors can benefit from nanomedicine [74–76],
and a selection tool is needed to identify the receptive population.

3.2. Strategies to enhance the tumor extravasation of nanoparticles

3.2.1. Reduce particle size
Within the systemic circulation phase of drug delivery, the optimal

particle size is about 100 nm, evading renal, hepatic and splenic filtration.
However, the optimal particle size favoring tumor extravasation is not
necessarily equivalent. Cabral et al. [77] compared the accumulation and
effectiveness of differently sized long-circulating, drug-loaded polymeric
micelles (diameters of 30, 50, 70 and 100 nm). In a hyperpermeable mu-
rine colon cancermodel, therewere no size-dependent restrictions on ex-
travasation in tumors (all tumors exhibited a 10% ID uptake). In contrast,
only particles smaller than 50 nm could penetrate poorly permeable
hypovascular human pancreatic cancer models, with 30 nm particles
fully inhibiting tumor growth and 50 nm particles inhibiting growth by
only 50%. Particles above 50 nm had no inhibitory effect in this
hypopermeable pancreatic model. Lee et al. [78] showed that accumula-
tion of the 25 and 60 nm particles in the liver and spleen was not signif-
icantly different, but tumor uptake of the 25 nm particles was 2-fold
higher relative to the 60 nm particles.

3.2.2. Tumor blood vessel modulating treatments
While hyperpermeable, the tortuous and chaotic vasculature of tu-

mors represents a barrier to drug delivery because there is limited per-
fusion [65,79–81]. The process of angiogenesis is driven by factors
released by tumor and stromal cells, and chief among the culprits is
VEGF [82]. Blockading VEGF in tumors causes a reduction in the size
and diameter of blood vessels with improved blood perfusion, leading
to increased delivery of small molecule drugs [83,84]. Vascular normal-
ization may enhance drug delivery for small molecules, but it can actu-
ally create barriers to nanomedicine therapy, as normalized blood
vessels become less permeable to macromolecules, and the decrease
in particle flux across the vessel walls may offset the benefits of in-
creased perfusion [65]. Tanaka et al. [85] demonstrated enhancements
pharmacokinetics, biodistribution and intratumoral penetration of
el.2013.09.013
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to EPR uptake by manipulation of vascular pressures with a prostaglan-
din analog (Beroprost): prostaglandin caused vasodilation, resulting in
thinning of the already deformed tumor capillary wall, which in turn
improved extravasation of macromolecules. Seki et al. [86] showed
that nitroglycerin enhanced delivery of PEG-conjugated zinc protopor-
phyrin (PGP) and hence improved therapeutic efficacy via sustained
EPR effect (more than 24 h). NO2

− is first liberated from nitroglycerin
and is then converted to NO under hypoxic conditions in cancer tissue,
resulting in vasodilatation and increased blood flow in the tumor, while
NO2

− production in normal tissue showed no significant increase.
Seynhaeve et al. [86] demonstrated that the addition of low-dose
tumor necrosis factor-α (TNF-α), which is a pro-inflammatory cytokine
with known vascular permeabilizing activity, to systemic injections
with PEGylated liposomes augmented tumor accumulation of these li-
posomes by 5- to 6-fold, which strongly correlated with enhanced
tumor response. Seki et al. [87,88] showed that TNF-α can enhance
the delivery of viral particles into tumors through a Rho A/Rho kinase
dependent mechanism. TNF-α, however, is poorly tolerated when ad-
ministered systemically, and therefore locoregional setups, such as
isolated-limb-perfusion, are needed to exploit their beneficial effects.
If such setups are available, the combination of extravasation-
enhancing pretreatment with nanomedicine treatment can lead to sig-
nificant increases in therapeutic efficacy [74]. Kano et al. [89] discovered
that pre-treatmentwith a low dose of a TGF-β inhibitor (LY364947) de-
creased pericyte coverage of the tumor endothelium, leading to in-
creased vascular permeability to nanoparticles.

Radiation treatment is also known to increase vascular permeability of
solid tumors, and enhances the delivery of nanoparticles [90,91]. Li et al.
[91] treated an OCa-1 ovarian carcinoma model with 5–15 Gy radiation
followed by native paclitaxel and PG-TXL (polyglutamate conjugate of
paclitaxel). Radiation significantly elevated VEGF levels, increased tumor
vascular permeability by 26%, and improved tumor extravasation of PG-
TXL by ~30%, but this result is not found with native paclitaxel. Davies
et al. [90] reported similar results in an osteosarcoma xenograft model:
they administered Caelyx (liposomal doxorubicin) in control and irradiat-
edmice, and observed improved drug delivery in the irradiatedmice and
60–70% efficacy enhancements. They further characterized the tumors
withMRI, anddemonstrated that radiation treatment enhancedperfusion
significantly, an effect independent of drug treatment. Ionizing radiation
generates reactive oxygen species (ROS) inDNA, resulting in tissue injury,
including endothelial cell damage, with an increase in vascular perme-
ability, edema, and fibrin accumulation in the extracellular matrix [92].

3.3. Factors affecting tumor retention of nanoparticles

Another aspect influencing delivery of nanoparticles is the retention
effect arising from impaired or absent lymphatic drainage in tumors. It
has been observed that elongated objects exhibit enhanced tissue reten-
tion following extravasation: Park et al. [93] demonstrated that dextran-
coated nanochains and spheres (length∼50 nm) both extravasated into
tumor tissue, but 48 h after injection the spheres had largely returned to
the circulation, whereas the injected chains were better retained. Size
also impacts retention in the tumor tissue: Torchilin et al. [94] demon-
strated that the 10 nm micelles permeated into the tumor within
30 min post-injection, but the dose was not stably retained, with only
¼ of the dose remaining in the tumor in 2 h.When themicelles were la-
beled with a 2C5 antibody, the tumor retention was significantly im-
proved, with N80% of the dose retaining in the tumor in 2 h. Their
data suggests a decreased retention effect for smaller (10 nm) particles,
which can be reversed through the use of a targeting ligand.

4. Tumor penetration of nanoparticles and drug release

Nanoparticles that successfully extravasate into tumor tissues face
another barrier consisting of high interstitial fluid pressure, dense stro-
mal tissue, and complex interactionswithmacrophages, fibroblasts, and
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tumor cells. BD analysis typically involves measurement of gross drug
content in tissues, but is increasingly becoming a process of measuring
where the particles are within tissues. The third phase of drug delivery
involves nanoparticle penetration in the tumor tissue and drug release
from nanoparticles.

4.1. Tumor physiological factors that impact nanoparticle penetration

4.1.1. Abnormal and heterogeneous vasculature
Tumor vasculature is highly irregular compared to that in normal tis-

sues,with characteristics such as heterogeneous spatial distribution and
uneven perfusion and permeability (reviewed in [65]). Tumor periph-
ery is highly perfused, but vascular permeability is lower compared to
the hypoxic core, wherein the reverse is observed [95]. Yuan et al. [30]
prepared human adenocarcinoma xenografts in a dorsal window cham-
ber model, permitting visualization of tumor vasculature and penetra-
tion of labeled liposomes. Compared to normal tissue, the liposomes
exhibited significant accumulation in the adenocarcinoma, but did not
distribute homogenously: liposomes accumulated in perivascular clus-
ters. Lee at al. [96] compared the intratumoral distribution of 111In la-
beled polymeric micelles in MCF-7 and MDA-MB-468 tumors using
MicroSPECT imaging, demonstrating a similar pattern of heterogeneous
distribution. In both studies, nanoparticle uptake occurredmainly in the
perfused tumor periphery, suggesting perfusion rather than permeabil-
ity is the limiting factor for tumor penetration of nanoparticles.

4.1.2. Interstitial fluid pressure (IFP)
While tumor vasculature is often permeable to nanoparticles, fur-

ther penetration into the tumor tissue depends on convective flow. In
normal tissues, there is a net negative pressure drop between the
blood vessel and the interstitial space, leading to fluid movement into
the interstitial space and ultimately onwards to lymphatic ducts. How-
ever, as a result of abnormal permeability, lymphatic vessel malfunc-
tion, interstitial fibrosis, contraction of interstitial tissues mediated by
stromal fibroblasts [86], and compression from multiplying tumor
cells [97], interstitial fluid pressure (IFP) in tumors is increased and
can be up to 60 mmHg [86,98–101]. High IFP disrupts normal convec-
tive flow, and large molecules and particles that rely on convective
flow will not efficiently transport into the tumor compartment [102].
For nanoparticles, extravasation into the tumor periphery may be fa-
vored by increased permeability and perfusion, but movement to sites
distant from the blood vessels is impaired by high IFP [77,96,103].

4.1.3. Stromal density
Cancer cells are surroundedbybasementmembrane,fibroblasts, im-

mune cells, and extracellular matrix (ECM), which are collectively
termed stroma, and is the dominant fraction of the total tumor mass
[104,105]. The interaction between the tumor and stromal cells has
been characterized as a wound that does not heal, given the inflamma-
tion and matrix building activity [104,106], but unlike normal tissue
healing processes, fibroblasts in tumors are unregulated, continuously
proliferate, and do not senesce [107]. The extracellular matrix produced
by the activated fibroblast is a barrier to convective and diffusive trans-
port, and this is particularly significant for nanoparticles compared to
small molecules [106,108,109]. Furthermore, fibroblasts in the stromal
tissues generate contractile forces, which increases IFP and reduces per-
fusion, further inhibiting drug transport and penetration [105]. In stud-
ies of nanoparticle penetration, Jain et al. [65] have demonstrated that
the dense network of collagen fibers (ECM) prevents intratumoral
transport, confining nanoparticles to the perivascular regions of the
tumor.

4.1.4. Tumor associated macrophage (TAM)
Tumor tissue is rich inmacrophage, with these populations reaching

up to 60% of cells in some tumors [110,111]. Tumor associated macro-
phage (TAM) are well studied in their distinct role in immune
pharmacokinetics, biodistribution and intratumoral penetration of
el.2013.09.013
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suppression, growth promotion, andmetastases (refer to review [112]).
TAMs have been shown to influence transport and drug release from
nanoparticles [113–115]. Opaxio is a polyglutamate-paclitaxel conju-
gate (PG-TXL), and studies with radiolabeled drug revealed that the
drug metabolites were predominantly located within TAMs, whereas
level of drug metabolite in tumor cells was 100–1000× less [113].
Furthermore, the intratumoral distribution of PG-DTPA-Gd (a MR
contrasted version of the polymer)was overlaidwith TAMs, particularly
in necrotic area of tumor, suggesting that TAMs were taking up PG and
transporting the drug within the tumor [114]. A similar finding on
TAM-related biofate was made with IT-101, a cyclodextrin conjugate
of camptothecin. In in vivo models of glioblastoma, it was shown that
microglia (a TAM) and lymphocytes were the predominant cell-types
taking up IT-101,withmicroglia beingparticularly aggressive on the up-
take [115]. Similar to the PG-TXL study, microglia was responsible for
transporting the nanoparticles from the periphery into the tumor center
within 1 day [71,115].

4.2. Nanoparticle properties that impact the tumor penetration

4.2.1. Size
Lee et al. [78,96] have demonstrated that tumor penetration of the

25-nm particles from the vascular structures into the tumor tissue was
doubled compared to the 60-nm particles (20 μm versus 46 μm from
the nearest blood vessel). Moreover, particles N60 nm in diameter did
not penetrate owing to the density of the collagen network [116]. Sev-
eral studies, however, demonstrated that peak tumor penetration dif-
fers for particles with different sizes, and that larger particles can
indeed achieve similar tumor penetration as smaller molecules over
an extended time frame [78,117].

4.2.2. Zeta potential
Neutral (±10 mV) nanoparticles traveled up to three times more

distance than charged analogs, and distributed more homogeneously
within tissue: cationicmaterials tend to interactwith negatively charged
matrix polymers such as hyaluronan, and anionic materials tend to in-
teract with positively charged matrix such as collagen [118,119], and
these interactions impede transport. Nomura et al. [120] determined
that liposomes carrying a nearly neutral charge (−2 to −5 mV) were
able to penetrate through tumor tissue 14 time more rapidly compared
to positively charge liposomes (+48 mV), which barely migrated at all.
Similarly, Stylianopoulos et al. [118] demonstrated by modeling and ex-
perimental validation that highly positive particles exhibited reduced
penetration and distributed less homogenously. Lieleg et al. [119] stud-
ied the penetration of charged polystyrene and liposomes inmatrix, and
found thatwhen the zeta potentialwas below−20 mVor above 10 mV,
their diffusion coefficients were orders of magnitudes lower than values
for neutral particles.

4.2.3. Targeting ligands
Lee et al. [78] showed that the 25 nm EGFR-targeted block copoly-

mer micelles exhibited reduced tumor penetration (Dmean = 29 μm)
compared to the non-targeted micelles (Dmean = 42 μm) due to the
“binding site barrier” effect, where specific binding and/or cellular inter-
nalization of antibodies by the targeted cells halts their penetration in
solid tumors. This barrier effect was not observed for the 60 nm version
of the nanoparticles, as particle penetration was already limited
(~20 μm) by matrix interactions related to size.

4.3. Approaches to modulate tumor penetration of therapeutic agents

4.3.1. IFP reduction
Reducing IFP to restore a normalized flow pattern is anticipated to

enhance convective transport and intratumoral penetration of thera-
peutic agents. However, the majority of the studies were performed
with small molecules [121,122], and the relevance to nanoparticles is
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yet to be confirmed. In the first type of approach, tumor vasculature is
normalized by treatment with anti-angiogenic drugs which target
VEGF, including drugs such as bevacizumab, and cediranib [65,80,123],
and which results in lower IFP. In a second approach to IFP reduction,
stromal fibroblasts are targeted. Prostaglandins interact with fibroblasts
to increase contractile forces and therefore raise IFP. Pietras et al.
[124,125] demonstrated that treatment with a prostaglandin inhibitor
such as Imatinib reduced IFP and improved small molecule drug deliv-
ery within the tumor microenvironment by 1.8-fold. In a third ap-
proach, IFP can be reduced by debulking the ECM or stromal cells.
Treatment with of ECM with ECM-degrading enzymes such as hyal-
uronidase or collagenase, or debulking tumors cells with drugs such as
paclitaxel can reduce IFP and enhance transport of chemotherapeutics
by 4- and 2-fold, respectively [126].

4.3.2. Stromal depletion
There is current interest in targeting stroma with molecules or

nanoparticles, and fibroblasts in particular are identified as good targets,
to debulk the tumor, reduce tumorigenic stimuli, alleviate high IFP, and
restore perfusion and drug delivery [128].Most recently,Murakami et al.
[127] demonstrated that their nanoparticles composed of PEGylated and
acetylated carboxymethylcellulose with docetaxel interacted selectively
with cancer associated fibroblasts (CAFs) in the breast tumor models
(Fig. 4). Greater than 85% of the nanoparticles were internalized by
CAFs in the tumor microenvironment possibly via an albumin-SPARC
(secreted protein acidic and rich is cysteine) dependent mechanism.
SPARC is a tissue remodeling molecule produced at high concentrations
by tumor stromal cells. This interaction led to almost complete depletion
of CAFs within a week, with 70-fold increased tumor perfusion, 50% re-
duction in ECM and IFP, and N10-fold decrease in metastases. Whether
this nanoparticle treatment can increase subsequent delivery of other
drugs or macromolecules is yet to be studied. Several approaches to
stromal depletion are being tested in clinical trials, including Abraxane
(paclitaxel–albumin nanoparticle) and Hedgehog inhibitors [129,130].
In clinical evaluation in combination with gemcitabine, Abraxane
(Nab-paclitaxel) reduced pancreatic ECM, possibly due to increased in-
teractions with the stroma cells via a SPARC-mediated mechanism.
This combination treatment resulted in 3.7-fold increased delivery of
gemcitabine into the debulked xenografted tumor [129]. Loeffler et al.
[131] showed that fibroblast activation protein (FAP)-vaccinated mice
displayed decreased collagen type I expression in the tumor, and as stro-
mawas accordingly less dense, the tumor uptake of doxorubicin was in-
creased up to 70%. They also demonstrated similar effects with
fluorescein and albumin, suggesting the stromal depletion strategy
may be applied to enhance the delivery of both small molecules and
macromolecules.

4.4. Drug release from nanoparticles

As particles extravasate into the tumor, there must be either intersti-
tial drug release, or internalization of the particles and intracellular re-
lease to exert pharmacological effects: composition of the nanoparticles
must therefore accommodate mechanisms for drug release, preferably
sustained release. Two clinical examples (Doxil and SPI-077) illustrate
the challenge associated with excessive stability. Doxil delivers 10 to
15 times more doxorubicin to the tumor compared to standard therapy,
but Doxil in the tumor has low bioavailability (40–50%) due to slow re-
lease, and as a result, efficacy enhancements aremodest [132–134]. Sim-
ilarly, SPI-077 (a liposomal formulation of cisplatin) exhibited significant
tumor accumulation but no antitumor effect. Analysis revealed that cis-
platin is membrane impermeable, and was retained inside the stable li-
posomes and not bioavailable [132,135].

Conversely, a formulation can exhibit excessive instability, and in
the field of taxane therapies, this is a persistent challenge. Taxanes
have been formulated into polymeric micelles such as Genexol [136]
and NK105 [137], and while these technologies enhance efficacy, the
pharmacokinetics, biodistribution and intratumoral penetration of
el.2013.09.013
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Fig. 4.Cellax nanoparticles target cancer-associatedfibroblasts. (a) Balb/cmice bearing4T1breast tumorswere treatedwithfluorescently labeledCellaxparticles (red), andα-SMA+CAFwere
immunostainedwith FITC (green). Definiens image analysis of tumors for total area (defined by DAPI nuclear staining),α-SMA content (green) and Cellax-DiI (red) demonstrated that 85% of
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therapy, α-SMA content dropped rapidly over 16 h, followed by a steady decrease over 168 h. Tumor cells as a percentage of total tumor area did not undergo a significant decline in the
168 h timeframe, whereas non-viable tissue increased significantly, suggesting that the decline of α-SMA+ cells is the primary therapeutic effect. Adapted from ref [127].
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taxanes rapidly partition out of the polymeric micelles and bind with
serum proteins during blood circulation, and the PK improvement
over the standard formulations (Taxol or Taxotere) is not significant in
human patients [136,138,139]. In the Abraxane formulation, human
serum albumin is complexed with paclitaxel to form 130-nm particles,
and likewise, while efficacy enhancements are observed due to an in-
crease in the tolerated dose, the PK profile of the paclitaxel is unchanged
[70,140–142]. Opaxio is a conjugate of paclitaxel and polyglutamate,
andwhile positive results in Phase I and II were reported and PK param-
eterswere significantly enhanced [143], the hallmark taxane side effects
of neutropenia persisted, and it failed to enhance efficacy in Phase III. In
preclinical evaluation it was observed that Opaxio decomposed during
circulation, forming polymeric fragments of taxane that distributed to
many normal organs to a significant extent [144]. It may be that Opaxio
is not stable enough to minimize toxicity and leverage the EPR effect to
the full advantage. The challenge then is tomaintain stability to achieve
improved PK profiles, while providing for a release mechanism inside
the tumor.

4.5. Factors impacting cellular internalization of nanoparticles and the
drug release

4.5.1. Mechanisms of cellular internalization of nanoparticles
There are two major endocytic mechanisms by which cells take up

particles andmacromolecules, and these are referred to as phagocytosis
andpinocytosis [145]. Large particles (N1 μm)are generally internalized
by phagocytosis mechanisms, which are present only on professional
phagocytic cells, such as macrophages, neutrophils, or dendritic cells
[146]. Therefore pinocytosis is more relevant to cellular uptake of
nanoparticles and can occur either via adsorptive pinocytosis or via
receptor-mediated endocytosis [147]. Pinocytic mechanisms of uptake
can be further divided into caveolae-mediated endocytosis (~60 nm)
or clathrin-mediated endocytosis (~120 nm), as well as clathrin-
independent or caveolin-independent endocytosis (~90 nm) [146].
The details of the exact mode of endocytosis are important because
they determine thepath of trafficking through various possible subcellu-
lar compartments. For example, nanoparticles internalized through
clathrin-mediated endocytosis are destined for a lysosomal compart-
ment, whereas those internalized through a caveolin-mediated process
are not. In clathrin-mediated endocytosis internalization, endosomal es-
cape must occur before fusion with a lysosome to prevent degradation
of the cargo under harsh lysosomal conditions. In either case, endosomal
escape is usually necessary to allow access of the carrier to the desired
subcellular compartment. Ligands such as folic acid, albumin and
Please cite this article as: M.J. Ernsting, et al., Factors controlling the
nanoparticles, J. Control. Release (2013), http://dx.doi.org/10.1016/j.jconr
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Rcholesterol conjugated to the surface of engineered nanoparticles can fa-
cilitate uptake through caveolin-mediated endocytosis, whereas ligands
for glycoreceptors promote clathrin-mediated endocytosis. Alternative-
ly, macropinocytosis, a non-caveolin-mediated, non-clathrin-mediated
process, can be engaged by incorporating cell-penetrating peptides,
such as a trans-activating transcriptional activator (TaT) peptide into
the design of engineered nanoparticles. For a nanoparticle entering the
lysosomal compartments, drug release can be engineered to occur via
hydrolysis of sensitive functional groups (such as an ester): the released
drugmust be reasonably resistant to the lysosomal environment and be
able to escape into the cytosol [148–150].

4.5.2. Size
Nanoparticle size is a key parameter affecting the cellular uptake rate

as it influences their internalization mechanism. In general, particles in
the 40–200 nm range exhibit cellular uptake in vitro [151,152]. Gratton
et al. [152] examined the uptake of hydrogel particles ranging from 1 to
200 nm in diameter in HeLa cells, and found that very small (1 nm) and
larger (150–200 nm) particles were readily internalized. Jiang et al.
[153] investigated the size-dependent binding and uptake of the
transtuzumab-conjugated nanoparticles (2–100 nm) with ErbB2+ cells
and found that 40–50 nmparticles exhibited the highest amount of cellu-
lar internalization, which may be due to the optimal antibody density on
the particle surface that triggers maximal cross-linking of the membrane
receptors.

4.5.3. Shape
Gratton et al. [152] designed a series of cationic cross-linked PEG-

based hydrogels of varying sizes and shapes via a top-down lithographic
fabrication method (PRINT: Particle Replication In Non-wetting Tem-
plates) and examined the cellular internalization pathways using Hela
cells. Nonspherical particles with dimensions as large as 3 μmwere easily
internalized byusing several differentmechanismsof endocytosis. Similar
findings demonstrate the enhanced internalization of nonspherical parti-
cles over their spherical counterparts for nanosized rod-like biodegrad-
able mesoporous silica nanoparticles [154] and iron oxide nanoworms
[93]. On the contrary, several other studies have found that the spherical
forms of gold nanoparicles [155] and polymeric nanoparticles [156] were
internalized to a greater extent than their corresponding nonspherical
particles. For example, cells took up 5 and 4-fold more 74 and 14 nm
spherical gold nanoparticles than 74 × 14 nm rod-shaped gold nano-
particles, respectively [155]. Nevertheless, shape of particles not only af-
fects tumor cell internalization but also determines the interaction with
RES, and the PK and tumor retention as discussed in the previous sections.
pharmacokinetics, biodistribution and intratumoral penetration of
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Impacts of shape in the three phases of delivery should be comprehen-
sively considered when designing nanoparticles.

4.5.4. PEGylation
To reduce opsonization by blood proteins and clearance by RES, hy-

drophilic stealth polymers (e.g., PEG) have been used as a surface coat-
ing material. PEG, however, may be an obstacle and hinder to
interactionwith target cells, resulting in reduced efficacy. Several differ-
ent approaches have been made to remove the PEG coating after the
particle arrives at the target site. Guo et al. [157] prepared a removable
PEG coating which stabilizes the fusogenic DOPE in liposomes at neutral
pH. PEG was linked to DOPE via a diorthoester bond, and hydrolysis of
the conjugation at the low endosomal pH in the range of 5–6 occurred
within 1 h, leading to particle fusion with the endosomal membrane
and release of contents into the cytosol. A similar strategy was applied
to TAT-liposomes masked with a cleavable PEG coating: the PEG chains
were released at the acidic pH (pH 5–6), exposing the TAT peptides to
interact and enhance internalization by the targeted cancer cells [158].
Similarly, the same group shielded the TAT-liposomes with a long-
chain PEG, which was conjugated to the liposomal surface via a MMP2
cleavable peptide (Gly-Pro-Leu-Gly-Ile-Ala-Gly-Gln) [159]. They report-
ed that the liposomes were de-PEGylated by the extracellular MMP2 in
the tumor cells, exposing the TAT peptide on the nanoparticle surface
for increased cellular uptake. Maclachlan's group [160] developed stabi-
lized nucleic acid lipid particles (SNALP) consisting of a siRNA encapsu-
lated in an ionizable lipid bilayer (pKa ~6) with a PEGylated lipid. They
found that when the carbon chain length of the PEGylated lipid was
shortened from C20 to C14, the blood circulation time was decreased,
but accompanied with increased hepatocellular uptake of the formula-
tion, enhanced gene silencing activity in the liver, and reduced cytokine
stimulation. The PEGylated lipid with a shortened carbon chain is diffu-
sive, and readily leaves the lipid bilayer during blood circulation to facil-
itate binding of Apo E to the naked SNALP, which in turn recognizes Apo
E and LDL receptors on the hepatocytes, therefore triggering endocyto-
sis. In the acidic endosomal and lysosomal environment, SNALP is ion-
ized and becomes cationic to interact with the negatively charged lipid
membrane, promoting siRNA to escape into the cytosol, the site of ac-
tion. On the other hand, SNALP preparedwith long acyl chain PEGylated
lipids remain stable in the blood circulation, and have an increased
probability of interacting with immune cells, inducing enhanced proin-
flammatory cytokine production.

4.5.5. Zeta potential
Cationic nanoparticles are generally known to exhibit increased up-

take by cells via the charge–charge interaction mediated adsorptive en-
docytosis compared to neutral and anionic particles [161–163]. Again,
the PK of the charged nanoparticle has to be considered, as charged
nanoparticles often display increased interaction with serum proteins,
resulting in accelerated blood clearance compared to neutral particles.
As just discussed, it is feasible to design nanoparticles that shed PEG-
shielding after tumor extravasation in order to expose cationic particles
that can interactwith target cells [164,165]. In a slightly different variant
of this approach, Choi et al. [166] formulated poly(ethyleneglycol)-
diorthoester-distearoylglycerol lipid (POD) stabilized plasma lipid
nanoparticles (SPLP): POD-SPLP contain 13 wt.% PEG: the PEG brush
dissipated at pH 5.3 within 110 min, exposing a cationic particle. Both
the POD-SPLP and PEG-SPLP were internalized to a qualitatively similar
extent within 2 h of incubation but gene transfer increased up to 3 or-
ders of magnitude with POD-SPLP, due to more rapid escape of plasmid
DNA from the endosome.

4.5.6. Targeting ligands
A commonly used strategy for improving bioavailability of nano-

particles in a tumor is to conjugate a targeting ligand, allowing the
binding with the surface receptor on the tumor cells, triggering
receptor-mediated endocytosis for increased intracellular delivery of a
Please cite this article as: M.J. Ernsting, et al., Factors controlling the
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drug. Although success has been reported for many nanoparticle
systems and animal models, this approach suffers from the following
disadvantages: first, cellular internalization happens only after extrava-
sation of nanoparticles, and the cellular uptake only occurs around the
microvessels, resulting in limited tumor penetration and heterogeneous
drug uptake [3]. As discussed earlier, Lee et al. [78] demonstrated that
the targeted nanoparticles display restricted penetration compared to
non-targeted particles; second, some ligand-conjugated nanoparticles,
including antibody- [167] or small molecule-decorated nanoparticles
[168,169] display enhanced blood clearance, reducing the tumor accu-
mulation; third, cellular internalization by receptor-mediated endocyto-
sis leads to drug decomposition in the endosome/lysosome [170].
Therefore, targeted nanoparticles do not always exhibit improved ther-
apy compared to the non-targeted ones [132].

Another important point to note is that conjugating a tumor-
selective ligand onto nanoparticles does not improve the specificity of
tissue distribution, which is mainly determined by nanoparticle physi-
cochemical properties, and the ligand only sees the antigen after nano-
particle extravasation. Using proton emission tomography/computed
tomography (PET/CT), Bartlett et al. [171,172] compared the biological
activity of siRNA payloads in tumors delivered via non-targeted and
transferrin conjugated nanoparticles. They found no difference in BD
between the targeted and the non-targeted nanocomplexes, while in-
creased gene silencing activity was seen with the targeted complex.
The authors concluded that the primary function of the ligand was not
in targeting the complexes to the tumor tissue, but to increase the intra-
cellular uptake. Similar results have been reported by other groups
[167,173].

4.5.7. TAM content and drug release
Zamboni et al. [174] have shown that drug release of a camptothecin

analog from the PEGylated liposomes was more efficient in tumors
characterized by higher macrophage content. For example: 4.9 ± 3.0%
of SKOV-3 tumors stained positive for TAM, whereas only 1.1 ± 0.7%
in A375 tumor. While the total drug accumulation in the tumor tissues
was similar (13–16 μg/mL h), release of camptothecin in the extracellu-
lar fluid was 2-fold higher in the TAM-rich SKOV-3 tumors. The data
suggest that TAM not only is active in phagocytosing nanoparticles,
but also efficient in digesting nanoparticles and facilitating drug release.
However, whether TAM content can be a biomarker to correlate drug
release from nanoparticles and their efficacy needs to be validated.

5. Conclusion and perspectives

There is a continuum of biological barriers to effective drug delivery
by nanoparticles (Fig. 1), ranging from the RES interaction with
nanoparticles, to the extravasation of nanoparticles into highly perme-
able tumor tissues, and penetration of nanoparticles through the stroma
and ultimate drug release around or inside the target cells. There are
conflicting design parameters as a result of this multi-system interac-
tion, especially in optimal size. Approved cancer nanomedicines (Doxil,
DaunoXome, Abraxane andMarqibo) are 80–130 nm in diameter. How-
ever, there is increasing interest in developing small particles (b50 nm)
exhibiting improved tumor permeability and penetration.

PEGylation has been employed in many nanoparticles to reduce the
RES interaction and prolong the blood circulation. Nevertheless, the RES
is still responsible for clearing majority of nanoparticles, typically leav-
ing b10% ID/g delivered to the tumors [3,132]. There are limits to how
much PEG can be integrated into a nanoparticle before it destabilizes
the structure. The Huang lab [175,176] has demonstrated in their LPD
(lipid-polycation-DNA) and LCP (lipid-calciumphosphate) nanoparticle
systems that N10 mol% of DSPE-PEG2000 could be introduced to the lipid
membranes that are stabilized by charge–charge interaction. These
highly PEGylated LPD and LCP nanoparticles displayed minimal RES
clearance in the liver (~10% ID), a clear differentiation from many
other nanoparticles. However, PEGylation has been shown to reduce
pharmacokinetics, biodistribution and intratumoral penetration of
el.2013.09.013
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nanoparticle interactionwith target cells, and is responsible for immune
response, especially when an immunostimulatory agent is carried, such
as pDNA and siRNA. A variety of strategies have been developed to facil-
itate de-PEGylation of nanoparticles to reduce the immunotoxicity or
cellular bioavailability. Developing a PEG alternative to shield nano-
particles from RES recognition remains an open challenge.

Clinical tumors possess a high degree of variation in vasculature,
which impacts nanoparticle extravasation and the intratumoral distribu-
tion, leading to varying therapeutic activities amongpatients [75,76]. Pa-
tient characteristics (e.g., age, gender, tumor type, tumor location, body
composition and prior treatments) can also affect the EPR effect of
nanomedicine [177]. Additionally, the EPR effect is mainly observed
with large solid tumors, and whether this effect applies to small metas-
tases needs to be validated in a large number of patients. To improve
therapeutic outcomes, a selection tool needs to be developed to stratify
patients into candidates and non-candidates for nanomedicine therapy.
A nanoparticle can be manufactured with multiple functions, delivering
both drug and imaging agents, enabling real-time and non-invasive
measurement of PK, BD and tumor delivery of the nanoparticles. In fu-
ture, cancer patients could then be screened for treatment suitability
using multifunctional nanoparticles and the corresponding imaging
technologies. Karathanasis et al. [178] screened mouse breast cancer
models with an injectable liposomal probe containing iodine to identify
which subgroups were good candidates for nanoparticle therapy, and
demonstrated excellent correlation (R2 = 0.838) between SPECT mea-
surements and therapeutic response to the liposomal doxorubicin. Ideal-
ly, a generalmethod utilizing a contrast agent andMRI can be developed
to screen the prevalence of the EPR effect in human tumors and to strat-
ify patients for receiving nanotherapeutics.

The issue of low drug bioavailability exemplified by Doxil and SPI-077
(PEGylated liposomal cisplatin) is a significant concern in the design of
nanoparticles. The development of triggered-release nanoparticles,
which release drug locally in the tumor, achieves improved bioavailability
while reducing systemic exposure. The most advanced triggered release
technology is the hyperthermia-activated liposomal formulation, a nano-
particle that burst-releases 100% drug content at 41–42 °C within 20 s,
but is relatively stable at 37 °C [179–183]. In combination with image-
guided heating technologies, the drug can be released intravascularly
within the locally heated tumor, generating a high drug concentration
gradient for improved delivery and tumor penetration of bioavailable
drug. This EPR-effect-independent nanotechnology is being tested in clin-
ical trials. The design of nanoparticles capable of controlled release in the
tumor compartment remains an area of pursuit in thefield [148–150]. It is
also suggested that more research should be directed towards develop-
ment of new types of nanoparticle delivery systems that do not rely on
the EPR effect.

While ligand targeted therapies are experiencing some success, an
effective interaction between a ligand and the tumor cell can occur
only after the targeted nanoparticles have evaded the RES clearance, ex-
travasated into the tumor tissue and penetrated through the ECM and
stroma [65,78]. Due to the difficulty in targeting tumor cells, specific re-
ceptors on endothelium within tumors are attractive targets as they
present to the bloodstream and circulating nanoparticles [184]. The
most commonly utilized ligand is RGD, a peptide recognized by
integrins overexpressed on angiogenic endothelial cells [116]. Recently,
the Ruoslahti group [118] developed a tumor penetrating peptide, iRGD
(CRGDK/RGPD/EC): iRGD targets the integrins on tumor vascular endo-
thelial cells with the RGD motif, and then the peptide is digested to ex-
pose RGDK/R, which binds to NRP-1 and induces vascular and tissue
permeabilization. Conjugation or co-injection of iRGDwith amacromol-
ecule significantly improved the tumor delivery by N7-fold.

In the past few decades, the nanomedicine research has been fo-
cused on optimizing the physicochemical parameters of nanoparticles
(size, shape, surface charge, ligand, release rate) to obtain optimal PK
and delivery. Current research is emphasizing on improving under-
standing of how human physiology and tumor biology affect PK, BD
Please cite this article as: M.J. Ernsting, et al., Factors controlling the
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and intratumoral penetration of nanoparticles. Various approaches
have been investigated to modulate the tumor microenvironment to
allow increased extravasation of nanoparticles, including modulating
the vascular dynamics (blood flow, pressure and permeability), and
debulking the tumor by depleting the stromal component (CAFs,
ECM). It is now believed that both optimization of the nanoparticles
and the tumor microenvironment are required for optimal delivery
[75]. Currently, the field of research is still focused on addressing the
permeability part of the EPR equation with less emphasis on the reten-
tion aspect, which is driven by the impaired lymphatic drainage in the
tumor. More functional imaging technologies with quantitative capabil-
ities should be developed to study the lymphatic function in the tumor,
and how this parameter impacts IFP, nanoparticle penetration and re-
tention.With gains in fundamental knowledge, rational design of an op-
timal nanomedicine can then be realized to achieve the maximized
therapeutic effect in image-stratified patients.
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