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Abstract 

In this paper, we study the optimal harvesting control problem governed by a time-periodic competing parabolic 
Volterra-Lotka system. We show the existence of an optimal control, and we also find some conditions which enable 
the characterization of the optimal control in terms of a large parabolic optimality system. We further construct 
monotone sequences closing in to all appropriate solutions of the periodic optimality system. 
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1. Introduction and statement of the problem 

Let R be a bounded domain in R” with C2 boundary, G = 0 X [O, T), S = a0 X [O, T) for 
some T > 0, and bi, ci some positive constants, i = 1, 2. Throughout this paper we will always 
assume that f(x, t), g(x, t) and a,(x, t), i = 1, 2, are functions satisfying 

and they are periodic functions of t with period T for (x, t) E 0 x ( -cc, w). 
For any constant vector 6 = (a,, a,), Si > 0, i = 1, 2, we let 

B S,T=u s)lf, gE~yflx(-w,w)), 

f and g are periodic functions of t with period T, and f< 6,) g < S,}. 
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For any (f, d E BS,T, we define (u, U) = (u(f, g), u(f, g>> as a solution of the problem 

(u, -Au - u[(q -f) - b,u - clv] = 0, in G, 

U, - Au - u[(u2 -g) - b,u - c+] = 0, in G, 

( au au 
-=-_= 
av au 

0, on S, 

,u(x,O)=U(X,T) and v(x,O)=v(x,T), forxE0. 

(14 

We will show that such (u(f, g), v(f, g)) is uniquely defined when ai, ai, bi, ci, i = 1, 2, 
satisfy appropriate conditions (cf. (Hl), (H2) below). 

Next, let Ki, Mi, i = 1, 2, be positive constants; we define the pay-off function by 

J(f, d = / k”(f, df+&V(f, g)g-M,f* -M,g*] dx dt, 
G 

(1.2) 

which describes the economical return of harvesting the competing species u, v. 
The problem is to find the periodic control (f, g) E BB,T, such that 

In practical terms, we are searching for optimal harvesting of two competing biological 
species whose growth are governed by the diffusive Volterra-Lotka-type system (1.1). Here 
a,(~, t>, i = 1, 2, describes spatially dependent intrinsic growth, bj, i = 1, 2, designates crowding 
effect and the functions f and g denote distributions of control harvesting effort on the 
biological species. The optimal control criterion is to maximize the pay-off functional, where K, 
and M, are constants describing the market price of species u and the cost of control f, and 
similarly K, and M2 are constants related to v and g. 

In Section 2, we discuss the existence and uniqueness of a positive solution to (1.1). Then we 
prove the existence of optimal control for our problem. In Section 3, we find some conditions 
which enable us to characterize an optimal control in terms of solution of a parabolic optimality 
system. In Section 4 we construct monotone sequences closing in to all appropriate solutions of 
the optimality system. If the monotone increasing and decreasing sequences converge to a same 
function, then the optimal control is unique. Similar problems have been studied for the elliptic 
case in [11,13]. The one parabolic equation case is considered in [5]. The results here are 
different from [13], because the species interact differently and the system is now time-depen- 
dent. Other related results, regarding monotone iteration techniques in optimal control and 
game theory for partial differential equations, can be found in [9,10,12,15,16]. Many recent 
results concerning periodic solutions of competing systems can be found in, e.g., [1,2,6,8]. 

Here we shall use the stardard notation (see [S]) W,*,‘(G), and LP(G) for Sobolev space and 
Lp-space on G = R x [O, T). LP,(G) = {f~ LP(G) I f > 0 a.e. in G}. For convenience we will 
denote the norm in LP(G) by II * II p,~. 
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2. Existence of positive solution and optimal control 

We first consider the existence of periodic positive solution to (1.1) for a fixed given 

(“6 g) E B,,,. This will be established in Theorem 2.2 with the hypothesis 

I 
) i, j = 1, 2 and i #j. 

Here a’i = infcai(x, t) and a^, = sup,a,(x, t) for i = 1, 2. 
To obtain the existence Theorem 2.2, we will construct two sequences by means of iteration. 

Let u,, be the solution of the problem 

‘,I-Au-(a,-f)u+b,~~=O, in G, 

au 
< 

av- 
-0, on S, 

,+, 0) = +, T), for xEO, 

and let uO be the solution of the problem 

: 

u, - Au@, -g - c2uo)u + b2u2 = 0, in G, 

au 
-_= 
av 

0, on S, 

u(x, 0) = u(x, q, for xER. 

(24 

(24 

First, [5, Theorem 2.41 and (Hl) imply that ug and uO exist in WP2~‘(G> for p > 1, and 

a’, - 6, 
,. 

~ > 0, 
a2 a2 - c2a^,/b, - 6, 

b,=%’ b, 
b2 

> 0. 

(Note that in (2.1), (2.2), the derivatives are taken in the weak sense and the equations are 
satisfied a.e. in G. All solutions will be interpreted this way unless otherwise stated. For more 
details, see [5,7].) 

For i = 1, 2,. . . , we define ui and ui as the solutions of the following problems (2.3) and 
(2.41, respectively: 

/ aui 
- -Aui - (ai -f- c~_~)u~ + b,uf = 0, 
at 

in G, 

( aui 
-= 
av 

0, on S, 

\Ui(X, 0) = +, T), for xE.R, 

(2.3) 
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and 

I aui 
- - Aui - (a2 -g - c2ui)ui + b,uf = 0, 
at 

in G, 

c aui 
-= 
av 

0, on S, 

\Vi(X, 0) = Ui(X, T), for xEO, 

where S = X! X [O, T) and v is the outnormal vector on S. 
Inductively, from (2.3) and (2.41, by [5, (2.28) and (2.2911, we obtain 

0-c 
a’, - c&!qb,) - 6, a^, 

b, 
GU,G--, 

ii, - c&/b,) - 6, a^, 
b1 

o< 

b, 
<V,<-. 

b, 

(2.4) 

(2.5) 

Moreover, uk and vk are in W,*,‘(G), for p > 1, k = 1, 2,. . . . 

Lemma 2.1. If the hypothesis (Hl) holds, then the sequences (ukj and { v,J satisfy 

uo~u1~u2~ a** au,> .‘.) in G, (2.6) 

and 

vo<vl <v,< *** <v,< ***, in G. (2.7) 

Proof. First we should notice that the comparison lemma [5, Lemma 2.31 can be extended to 
include the case c E L”,(O x (- ~0, 03)). In fact, suppose wi is the solution of the problem 

[w(x, 0) = w(x, T), for x EO, 

for i=l, 2, where CELT(~~X(- 03, ~1). We need to prove that fi >f2, fi E LP(G) for i = 
1, 2, implies w1 > w2 in G. 

Let c,ECm(fiX(-~,~>>, n=1,2 ,..., be periodic in t with period T such that 

c, +c, in LP(G), as n + 0~1. 

Moreover, let win be the solution of problem (2.8) with c replaced by c, for i = 1, 2. Then [5, 
Lemma 2.31 implies that 

Win 2 W2n3 in G, (2.9) 

Now we only need to prove that win + wi a.e. in G as n + ~0, i = 1, 2. But [5, Theorem 2.21 
implies that {win} is uniformly bounded in W’2’1(G) for each i = 1, 2. Hence, using the same 
argument as in the proof of [5, Lemma 3.11, we can readily obtain win + wi a.e. in G as n + ~0 
for i = 1, 2. Therefore, from the inequality (2.91, we obtain w1 > w2. 

We are now ready to prove (2.6) and (2.7). Let w = uO - u,; then w satisfies the inequality 

w, -Aw + [bl(uo+u,) - (al -f) +c,v,]w >O. (2.10) 
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The hypothesis (Hl) and (2.5) imply that 

b,(u,, + or) - (al -f) + cluO 2 6 > 0, in G. 

Then by the above extension of [5, Lemma 2.31, we conclude that w 2 0, i.e., 

u() 2 Ul, in G. (2.11) 

From this we deduce that (ur - uo> satisfies the inequality 

(~1 - uo)t -A@, - ~0) + [W, + ~0) - (~2 -g> + vo](uI - ~0) 2 0, 

in G. The same argument as above implies that u1 >, u. in G. 
By iterating and induction in k, we deduce by the same argument that (2.6) and (2.7) 

hold. •I 

By (2.5)--(2.7) and [5, Theorem 2.41, we obtain the estimates 

11 uk 11 W;J(G) <Rl, II vk 11 wa;J(c) <R,, (2.12) 

where R, and R, are constants independent of k. 
By a similar argument as in [5, Theorem 2.41, taking the limit as i + ~0 in (2.6) and (2.7) and 

using the a priori estimates (2.121, we finally conclude that there exists a solution (u, v) of 
problem (2.1) in WP2p’(G> x WP2,‘(G) and the estimates (2.12) for u and u hold. Hence we have 
proved the following theorem. 

Theorem 2.2. Suppose the hypothesis (Hl) holds. Then the problem (1.1) has a solution in 
WP2,‘(G) X WP2,‘(G) forp > 1 with u, u satisfying 

O<E1<U<Cl, O<E2<U<C2. (2.13) 

Here l i = [Gj - ci(kj/bj) - ai]/bi and Ci = a^Jbi, i = 1, 2 and i fj. Moreover, (u, U) satisfies 

II u II W;J(C) < R,, II LJ II W,J(G) <R,. (2.14) 

Here Ri is a constant determined by II a, II a;,G, i = 1, 2, respectively. 

In order to obtain uniqueness of solution to problem (1.11, we introduce the following 
hypothesis: 

A 

(H2) 
$2 

c~b+cj~<2min{Sl,S2}, fori,j=1,2andi+j. 
2 1 

Theorem 2.3. Let 6i, aj, ci and bi, i = 1, 2, satisfy the hypotheses (HZ) and (H2). Then the 
problem (1.1) has a unique solution (u, U) in WP2,‘(G) X WP2,‘(G) for p > 1 with u, u > 0. 

Proof. We first prove that if (u, U> is a solution of problem (1.1) with u, u > 0, then u and u 
satisfy (2.13). In fact, we can use the same comparison lemma described in the proof of Lemma 
2.1 to prove u. 2 u, and then u. < U. Similarly, we can show uk 2 u and vk < u for all k = 0, 1, 
2 ) . . . . Finally, we obtain the inequalities u < lim, +m~k < Cl and u 2 lim, dgk > e2. 
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Interchanging the role of u and U, we can show by means of symmetry that u > e1 and 
v < c,. 

Suppose that there exist two solutions Cur, uI> and (u2, UJ of problem (1.1) with ui, vi > 0 
for i = 1, 2; then (ul - u2, u1 - uZ> satisfies 

(% - %), -A(% - %) + M u1+ u2) - (a1 -f)l(% - u2) + Vl(~l - u2) 

+ cIu2(vl - ~2) = 0, in G, 

@I - %)t -A(+ - %) + PA u1+ 4 - (a2 - dl(% - 4 + %G+ - 4) 
+ czvz(uI - u2) = 0, in G. 

From these two equations and the periodic property, the following two facts follow: 

(1) b,(u, + u2) - (al -f> + ClVl> 61, b&J, + %) - (a2 -g> +c,u, 2 6,, 

by hypothesis (Hl) and (2.13); 
(2) by the hypothesis (H2) when i = 1, j = 2 and (2.13), we have 

c1u2 + c2v2 < 2 min{ S,, 8,). 

We can readily conclude the following equalities: 

r,;[ I V(u, - ~2) I 2 + I V(q - u2) I’] dx df + /,[ S,(u, - ~2)~ + S,(u, - ~2)~] dx df 

-2 mi+,, S,}jcl( u1 - u2) l l( v1 - v2) l dx dt 6 0. 

Hence we finally obtain 

u1= u2, vq = v2, in G. 0 

Having proved the existence and uniqueness of problem (1.11, we can now prove the 
existence of an optimal control. 

Theorem 2.4. Let i3i and ai, i = 1, 2, satisfy the hypothesis (Hl). Then an optimal control does 
exist for problem (l.l)-(1.3). 

Proof. From (2.14), it follows that 

SUP J(f, g) < a- 
(f,g)-&T 

Let (f,, g,) be a maximizing sequence. Then, there exists a subsequence, again denoted as f, 
for convenience, so that 

f, +f*, g, +g*, weakly in L2(G) with (f”, g*) EB~,~, 

and 

Qf,Y 8,) + u*, %(f,7 g,) + u*, strongly in w;,‘(G) and weakly in WP2,‘(G). 
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Since 

I U nt -Au, - u&z, -fn) - blu, - qv,] = 0, in G, 

V nf -Au,-~,[(a~-g,) -b2v,-czu,] =O, in G, 

i 

au, au, -=-= 
av al, 

0, 

(u,(x, 0) = u,(x, T) and u,(x, 0) = u,(x, T), x Eon, 

we have 

/{ 
-Ll& + vu, * vqb - (a1 -f,)u,+ + b,z& + clu,v,~} dx dt = 0 

G 

and 

/I -v,~$, + Vu,. 04 - (a2 -g,)u& + b,v,2+ + c~u,v,~} dx dt = 0, 

for an; $ E W’,‘(G) n L”(G) with 4(x, T) = 4(x, 0). 
equalities abode, and noting that 

P assing to the limits as R + CO in the two 

/cf,u,,6 dx dt + Icf*u*d, dx dt and /cg,v,,+ dx dt + jCg*Ir*$ dx dt, 

for all 4 E L”(G), we find that (u”, v*> is a weak solution of (1.1) with (f, g) replaced by 
(f*, g*>. Since (u”, v*> E W,2,‘(G) X Wp2~‘(G>, the uniqueness of positive solution of problem 
(1.1) (Theorem 2.3) implies that 

u* = u*(f*, g*) and v* = v*(f*, g*). 

Moreover, we have 

J(f*, g*) = / { K,u*f * + K2v*g* -M, f *2 - M2g*2} dx dt 
G 

+ K,v,g,] dx dt - lim inf 
/ 

{M,f,’ + M2gi} dx dt 
n-m G 

= lim supJ(f*, g*) = sup J(f, g). 
r2-m (fX)=%,T 

Hence (f *, g*) is an optimal control in B,,, and this completes the proof. q 

3. Derivation of the optimal system 

In this section we will find some sufficient conditions on Mi and Ki which enable the 
characterization of an optimal control in terms of a solution of a related parabolic system. 

Lemma 3.1. Suppose that ai and ai, i = 1, 2, satisfy the conditions (Hl) and (H2); then we have 

u(f+ Pf, g + PS) - u(f, g) 

P 
+ 5, weakly in W$l(G), (3.1) 
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and 

v(f+Pf, g+PE) -v(f, g) 

P 
-+ 7, weakly in W.,‘(G), P-2) 

as P + 0 for some subsequences, for any given (f, g) E B6,=, and (f, g) E L”(G) such that 
(f + Pf, g + Pg) E B,,,. Furthermore, (5, 17) is a solution of the problem 

I 

6,-A&- [a,-f-2b,u(f, g)-c,v(f, g)]5+c1qu= -fu(f, g), in G, 

x 

ay- 
- 0, on S, 

~(~~ 0) =5(x, T), forallxE0, 

(3.3) 

I 

r,-AT - [a2 -g-2b,v(fY g)-%u(f, g)]q+c25v= -Ev(f, g), in G, 

arl -= 
av 

0, on S, 

77(x, 0) =77(x, T), forallxEL2. 

For the uniqueness of solution to problem (3.31, see Remark 3.2 

Proof. Let 

5 = “(f +PJ7 g+PS) -u(f, g) 
P 

P 
7 

77 = v(f +pJ;, g+Pg) -v(f, g) . 
P 

P 
> 

then by (1.1) and (1.2), (tp, nP> satisfies 

tpt - A5, - (a, -f )$ + b,(u + u>$ + W$ + clurlp = -6% in G, (3 4 

qpr - AQ - (a2 - g>qp + b,(C + v)qP + czUqP + c,v& = -gV, in G, (3.5) 

a&3 $3 _=-= 
av av 

0, on S, 

5p(-v 0) =5&, T) and ~&,O)=~&, T), for all xE0. 

Here, we denote U = u( f + Pf, g + pg), E = v( f + pf, g + pS>. Since tP and np E Wp2?G) are 
periodic with period T, we can easily prove by approximation that 

dx dt=/E A&, dx dt=j-a Aqp dx dt=O. 
G ” G @ 

(3.6) 

In fact, the equalities are all proved similarly, and we will only prove one of them here. Let {r,} 
be a sequence of C”(G)-periodic functions in t with period T, and ar,/av = 0 for all 
(x, t> E C&2 x [O, T), m = 1, 2,. . . , such that 

r m,f + 5&t? Ar,,, + Q,, in L2(G), as m + w. 
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(Since tp E W,**‘(G), the existence of such {Y,} is given in [4, Chapter 71.) Then we have 

1 d 
/06P,tAtP dx dt = ,jmm / Y,,~A~, dx dt = lim / - z dt I Vr, I * dx dt = 0. 

G m+m G 

Here the second equality is due to the divergence theorem, the last one is due to the periodic 
property of rm. 

Multiplying (3.41, (3.5) by tp, qP respectively and integrating both on G, we obtain 

/,I V$ I * dx dt + /G[bl(E + u) +c,Z - (aI -f)]sb” dx dt + / c,u~~~~ dx dt 
G 

=- 
/ 

fit, dx dt 
G 

and 

/,I Vqp I * dx dt + /,[ b,(Z + u) + c,U - (u2 -g)]qpb2 dx dt + / C,UT+& dx dt 
G 

=- 
/ G 

gi?qp dx dt. 

From Theorem 2.2 and (Hl), we find 

b,(E + U) - (Ui -f) > 6 1, b,(E + U) - (a* -g> > 6,. 

Moreover, by (H2) when i = 1, j = 2, we have 

crzc + c2u < 2 min{6,, S,}. 

Consequently we obtain the inequality 

(3.7) 

(3-S) 

/ [ 1 V$ I * + I Vqp I * + 6,’ + qi] dx dt < const., 
G 

(3.9) 
where the constant is independent of p. 

By moving all the terms of (3.4) except tpt - A[, to the right-hand side and using (3.91, we 
obtain the following inequality by means of parabolic estimates: 

II 5p II W,z,‘(G) G c, (3.10) 

where the constant C is independent of p. Similarly, from (3.5) and (3.9), we have 

II 76 11 W;,‘(G) < c, (3.11) 

where C is a constant which is independent of p. 
Consequently there exist subsequences (for convenience denoted again by $ and qp), such 

that 

strongly in W$“(G> and weakly in W?‘(G). 
Moreover, taking limits as p + 00 in (3.4) and (3.51, we conclude that the limit (5, 77) satisfies 

(3.3). This completes the proof of the lemma. •I 
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Remark 3.2. Under the same hypotheses as Lemma 3.1, we can prove as in Theorem 2.3 that 
problem (3.3) has only one solution, which is in W~‘(G> X W?‘(G). Therefore we can actually 
conclude that (3.1) and (3.2) hold for the full sequence. This uniqueness proof under the 
hypotheses (Hl) and (H2) is nearly the same as in Theorem 2.3, and will thus be omitted here. 

Theorem 3.3. Let p > 1 be any positive number. Suppose a,(x, t), i = 1, 2, S satisfy the hypotheses 
(Hl) and (H2), and the positive constants Ki, Mi, i = 1, 2, satisfy the hypotheses 

W) Mi 2 
K,w,a,(x, t> 

2bi6, 
, for i=l,2. 

For any optimal control (f, g> E BS,T, let (u, v> be the solution of problem (1.1) with 

0 <El < u < c,, O<E2<V<C2, 

and suppose ( z, w> is a solution of 

tz,+Az+ [2ub,+c,v-a,+f]z-c,vw= -K,f, in G, 

w, + Aw - [2vb, + c2u - a2 + g] w - cluz = -K,g, in G, 

( az aw 
-=-_= 
av av 

0, on S, 

(z(x, 0) =z(x, T) and w(x, 0) = w(x, T), forx Eon, 

satisfying 

<z<K,, - 
ClKl4 

6,b, + c@, 
<w<K,. 

Then the optimal control (f, g) satisfies 

f= g(KI -z) and g = g(K,-w), in G. 
1 2 

(3.12) 

(3.13) 

(3.14) 

Here u, v, z and w are in WP2,1(G> and l i, Ci, i = 1, 2, are defined by (2.13). 

Proof. Theorem 2.4 implies that the conditions of this theorem suffice to insure the existence of 
an optimal control in B,,,. 

Let (f, g) EBB,= be an optimal control, i.e., there exists a solution (u, v> of the problem 
(1.1) for <f, g) such that 

J(f, g) = SUP J(f’, g’). 
(f’X’)EB&T 
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For arbitrary f: g’ E L”,(G), E > 0, set 

J’=f, = 

1 

f? if f G 6, - E II fellm,~, 
0, elsewhere; 

similarly we define jj = jj,. 
For /3 > 0 small enough (say p < E), such that (f + Pf, g + pjj) E B,,,, the optimality of 

(f, g) implies that 

J(f, g) hqf +Pf, g+m), 

that is, 

(3.15) 

/( K,uf+K,ug-M,f2-M2g2) dx dt 
G 

2 G K,u f +PL g+m)(f +Pf) +K,u(f +PJ;, g+PE) -M,(f +pj)’ /[ ( 

-M2( g + Pg)‘] dx dt. 

Dividing by p and letting p + 0, we obtain from Lemma 3.1, 

/ [ K$f + K,uf+ K,Tg + K2ujj - 2M, ff - 2M,gg] dx dt < 0. 
G 

(3.16) 

Since (z, w) is a solution of problem (3.12) satisfying (3.13), we deduce from (3.16), (3.12), (3.3) 
and integrating by parts that 

/ (f,[(K, -z)u - 2M,f] +&[(K, - w)u - 2M,g]) dx dt < 0. 
G 

Now, letting 2 = 0, E + O+, and using the same argument as in the proof of [S, Theorem 3.31, 
we deduce from hypothesis (H3) and the above inequality that 

K,-2 
f = ~u(x, t), in G. 

1 

Similarly, letting f= 0, we obtain 

K,-W 
g= KI!(x, t), in G. 

This completes the proof of the theorem. 0 

Remark 3.4. Suppose (f, g) E B,,, is any optimal control, we see from the above theorem that 
if (u, U) and (z, w) are the unique solutions of problems (1.1) and (3.12), respectively, then 
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(u, U, z, w) is a solution of the following optimal system: 

u,-Au-a++ (bl+~]u2+cluu=0, 

u,-Au-a2u+ (b2+qu2+c2uu=o, 

in G, 

in G, 

z, + AZ - [2b,u - a, + clu] z + 
K -4’ 

2MI 
u - c2uw = 0, in G, 

w,+Aw- [2b,u-a,+c,u]w+ 
w2 - WI2 

2M2 

u - CIUZ = 0, in G, 

au a~ az aw 
-=- =-c-c 
av av av av 

0, on S, 

u(x, 0) = u(x, T), u(x, 0) = u(x, T), XEO, 

z(x, 0) =z(.G q, w(x, 0) = w(x, q, XEn. 

(3.17) 

Thus if (3.17) can be solved for (u, U, w, z), then the optimal control (f, g> can be found by 
using (3.14). 

We next prove problem (3.12) indeed has a unique solution satisfying (3.13). 

Theorem 3.5. Under the assumptions of Theorem 3.3, problem (3.12) has a unique solution 
(z, w) E WP2,‘(G> X WP2*‘(G> with 

-D,E - 
CzK2a^2 

6,b, + cl&, 
<z<K, and -D,= - G‘% 

S,b, + c24 
<W< K2* 

Here (u, v) satisfies (1.1) and (2.13). 

Proof. We can easily prove that C-D,, -D,>, (K,, K,) are the lower solution and the upper 
solution of problem (3.121, respectively, in the region -D, < z < K,, -D, < w < K,, i.e., 

(-DI),+A(-D,) + [2b,u +c,v -a, +f]D, -c2uK2> -K,f, in G, 

( -D2)t + A( -D2) + [2b,u + c2u - a2 +g] D, - cluK, > -K,g, in G, 

K,,+AK,-[2b,u+c,u-a,+f]K,-c,u(-D,)< -K,f, in G, 

K,, + AK, - [2b,u + c2u - a2 +g] K, - cIu( -DI) < -K,g, in G. 

To prove the existence of solution for (3.12), we first define 

(~0, a,) = (-D,, -4), (p-1, q-1) = (K,, K,), 
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and pi, qi, i = 1, 2, 3,. . . , to be solutions of 

i 

-pit - spi + [2b iU--al +f+C1U]Pi-z=Klf-C2U4i-1, in G, 

-4it-A4i+ [2b,~-a,+g+c,u]qi_2=K2g-~~~Pi-~, in G, 

I aPi ‘4i _=_= 
av av 

0, 

( I( ’ > l( ’ 1 p. x 0 =p. x T and qi(X, 0) =qi(X, T), 

on S, 

XEK.2. 

(3.18) 

The existence of solutions for the scalar problems (3.18) are insured by [5, Theorem 2.21. In 
fact, if we denote &x, s) = 4(x, -s> for any function 4(x, t), then jji satisfies the parabolic 
problem 

fii, - AjJ + [2b ,fi -a’, +F+ c,E; j5-i =K,f- c2tlq’i_l, 1 in 0 x [ -T, 01, 

I Gi -= 
av 

0, on S=dOX [-T, 01, 

I ( b x, -T) =fi(x, O), for all xEfl. 

[.5, Theorem 2.21 implies that the above parabolic problem has a unique solution. Therefore 
problem (3.18) has a unique solution pi(x, s) =~i(X, -s>. The same argument applies to qi. 

Given a positive number R, we define two functions 

h,(p,q)=K,f-c,uq- [2b+-q+f+4~+R~, (3.19) 

h2( p, q) = K,g - clup - [2b,u - a2 + g + c2u]q + Rq. (3.20) 

We choose R to be sufficiently large such that h, and h, are increasing in p and q respectively 
in the domain l 1 <u <C,, l 2 <u <C,, -D, <p <K, and -D <q <K,. Moreover, it is 
obvious that h, and h, are decreasing in q and p respectively in the above domain. 

Using h, and h,, we can rewrite (3.18) as 

‘-pit-Api+Rpi=hl(~i-2, qi-l), in G, 

-qit-Aqi+Rqi=h2(qi-2, Pi-17) in G, 

( aPi a4i -c-c 
av av 

0, on S, 

pi(x, 0) =pi(x, T) and qi(X> 0) =qi(X, T), X Efi* \ 

(3.18’) 

From the monotone properties of h, and h,, the maximum principle of linear parabolic 
equations and the fact that (po, qJ, ( p_ 1, q_ 1) are lower and upper solutions, we can prove by 
means of (3.18’) and induction that 

pO~p2~ “’ ~p2i~ “’ G&i+,< ... ~P1~P-1 

and 
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where C is a constant independent of i. Consequently, (3.18’) implies that the limits 

lim q2r, 
r-m 

lim p2r, 
r-+m 

lim pzr- 1 
r-+m 

exist in Wp2,1(G), say q.+., q*, p.+ and p*, respectively. Moreover, we have q.+ G q* and 
p * <p*. It remains to prove that q* = q* and p * =p*. Taking the limit as i + CO in (3.189, we 
find (q *, q*, p *, p*) satisfies the problem 

-P.+~ -Ap, + [2b,u -a, +f+c,u]~, +C,W* =&f, in G, 

-p:’ - Ap” + [2b ru -a, +f+c,u]p* +c+J* =Krf, in G, 

-qet-Aq.+ + [2b,u-a,+g+c,u]q, +ciuP*=K~g, in G, 

-4; -Aq* + [2b 2~ - a2 + g + c2u] q* + cluP * = K,g, in G, 

a~, a~* a4* aq* 
(3.21) 

-=- 

aV 

=_=-=(), 
av av av 

on S, 

p*(x, 0) =p*(x, T), P*(x, 0) =P*(-? q, 4*(x7 0) =q*(x, T), 

4*(x, 0) =4*(-G q, XEf2. 

Eq. (3.21) consists of actually two separate systems, each with two equations. Moreover, 
(p *, q*) and (p*, q* ) satisfy the same system of two equations. From hypotheses (Hl) and 
(H2) and the fact 

2b,u - a, +f+ cIv > 6, + clv > S,, 2b,v-a,+g+c,u>S,+c,u>S,, 

we can prove as in Theorem 2.3 that 

(P*, 4*) = (P*, cl*>. 

Hence, we have proved the existence part. The uniqueness of solution in the prescribed range 
is proved by using the property that ( -D,, -D,) and (K,, K2) are lower and upper solutions 
of problem (3.18) and by showing 

P2r GZ GP2r+l and q2r<w<q2r+l, for r= 1, 2 ,..., 

with similar arguments. q 

4. Solution of the optimality system by monotone scheme 

In this section we provide an approximation for the solution (u, v, z, w) of problem (3.17). 
We construct monotone sequences converging from above and below, providing upper and 
lower estimates for (u, v, z, w). In the case when the limits of upper and lower iterates agree, 
then the optimal control problem is completely solved. That is, the optimal control is given by 



F. He et al. /Journal of Computational and Applied Mathematics 52 (1994) 199-217 213 

(3.14) in terms of (u, u, z, w), which is calculated iteratively. We will need the following 
additional conditions: 

FY 
EiKi 
~ <iSi for i, j=l, 2 and i#j, 
2Mi 

(H5) 
cjtjbi K”6, 
h<=, for i, j=l,2 and i#j, 

J J 1 

where Ed, E* are positive numbers defined by (2.13). 

Remark 4.1. Under the additional conditions (H4) and (H5), together with (Hl)-(H3), we can 

prove that tug, uO, po, qo) = (cl, l 2, 0, 0) is a lower solution of (3.17). This implies that the 
proofs of Theorems 3.3 and 3.5 still hold if we replace (-D,, -D,) with (0, 0). Then we can 
use the same arguments to show that the conclusions of Theorems 3.3 and 3.5 are still true, 
Consequently, there exists one solution (u, u, z, w) of problem (3.14) such that the functions u, 
u, z and w are positive. 

Assume (Hl)-(H5); let 

(uo, UlJ, PO, 40) = (El> E2, 030) and (upI, x1, P-~, cl) = (Cl, C2, KIT K2). 

(Recall the definition of C, and C, in (2.131.) Given a positive number Q, we define four 
functions as follows: 

h,(p, ~1, ~2, u> =~[a, - 2b,u, -VI + 
(6 -P12u + Qp 

2M 2 3 
1 

h&L Ul, u2, u) = q[ a2 - 2b,u, - c2u] + 
(K2-d2u +Qq 

[ ,-[bl+$)+&~~,.)., 

> 

h,(u, u, P) =u a 

h&Y u, 4) = u a [ 2-(b2+$~v+~-c2u]+Qi. 

Obviously we can choose Q large enough such that hi, i = 1, 2, 3, 4, have the following 

properties. 
(Sl) h, is increasing in p for p E [po, P_~] with fixed ul, u2 E [uo, u_~] and u E Lug, u-,1; 

moreover, h, is increasing in u2 but decreasing in ul, u with the other variables fixed in the 
same intervals. 

(S2) The properties of h, in terms of q, L’~, u2, u are the same as h, in terms of p, ul, u2, U, 

respectively. 
(S3) h, is increasing in u for u E [uo, u_ 1 ] with fixed p E[P~, p_,] and u E[u~, u_,]; 

moreover, it is increasing in p and decreasing in u with the other variables fixed in the same 
intervals. 
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(S4) The properties of h, in terms of U, U, 4 are the same as h3 in terms of u, u, P, 

respectively. 
We can readily verify that (uO, uO, pO, q,,) and (U-I, u-l7 p-1, q-1) satisfy 

u-,~ -Au_, + Qu_, a h&c,, ~0, p-l), 

clt -Au_, + Qc, a h,(u_,, ~0, q-l), 
P-,~ +AP_, - QP-, G -hl(p-1, ~0, u-1, ~0) +woqo> 

q_lr +Aq_, - Qq-1 G -h&-1, ~0, u-1, ~0) +CIUOPO> 

pot +AP, - Qpo a -hl(po> u-1, ~0, u-1) +cs-lq-1, 

qot +Aq, - Qso a -h,(q,, u-1, ~0, u-1) +CIU-IP-I, 

uot -Au, + Quo G h&q,, u-1, PO), 

~~t-A~o+Q~o~h,(uo, u-1, qo), 

in G, 

in G, 

in G, 

in G, 

in G, 

in G, 

in G, 

in G. 

(4.1) 
(4.2) 
(4.3) 
(4.4) 
(4.5) 
(4.6) 
V-7) 
(44 

Inequalities (4.1M4.4) can be readily verified using (Hl). We next show that (4.5) holds. Since 
p. = 0, proving (4.5) is equivalent to proving the inequality 

From (Hl), we have 

Thus, in order to prove (4.51, we only need to show 

4% c2a24 

M,K, ’ b, ’ 

which is our hypothesis (H5). Inequality (4.6) is completely analogous to (4.5). Similarly, using 
(Hl) and (H4), we can prove (4.7) and (4.8). 

Now, we inductively define sequences of the functions ui, ui, pi and qi for i = 1, 2,. . . , as 
solutions of the following scalar problems: 

~i~-Aui + Qui= h3(Ui_2, ‘i-1, 1)i-2), in G’ 

&Li 
PC 

dV 
0, on S, 

z$(X, 0) = +, T), for xcfi, 

iui, -Aq + Qq = h,(q,, ui-1, Cl-d, in G, 

on S, 

P-9) 

(4.10) 
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Pir+APi-QPi= -hl(Pi-z> ui-1, ui-2, vi-l) +czui-lqi-l> in G, 

aPi 

TG- 
-0, on S, 

Pi(xT O) =Pi(x? T)7 XEfl, 

(4it +Aqi - Qqi = -h2(qi-z, ui-1, Ui_2, Ui_1) + C1Ui_lpi_l, in G, 

‘i 
hi 
-iL- -0, 

qi(x7 O) =4iCxT T)T 

on s, 

for x Ea. 

(4.11) 

(4.12) 

The existence of solutions follows from [5, Theorem 2.21. By using the induction argument, the 
monotone properties of h,, i = 1, 2, 3, 4, and the maximum principle, we can show that 

UO~(2~ “’ ~“2i~ “’ ~“2i_1~ “’ ~‘u1~‘_1, 

Uo~U2~ “’ ~U2i~ “’ ~U2i-1~ ‘.. ~~ul~“-l, 

PO<P2< **’ <P2i< ‘*’ <P2i_l< *** GP1GP-I> 
(4.13) 

qo~q2~ “’ ~q2i~ “’ <q2i-_1< “. ~q41~4-1’ 

In fact, we first observe that uO < u_* in G. From (4.1) and (4.9), we verify that 

(u-1 - u,)t - A@-, - ~1) + Qk, -4 
ah&I, uo, P-J -@L,, uo, P-J = 0, in G. (4.14) 

Thus by [5, Lemma 2.31, we have 

u-1 > u1, in G. (4.15) 

By the same reason we can obtain 

u,<u,<u,<u_,, U,<U,<U,<U_,, PrJ <P2 <PI <P-l, 4o<q2<41 G4-1. 

(4.16) 

Suppose we have proved 

uo<u2< ..’ <i&<L+__l< *** <Ul<U_,, 

LJo<u2< *** <U2r<U2r_l< *** <u,<u_,, 

Po<<p2< *.* GP2r<P2r-1 G .*. <PI <P-1, 
qo<q2< .** <q2rGq&_1< *** <41<4_*. 

From (4.9), we obtain 

(U 2r+l - u2r)r -4u2,+1 -u2r) + Q(u2r+1-~2r) 

= w2r-17 U2r7 P2r-1) - w%-2, UZr-17 P2r-2) 2 0, 

where the last inequality is a consequence of (S3) and (4.17). 
Hence, [5, Lemma 2.31 implies that 

U 2r+l w42r, in G. 

(4.17) 

(4.18) 
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Similarly, we have 

v2r+l 2 v2r, in G. 

Moreover, from (4.9), (4.17), (4.19) and (S3), we easily deduce that 

(4.19) 

(U2r - u 2r+2)r - 4~2, - ~2r+2) + Q(u2, - ~2rt2) G 0, in G, 

(u 2r+l -~2r-l)t-A(~2r+~-~2r-l)+Q(~~r+1-~2r-l)~’~ inG3 

(u 2rt2 - +r+Jt - A(u,,+, - u2r+1) + Q(u2r+2 - u2r+l) G 0, in G. 

Hence, [5, Lemma 2.31 again implies that 

U2r G U2r+2 G U2r+l =s U2r-13 in G. (4.20) 

Moreover, we can deduce the same inequalities as in (4.20) for v, p, 4. (For more details on 
similar procedures, see [lo, Chapter 51.1 Hence we have the following theorem. 

Theorem 4.2. Assume hypotheses (Hl)-(H5). The sequences of functions ui, Vi, pi and qi defined 
above satisfy the order relation (4.17) for all positive integer r and (x, t) E G. Moreouer, any 
solution (u, v, z, w) of problem (3.17) with the properties 

U()<U<U_l, v,<u<v_,, PO <z <P-1, 4oGwGq-,, in G, (4.21) 

must satisfy the inequalities 

u2i<” <“2i_l, v2i < v < v2i_1, P2iGzGP2i-1T q2iGwGq2i-17 in G. (4.22) 

for any positive integer i. 

Proof. It remains only to prove the second part of this theorem. From (4.91, (4.21) and the 
monotone property (S31, we have 

(U - u~)~ - A(u -u*) + Q(u - ul) = h,(u, v, p) - h,(u_,, uo, P_~) G 0, in G. 

Thus [5, Lemma 2.31 implies that u < u1 in G. As above, we can use induction and the 
monotone properties of hi, i = 1, 2, 3, 4, to prove the other inequalities of (4.22). 0 

Remark 4.3. From Theorems 3.5 and 4.2, we find that if 

lim u2i = !@mu2i_l, lim u2i = lim u 
r-m r-rm 

rim 2r-17 lim p2i = !&P2i- 1, 
r+m 

lim q2i = ,ll-qzi _ 1, 
r-m 

then the optimal control problem described in Section 1 is completely solved. This had been 
explained in the beginning of this section (cf. also [lo, Chapter 51). 

5. Example 

In problems (1.1) and (1.2), let fi = {(x, y) I x2 + y2 G l] and G =0 X [O, 27~1. Define 
a, = [~(x2+y2)]cos t + 16, b, =4, c1 =0.4, a,=sin XT sin y7~ sin t + 25, b,=6, c,=O.5, 
K, = 8, K, = 7, M, = 4, M2 = 5. We thus have ki, = 16 - i, a^, = 16 + i, a’, = 24 and a^, = 26. 
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Choosing 6 = (a,, 6,) = (11, 171, we can easily verify that hypotheses (Hl)-(H5) are satisfied. 
For example, considering hypothesis (H4), with i = 1, j = 2, we have 

a1 - Cl(a^,/b) - 61 
El = 

bl 

= g - 0.4 < 2; 

thus, 
EiKi 
-<2<6,=11, 
2W 

i.e., (H3) holds for i = 1 and j = 2. Similarly, (H4) holds for i = 2 and j = 1. 

Remark 5.1. Let A,(x, t) and A,(x, t) be given continuous t-periodic functions in G = J2 X 

(-00, m), where fi is any bounded domain with C2 boundary. Consider problem (l.l), (1.2) 
with fixed ci, bi, Mi and Ki for i = 1, 2. From the previous example, we see that we can always 
find a large enough constant B and 6 such that if we define a, =A; + B, i = 1, 2, then the 
hypotheses (Hl)--(H4) are readily satisfied. Consequently, our results are applicable to a large 
family of problems. 
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