
J o u R , , ,  oF 
COMPUTATIONAL AND 
APPLIED MATHEMATICS 

ELSEVIER Journal of Computational and Applied Mathematics 63 (1995) 179-199 

Combined  finite element-f inite  volume solution of compressible 
flow I 

Miloslav Feistauer*,  Jifi Felcman,  M/tria Luk~ov~-Medv id ' ov / t  

Faculty of Mathematics and Physics, Charles University, Malostranskb ni~m. 25, 118 O0 Prague 1, Czech Republic 

Received 31 October 1994; revised 5 April 1995 

Abstract 

The paper is concerned with numerical modelling of inviscid as well as viscous gas flow. The method is based on 
upwind flux vector splitting finite volume schemes on various types of unstructured grids. In the case of viscous flow we 
apply a combined method using the finite volume scheme for the discretization of inviscid first order terms of the system 
and the finite element approximation of viscous dissipative terms. Special attention is paid to higher order schemes and 
suitable adaptive strategy for a precise resolution of shock waves. Moreover, we summarize the convergence results 
obtained for a model nonlinear scalar conservation law equation with a diffusion term. Some computational results are 
presented. In this paper only two-dimensional flow is treated, but the extension to the three-dimensional case is possible. 

Keywords: Compressible flow; Euler equations; Navier-Stokes equations; Finite volume method; Upwind flux vector 
splitting schemes of Godunov type; Adaptive refinement; Shock indicator; MUSCL higher order schemes; Finite element 
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1. Formulation of the problem 

We consider gas flow in a space-time cylinder Qr = f2 x (0, T ), where f2 c ~2 is a bounded 
domain representing the region occupied by the fluid and T > 0. By ~ and ~3t2 we denote the 
closure and boundary of f2, respectively. 

The complete system of viscous compressible flow consisting of the continuity equation, 
Navier-Stokes equations and energy equation can be written in the form 

t3w ~ ~J~(w) ~, ~R,(w, Vw) 
0--t- + - in Qr. (1.1) 

i: 1 ~xi i=1 c~xi 
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Here 

W = (W1, W2, W3, W4) T = (p, pVl,  pv2, e) T , 

w = w ( x , t ) ,  x e f 2 ,  t 6 ( O , T ) ,  

fi(w) = (pvi,pvivl + C~ilp, pviv2 + •i2P, (e + p)vi) T, 

Ri(w, Vw) = (O, l~i l ,  "~i2, "Ci l V l + "fi2v2 -4- kOO / Oxi ) T, 

"cij = 2divvf i j  + #~-~xj + 8xi} i,j = 1,2. 

From thermodynamics we have 

P = ( 7  - -  1 ) ( e  -½plvlZ), e = p(e~O + ½1v12). 

(1.2) 

(1.3) 

We use the standard notation: t - - t i m e ,  Xl ,X2--Car tes ian  coordinates in [~2, p - - d e n s i t y ,  
v = (v~, v2) - -ve loc i ty  vector with components  vi in the directions xi, i = 1, 2, p - -p re s su re ,  0 -  ab- 
solute temperature, e - - t o t a l  energy, z u - - c o m p o n e n t s  of the viscous part of the stress tensor, 
6 u -  Kronecker  delta, 7 > 1 - - P o i s s o n  adiabatic constant, cv - -  specific heat at constant volume, 
k - - h e a t  conductivity, 2, ~ - -  viscosity coefficients. We assume that cv, k,/~ are positive constants 
and 2 = - -~p. We neglect outer volume force. The functionsJ~ are called inviscid (Euler) fluxes and 
are defined in the set D = {(Wl, . . . ,  w4) e [~4; wl > 0}. The viscous terms R~ are obviously defined 
in D × I~ s. (Due to physical reasons it is also suitable to require p > 0.) 

System (1.1), (1.3) is equipped with the initial conditions 

w(x,O) = w°(x), x e f2 (1.4) 

(which means that at time t = 0 we prescribe, e.g., p, vl, 122 and 0) and boundary  conditions: The 
boundary  0f2 is divided into several disjoint parts. By FI, Fo and Fw we denote inlet, outlet and 
impermeable walls, respectively, and assume that 

p = p*, vi = v~', i = 1,2, 0 = 0* on Y~, 

~0 
v i = 0 ,  i = 1 , 2 ,  c 3 n - 0  o n F w ,  (1.5) 

2 t30 
"cunl = O, j = 1, 2, - -  = 0 on Fo. 

i= 1 ~n 

Here 9/9n denotes the derivative in the direction of unit outer normal n = (nl, n2) T to  dr2; w °, p*, 
v* and 0* are given functions. 

In the solution of a cascade flow problem, ~ is one period of the cascade with 0~2 formed by the 
inlet F~, outlet Fo, impermeable profile Fw and two piecewise linear artificial cuts F -  and F ÷ such 
that 

F + = {(X1,X 2 -~- T); (X1 ,X2)~  r - } ,  (1.6) 
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where z > 0 is the width of one period of the cascade in the x 2 direction. On F ± we consider the 
periodicity condition 

W(Xl,X2 + z) = W(Xl,X2), (xl ,xz) e F - .  (1.7) 

Let us note that nothing is known about the existence and uniqueness of the solution of problem 
(1.1), (1.3)-(1.5) (and eventually (1.7)). Some solvability results for system (1.1), (1.3) were obtained 
either for small data or on a very small time interval under simple Dirichlet boundary conditions 
(for reference, see e.g., [5, Par. 8.10]). Recently, the global solvability of viscous compressible 
homoentropic  flow (when the energy equation is replaced by the relation p = p(p)) has been proved 
under the Dirichlet boundary conditions on ~3f2 (see [15]). 

We do not take care of the lack of theoretical results and deal with the numerical solution of the 
above problem. Since the viscosity p and heat conductivity k are small, we treat the diffusion terms 
on the right-hand side of (1.1) as a perturbation of the inviscid Euler system and conclude that 
a good method for the solution of viscous flow should be based on a sufficiently robust scheme for 
inviscid flow simulation. Therefore, we will split the complete system (1.1) into inviscid and viscous 
parts: 

£ Ofi(w) 
~--~- + - -  = 0, (1.8) 

i = 1 ~Xi 

8w = ~ OR,(w, Vw) (1.9) 
~t  i= 1 ~Xi 

and discretize them separately. First we will pay attention to the inviscid flow problem. 

2. Discretization of the inviscid system (1.8) 

2.1. Properties of  system (1.8) 

Let us use the following notation: 

2 

= 2 . , f , (w) .  
' = 1  

Ai(w) = d fi(w)/dw, 
2 

P(w,n) = d~(w,n) /dw = Y. ni/~ai(W), 
i = 1  

w e D ,  n = ( n l , n z )  E[~2. 

(2.1) 

(~(w, n) is the flux of the quantity w in the direction n, Ai and P are the Jacobi matrices of the 
mappings j] and ~.) System (1.8) has the following properties: 

(1) It is hyperbolic, which means that the matrix P(w,n) has real eigenvalues 2i = 2~(w,n), 
i = 1,2, 3,4, and is diagonalizable: there exists a nonsingular matrix 7/- = -~(w,n) such that 

P = TDY -1, f13 = diag(21 . . . . .  24)  
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(• = diagonal  matr ix with 21, . . . ,  24 on its diagonal). 
(2) System (1.8) is rotationally invariant: Denot ing ( 000 

= •(n) = nl n~ 0 
- - n 2  nl 0 ' 

0 0 1 

n = (nl ,nz) ,  Inl = 1, 

we have 

~' (w,n)  = Q -  lfl(QW), P(w,n) = Q - 1 N I ( Q w ) Q .  

Let us note  that  the t ransformat ion of the Cartesian coordinates of the form 

= + t ~ ,  
X2 - - n 2  n l  x2  

(2.2) 

(2.3) 

(2.4) 

where n = (nl, n2) is a unit  vector and 6 e 0~ 2, yields a new state vector 

q = Q w  = ( p , p ~ , p f ,  e) T, 
(2.5) 

/~ = v l n  1 + v 2 n 2 ,  /~ = - -  Vl / l  2 -q- v 2 n l ,  

satisfying the Euler system 

Oq ~ ~f~(q) 
d t  + - 0. (2.6) 

i= 1 ~Yi 

(3) The fluxes fi and ~ are homogeneous functions of order 1, which implies that  

f i (w) = A i (w)w,  ~ ( w , n )  = P ( w , n ) w  (2.7) 

(cf. [5, Par. 7.2.114, 7.3.26]). 
Concerning the theory and basic numerical  methods  for nonlinear  hyperbolic systems we refer 

the reader to an excellent m o n o g r a p h  [11]. See also [5, Chap. 7]. 

2.2. Finite volume method 

The above properties allow us to construct  efficient numerical schemes for the solution of 
inviscid flow. We will carry out  the discretization of system (1.8) with the use of the finite volume 
me thod  (FVM) which is now very popular  because of its flexibility and applicability and because it 
reflects well some impor tan t  characteristic features of compressible flow. We proceed in the 
following way: 

Every componen t  of c~f2 is approximated  by a piecewise linear curve so that  the domain  t2 can be 
replaced by a polygonal  domain  Oh with 

~'~h = I"lh k-) l-'oh k") FWh k") I ' -  w E +  • (2.8) 
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Here F,h, Fob, Fwh are parts of dOh approximat ing  FI, Fo, Fw. We assume that  the corners of dOh 
are elements of dO. By ~h = {Di}~s we denote  a part i t ion of f], into a finite number  of closed 
polygons so that  their interiors are mutual ly  disjoint and 

(2h = U Di. (2.9) 

(J is a suitable index set of nonnegat ive integers.) 
The so-called finite volumes Di are chosen as triangles, quadrilaterals or dual finite volumes over 

a tr iangular mesh Yh = {T~}~t = a t r iangulat ion of Oh with usual properties used in the finite 
element method.  (See, e.g., [3,1.) In the latter case, denot ing by ah = {Pj}j~j the set of all vertices of 
all triangles T ~ ~--h, we associate each Pi ~ ~rh with a dual finite volume D~ constructed in the 
following way: Join the centre of gravity of every triangle T ~ J-h, containing the vertex Pi, with the 
centre of every side of T containing P/. If Pi ~ trh ~ dOh, then we complete  the obtained contour  by 
the straight segments joining P~ with the centres of boundary  sides that  contain P~. In this way we 
get the boundary  dD~ of the finite volume Di. (See Fig. 1.) Dual finite volume meshes were 
successfully used in a number  of works. See, e.g., [1, 10]. 

If for two different finite volumes D~ and Dj their boundaries  contain a c o m m o n  straight segment, 
we call them neighbours. Then we write 

flu 
r , j  = tJ = d D i n d O j  = r j , ,  r ,3  = rT, ,  (2.1o) 

a t = l  

where F~ are straight segments. (If ~h is a tr iangular or rectangular grid with usual properties from 
the finite element method,  cf. [3-1, then flij = 1.) As follows from above, for a dual finite volume 
mesh over a t r iangular  grid we have flij = 2 (for Di or Dj c Oh) or flij = 1 (for Di and Dj adjacent to 
df2h.) For  i e J, let s(i) = { j  ~ J; D r is a neighbour  ofDi}, lfDi is adjacent to F~hwFohuFwh, then we 
denote  by F .~ ... , .-1, ~ = 1, ,fli.-1, the segments that  form d O i ~ d Q  h. In this case we set 
S(i) = s(i)w { - 1 } ,  otherwise we put S(i) = s(i). 

In the case of flow past a cascade of profiles, when Oh is a polygonal  approximat ion  of one period 
of the cascade and a part  of OI2h is formed by piecewise linear arcs F - ,  F + satisfying (1.6), we 
assume that  the mesh ~h possesses the periodicity property: 0 ~ S£ = dD~ n F -  for some D~ ~ ~h if 

~ F i j  

(a) 

Fig. 1. (a) Quadrilateral mesh; (b) 

~ "-r,] 

F il Dj 
(b) (e) 

triangular mesh; (c) dual mesh over a triangular grid. 
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and only if there exists D r e ~h such that 

S ? = + e S?}  = ODrc r + . 

In this case we put Fir = S? and Fji = S[-. If the mesh is triangular or quadrilateral, we set 
S ( i ) = s( i ) u  { j }, S ( j ) = s( j ) u  {i}. However, for a dual mesh over a triangular one we introduce new 
finite volumes D~ = D) = Dit_)D r and put S(i) = S ( j )  = s ( i )ws( j ) .  For the simplicity of the nota- 
tion we shall omit the superscript ' in the sequel. 

Obviously, for every Di ~ ~h we have 

fli) 

ODi= U FiJ = U U F~j. (2.11) 
j ~ S ( i )  j~S ( i )  ct= 1 

Furthermore,  we introduce the following notation: IDil = area of Di, n~j = (n~ij, n~ u) = unit 
outer normal to (?Di on F~, g}'j = length of F~j, and consider a partition 0 = to < tl < --. of the 
time interval (0, T )  and set Zk = tk+~ -- tk for k = 0, 1, ... 

The finite volume (cell centred) discretization is based on the integration of (1.8) over every set 
Di x (tk, tk+ ~), the use of Green's theorem, the approximation of the exact solution w averaged at 
time tk over grid cells Di by constant values w k and the approximation of the flux 

f , ( w ) n ,  d S  

of the quantity w through the segment F~j in the direction n~j per second on the time level tk with the 
k and ni~. In this way we aid of the so-called numerical f lux  H(w k, w k, n~j) calculated from w k, wj 

obtain the following explicit numerical scheme: 

flij 
k + l  k "r k 2 2  k k at ~t - - - -  H ( w i , w j , n i j ) ~ i j ,  D i E ~  h (i.e., i ~ J ) ,  k = 0 , 1 , . . . .  (2.12) wi = wi [Oilj~s(i)~=l 

In case t ha t j  = - 1 e S(i) and, thus, F~ c 0f2h, it is necessary to determine the boundary  state on 
F~j. We will discuss the problem of boundary  conditions later. 

We require that the numerical f lux  H has the following properties: 
(1) H is Lipschitz-continuous on every ball with centre at the origin and radius M with 

a Lipschitz constant c(M); 
(2) H is consistent: H(w,w ,n )  = ~2= 1 fr(w)nr for each w E D and n = (nbn2), Inl = 1; 
(3) H is conservative: H(w,w' ,n )  = - H(w' ,w,  - n )  for all w,w' ~ D and n ~ N2, Inl = 1. 
The properties of system (1.8) mentioned in Section 2.1 allow us to construct Godunov  type flux 

vector splitting schemes. Then the numerical flux H can be expressed in the form 

H ( w b w z , n )  = Q - l ( n ) f R ( Q ( n ) w l ,  Q(n)w2), wl,w2 e D, n e ~z, Inl = 1, (2.13) 

where the matrix Q(n) is defined by (2.2) andfR is an approximate Riemann solver to the system with 
one space variable Yl obtained from (2.6) by neglecting the derivative in the direction Yz. For 
details see [5]. In our computat ions we apply the Vijayasundaram and Osher -So lomon schemes. 
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In virtue of the hyperbolicity of system (1.8), for any q ~ D the matrix A ~ (q) has real eigenvalues 
21 = 2i(q), i =  1, . . . ,4 ,  and there exists a nonsingular  matrix ql-= 7(q) such that  AI = TD-U --1, 
D = diag(21, . . . ,  2,0. Then we put  

A~  =ql-D-+~ -~, D-+=diag(21-+ , . . . ,2~) ,  2 + = m a x ( 2 , 0 ) ,  2 - = m i n ( 2 , 0 ) .  (2.14) 

Then the approximate Riemann solver of  the Vijayasundaram method has the form [5, 21]: 

2 2 q2. (2.15) 

In [5, Par. 7.1.22] it is proved that  the eigenvalues 21(q) of Al(q) (q = (p, pt~, pzT, e) r) and the 
matrices 7(q) and q]--l(q) have the following form: 

•1 = 22 = ti, 23 = (t + C, )t a = (t --  C, C = (Tp/p)  1/2 = speed of sound,  (2.16) 

i 0 ½C 2 
7 = - 0 (U + C)/2C 2 

-- 1 V/2C 2 

½(if2 + ~2) --~ (H + Cfl)/2C 2 

½c 2 

(~ - c)/2c 2 

~/2C 2 

(H - c ~ ) / 2 c  2 

(2.17) 

~ - - 1 =  

1 - - (7  -- 1)( t~2 + v2)/2c2 (Y -- 1) ~c2 (7 -- 1)v/c2 --(7 -- 1)/c2~ 

t7 0 --1 0 

- - c f f+  ½(7 - 1)( ~1 + 172) c -- (7 -- 1)~ --(7 -- 1)17 7 - 1 

Ct~ + ½(7 -- 1)( t~2 + ~2) --C -- (7 -- 1)t~ --(7 -- 1)ff 7 -- 1 

(2.18) 

where H = (e + p)/p = c2/(7 - 1) + ½(/~2 ..[_/~2) denotes the enthalpy. 
The Osher-Solomon scheme [14, 17, 20] was derived with the aid of Riemann invariants to the 

eigenvectors of the matrix A 1 (q). The resulting approximate  Riemann solver can be expressed as 
a linear combina t ion  of values of the vector function f : =  f l  at uniquely determined and analytically 
expressed points  as can be seen in Table 1. 

Table 1 
Osher-Solomon Riemann solverfos(ql,q2) 

Ul ~ C1 ~1 )~ Cl Ul ~ C1 ~11 > C1 

ca <. ft., f(qS) f (q,)  f(q2) _f(qS) + f(qS) 
0 < UA < CA f(qa) f (q,)  __f(qS) +f(qA) f(q2) __f(qS) +f(qA) 
--Cv <~ aA <~ 0 f(qB) f(q,)  __f(qS) +f(qa) f(q2) __f(qS) +f(qB) 

UA < -- CV f(qS) f (q , )  _ f (qS)  + f(qS) f(q2) 

f (q,)  _f(qS) +f(q2) 
f (q,)  _f(qS)  +f(q2)_f(qS)  + f(qA) 
f(q,) _f(qS) +f(q2) _f(qS)  + f(qv) 
f(ql) +f(q2) _f(qS)  
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The states qA, qs, qSl, qS2 are defined in the following way. We set 

c = (yp/p)l/2, s = p/pT, c~ = (s2/sl) 1/2~, 

Zl = ½(T - 1)t71 + cl, 

Then 

C A --~- (Z  1 - -  . 7 2 ) / ( 1  "+ 00 ,  

PB = PA/0~2, 

Z2 = ½(~ - -  1) t~2  - -  C 2 .  

C B ~-  O~C A , 

= 2(z  - - 1 ) ,  

P A  ----- ( C A ~ C 1 )  2 / ( ) ' -  l )  p l  , 

uB = UA, 

= - d ,  = 

c s = 2zx/(7 + 1), 

c s = -- 2Zz/(7 + 1), 

pS = (cS / c l ) 2 / . -  1)pl ' 

(2.19) 

(2.20) 

The ment ioned  construct ion is possible under  the condi t ion 

cl + c2 + ½(~ - 1)(~1 - t72) > max{0,½(61 - ~2)}. (2.21) 

The Vi jayasundaram and O s h e r - S o l o m o n  numerical  fluxes satisfy the requirements  formulated 
in Section 2.2. 

2.3. Boundary and initial conditions 

If F~j c (~fJh, then special a t tent ion must  be paid to the determinat ion of boundary  conditions,  in 
order to be able to compute  the numerical  flux k k H(wi ,  w j, n~j). Namely,  it is necessary to specify the 

k,~t k boundary state wj = wj = WB. The question of the boundary  condit ions is rather delicate. We use 
here such type of boundary  condi t ions which leads to well-posed linearized Riemann initial- 
boundary  value problem (cf. [5, Par. 7.3.43]). 

First, let us assume that  F~ c Fib u Fob w Fwh. For  the Vijayasundaram scheme we prescribe mp 
k and extrapolate me componen ts  of w~ from Di onto  F~, where componen t s  of the boundary  state wj 

mp and me is the number  of negative and positive eigenvalues of the matrix P (w k, n~) (cf. (2.1)). It is 
suitable to distinguish several cases I-9]: 

(1) Subsonic inlet ( - v  .n < c on Di): We prescribe p, vl, v2 on F~j and extrapolate p from Di to 
tO. 

(2) Supersonic inlet ( - v  .n >1 c on Di): We prescribe p, vi, v2,p o n  ir iS.  

(3) Supersonic outlet (v. n < c on Di): We prescribe p on F~j and extrapolate p, vl, v2 from Di to 
F. ~. tJ" 

(4) Supersonic outlet (v. n >~ c on Di): We extrapolate p, vl, v2,p from Di to F~j. 
(5) Solid impermeable boundary: We extrapolate p from Di to F~/and (in virtue of the fact that  

v .  n - 0 on impermeable  wall) we set 

k k ~t k ~t ~t Pi (0, nl~j, 0) T (2.22) H( w i ,  W j ,  l l i j  ) = n 2 i j ,  . 

In the case of the Osher-Solomon scheme we use a modified approach  worked out  in [20] and 
further developed in [14]. We introduce the t ransformed boundary  state qa = Q(n~)wa and then 
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define the corresponding approximate Riemann solver fos(q~, q e ) : = f l  (qB): 
(1) Subsonic inlet: We prescribe PB, t~B, vB and compute PB from the formulae 

Pa = P, CZl/T, p, = (c~pi/yPi) l/(r- t)p,, ci = c, + ½(7 - 1)(ti, -- fin). 

(2) Supersonic inlet: We prescribe PB, t~e, ~TB, pn. 
(3) Subsonic outlet: We prescribe PB and use the formulae 

PB = P i ( P B / P i )  1/~', rib = Ui + - -  

(2.23) 

2 
(ci - , f  ~ f - P B ) ,  va = vi. (2.24) T 7 i 

(4) Supersonic outlet: qn = qi. 
(5) Impermeable wall: 

UB = O, CB = Ci + ½(7 - -  1)t~i, PB = (cgpi/TPi)I/(r-1)P~, PB = pBCg/~ (2.25) 

and we have fos(qi, qB) = (0, PB, 0, 0) T. 
Finally, in the case of a cascade flow when we assume the periodicity of the flow field in the 

direction x2 with the per iod z, taking into account the definition of the set S(i), we can again use 
formula (2.12). 

In the numerical computat ions we start from the initial conditions 

w°=t-~5.t f w(x,O)dx, i ~ J .  (2.26) 
i ~ . z l  d D  i 

2.4. Stability 

Since scheme (2.12) is explicit, it is necessary to apply a suitable stability condition. Using 
linearization and analogy with a scalar problem we derived the stability condition l-5, Par. 7.3.116], 

max 1 0 D d  max {2m(Q(nlj)w~) ~< CFL ~ 0.85, i e  J ,  (2.27) 
IDil j~ . )  ,.=1 ..... 4 

~= 1 ..... ~o 

applied both to Vijayasundaram and Osher -Solomon scheme. 
Often our goal is to obtain a steady state solution of system (1.8) by time marching process as 

tk ~ O0 using the described schemes and applying the stability condition (2.27). 

Z5. Improvement o f  the accuracy 

In practical computat ions we try to achieve sufficiently accurate solutions with precise resolution 
of shock waves. There are two possibilities how to increase the accuracy of the method: 

(1) the use of M U S C L  second order approach; 
(2) the use of an adaptive refinement of the mesh. 

These two approaches can be, of course, combined. 
(I) First, let us describe the method that has a higher order accuracy in space and possesses an 

adequate rate of dissipation to give physically relevant entropy solution. (The improvement of the 
accuracy in space is motivated by the search of the steady state solution. In the simulation of 
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transient flow the higher order accuracy in time can be achieved, e.g., with the aid of Runge-Kut ta  
schemes.) 

We start from the case ofa  dualfinite volume mesh ~h constructed over a triangular grid J-h. In 
order to increase the precision of the method, we replace (2.12) by the formula 

E w~ = wg - --lOll j~s,)~=1 (wji), nit)¢~j, i z J, k = 0, 1, . . . ,  (2.28) 

where (~)k ,  (~i)k are values of a higher order recovery of the approximate solution with the values 
k Wg on D~ ~ ~h and time level t = tk. 
Let O denote some of the physical quantities p, vl, v2, p and let O k denote its approximation on 

D~ x {tk } calculated from the components of the state vector w k. For the sake of simplicity we will 
omit the superscript k (and write simply O~ instead of O k, etc.). Now we define the piecewise linear 
recovery function O* to {O~}I~J so that O* "~h ~ [~ is continuous on f2h, O'IT is linear for each 
T ~ 9"-h and O* (Pi) = Oi for each i ~ J. This allows us to compute the so-called averaged gradient: 

1 
(gradh Oh)[O, = ~ ~ (grad O*)lr I TnD~I ,  (2.29) 

where we sum over all triangles T e ~-'h containing the vertex P~. Let Z~ be the midpoint of 
F~ 9t t3f2h. For such F~j we define the value 

j OI + (gradh Oh)lD," (Z~j P,). (2.30) 

However, this recovery suffers from the lack of dissipation, which reflects in spurious oscillations 
near discontinuities. The improvement is carried out with the aid of a flux limiter. According to 
1-18] we use the Barth-Jespersen flux limiter (see [2]): 

~ b i = m i n (  min ~b(F~)), 
j~s(i) \a= 1 ..... #ij 

1, ( q3~'. - = j Oi 0, 

~b(F~)= min 1, Og~_Oi,},  O ~ - O , > 0 ,  (2.31) 

( omin C ~i~ ¢~__ Oi < 0 ' 
min 1, ~ _ O i j ,  

max( , maxj   ,,  min= min( ,.   s,,,min 
Finally, the  higher order recovery of the quantity O is defined on F~j ¢ tgt2h as 

~,~ = Oi + ~bi(gradh Oh)Io," (Z~ -- P~). (2.32) 

If we carry out the above recovery (O~)k = O~ĵ ~ for all quantities O = p, Vl, v2 and p, we can 
construct the value ( ~ ) k  of the state vector. 
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If F~j c t3f2h (i.e. j = - 1), then we compute  (~.  1) k in the same way as above, but ~ff~ xk is - ~, - 1 , i 1  
defined by boundary  condit ions as for the original scheme (2.12). 

If the finite volume mesh ~h is triangular, we apply the Dur lo f sk i -Engquis t -Osher  approach  [4] 
for comput ing  the higher order  recovery (~3~)* (ff~j) and (v~i) k *k = = ( W j i ) .  (We have flij = 1 in this 
case.) Let D i e  ~h be a triangle with its neighbours  Dj, Ol, Dm (i.e., S(i) = {j,  l, m} and no side of Di is 
a part  of 8f2h). By Qr we denote  the centre of gravity of a triangle Dr E ~h. By {tpk}~j we denote  the 
approximate  values of a quant i ty  tp on Di × {tk}. Then we construct  three local linear recoveries 
(Ph ,  i lm = the function linear in R 2 with the values (Ph, i lm(Qi)  = (Pi, (Ph, i lm(Ol) = (Pl, (Ph, ilm(Qm) = ( P m  

and ~h, ijm, ~h, ij~ which are defined analogously. (For the sake of simplicity, the superscript k is 
again omitted.) Now we proceed according to the following algorithm: 

(1) Select as q3h.i such (gh.i~p ((Ct, fl) = (l,m) or (a, fl) = ( j ,m) or (a, fl) = (j ,I))  for which I V~h, il is 
maximal.  

(2) Denot ing  by Sir the midpoin t  of the side Fir of Di (r = j, l, m), we check whether  

q3h.i(Sii) e (qgi, ~pj), q3h, i(Si,) e (qgi, ~Pi), •h. i(Sim) e (~Pi, qgm). (2.33) 

(3) If (2.33) is not  satisfied, then we choose ~bh, i as ~bh, i~p for which I V~bh, i l is the second largest and 
repeat the test (2.33). If this condi t ion is not  satisfied, then we define ~bh, i as ~bh.i~a so that  

I Vqbh, il ~< {1 [7~h, iiml, I V~h, ijml,I [ 7 ¢ h , i j l [ } .  (2.34) 

(4) We put  Oi, = Oh, i(Sir), r = j ,  l, m. F r o m  the values of ~bir corresponding to the quantit ies 
~p := wl, w2, w3, w4 we define the states wlr, r = j, 1, m, for the given triangle Di, i ~ J. Then we use 
formula (2.28). For  Di adjacent to at2h we use the original scheme (2.12). 

(II) N ow let us describe our  approach  to mesh refinement. Because the posit ion and form of 
shock waves are not  a priori known,  it is convenient  to use adaptive algorithms using the 
informat ion of previously computed  approximate  solution. 

The most  impor tan t  tool in an adaptive me thod  is the choice of a suitable error indicator and, for 
flows with shocks, also a shock indicator. Here we are concerned with an adaptive shock capturing 
algori thm employing a divided differences approach  and indicating admissible shock waves only. 
We have tested several shock indicators on triangular meshes (see [6]). The best results were 
obtained with the aid of the following shock indicator: 

g(i) = max [ - ( P i  - Pj)v i 'n i j ]+/h i ,  i e  J ,  (2.35) 
j ~ s ( i )  

where hi is the length of the longest side of the triangle Di ~ ~h = the tr iangular finite volume grid 
in f2h, and v/is  the velocity vector on Di. (We omit  the superscript k.) 

The above shock indicator  is applied in the following way: 

(1) We calculate the relative indicator 

tl(i) = g( i ) /max  g ( j  ), i ~ J .  (2.36) 
j ~ J  
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(2) If for some Di~ ~h we have r/(i)/> 6 = a given tolerance, 6 E (0, 1), then the "mother" triangle 
D~ is divided into four equal "daughter" subtriangles. 

(3) The resulting partition of f2h is modified so that the conforming triangulation of Oh is 
obtained. 

(4) Initial approximation on the new mesh is defined by taking the same values on the daughter 
triangles as on the mother triangle. 

The above process is repeated in several steps until the desired accuracy and sharpness of the 
shock wave is obtained. 

The described strategy can be easily modified to dual finite volumes over triangular grids. 

3. Discretization of the viscous system 

The standard approach discretizes the viscous terms also by the finite volume method as it is 
carried out, e.g., in I-8, 12-14, 22]. However, if the inviscid terms in (1.1) are discretized by dual finite 
volumes over a triangular grid, then the structure of the viscous part of (1.1) offers us the 
application of the finite element method. 

First, we describe the finite element discretization of the purely viscous system (1.9) equipped 
with initial conditions (1.4) and boundary conditions (1.5). Similarly as above we denote by 
3-h a triangulation of the domain Oh and by Pi, i ~ J, the vertices of all triangles T ~ Y'h. We use 
conforming piecewise linear finite elements. This means that the components of the state vector are 
approximated by functions from the finite dimensional space 

Xh = {tph ~ C(f]h); ~0hlT is linear for each T ~ 3-h}. 

Further, we set Xh = [Xh] 4 and 

Vh = (q)h = ((Pl,  ~02, ~03, ~04) E X h ,  ~0 i = 0 o n  t h e  part of C3f2h approximating the part 

of Of 2 where wi satisfies the Dirichlet condition}, 

Wh = {Wh ~ Xh; its components satisfy the Dirichlet boundary conditions 

following from (1.5)}. 

(3.1) 

(3.2a) 

wh, 

wk+ltphdx = wktphdx --Zk y" Rs(w k, Vw k) dx Vtphe Vh. 
h h h S=I ~Xs  

Replacing Rs(w~, Vw k) by Rs(w k+ ~, Vw k+ 1), we obtain an implicit scheme. 

(3.3a) 

(3.3b) 

Multiplying (1.9) considered on time level tk by any tph 6 Vh, integrating over Oh, using Green's 
theorem, taking into account the boundary conditions (1.5) and approximating the time derivative 
by a forward finite difference, we obtain the following explicit scheme for the calculation of an 
approximate solution w k÷l on the (k + 1)st time level: 

(3.2b) 
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The integrals are approximated by a numerical quadrature, called mass lumping, using the 
vertices of triangles as integration points: 

IT 1 3 F dx ~ 5 [ T [ 2 F(P~) (3.4) 
i=1 

for Fe  C(T) and a triangle T 1 2 a = T(Pr,Pr, P r ) e  J-h with vertices P~ ~ ah, i= 1, 2, 3. Numerical 
integration in (3.3b) yields the identity 

(W~+ 1, ~Oh) h = (W k, ~Oh) h __ zkah(w~, ~Ph) WPh ~ Vh, (3.5) 

where 

1 3 
(wh, ~o,)~ = -j Y. I T I ~, wh(P~.) ~Ph(P~'), wh, ~Ph e Xh (3.6) 

T e.~rh i = 1 

and 

ah(wh, q~h) = (a~ (%, ~Ph),--., a4(wh, ~Ph)) T , 

a I =--0, 

dVh0 1 d~0h, 2 d(Ph, 2 [ 
a~(wh,~oh)= Y, ITI 2 , - ~ S - •  dx, ~+~(aiv~)lT--~-S~ 

TEJ'h T 

{  vh,, r a3h(Wh.~Ph)= ~ I TI PkdXl + 

+ 2# ~ dq~h.3 

(3.7) 

a~(wn.tph)= Z IT[ Th. IlIT E Vh.l(P~)+Zh. 121T E Vh.2(P~) ~ T 
T6,Y-h i= 1 i= 1 

1 ( 3 3 ) d(ph, 4 
+ ~ I T  zh, zllri=lE v,,~(P~-)+Zn, zzlr,=,E v,,z(P~.) dxz r 

+ kiT [ ~ dO, don.4 

1 (evh.. dVh's'l r ~h,,sl~ = ~ \ dx, + - ~ /  = const. 

Here vh, ~ and 0, represent functions from the space Xh approximating the velocity components and 
temperature. 

It is easy to write down the implicit variant of (3.5). 
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Finally, we come to the discretization of the complete viscous system. We combine the finite 
volume discretization of the inviscid system (1.8) on the dual finite volume mesh ~h (see Section 2.1) 
with the finite element discretization of the purely viscous system (1.9). We can proceed in several 
ways: 

(1) lnviscid-viscous operator splitting. We start from the approximation w °, Di ~ ~h, of the 
initial condition given by (2.26). Let us assume that we have already obtained the values w k, 
Die  ~h, of the approximate solution of the dual mesh ~h at time tk. The transition to the next time 
level is carried out in two fractional steps: 

(i) Compute 

fl # 
k+1/2 k Zk E E H(w~, k ~ ~ = - -  - -  W j , n i j  ) £ i j ,  D i E ~ h ,  w~ wg I D~lj~s,)~=l 

& inviscid boundary conditions from Section 2.3; 

(ii) (~) Define w~ + 1/2 ~ Xh such that w k + 1/2 (p/) = w k + 1/2, i ~ J .  (3.8) 

(fl) Compute w k + ' ~ Wh such that 

(W~+ l,  q)h)h = (W~ + 1/2, ~Oh) h __ 75kah(W~+ 1/2  ~Oh) Vq)h E Vh,  

(?) Set w~ +1 = w~+l(Pi), i ~ J, k := k + 1, go to (i). 

(3.8, i) is obtained from scheme (2.12). It can be replaced in an obvious way by the higher order 
scheme (2.28). In (3.8, ii-fl), it is possible to consider the implicit variant. 

(2) Direct discretization of the viscous problem. Let us define the form 

bh(Wh'q~h) = Z ~ph(P,) Z Z H(wh(P~),wh(Pj),n~J)E~J, Wh,¢neXh.  (3.9) 
P~Eah j~S(i) a= 1 

It is possible to show that (3.8, i) can be rewritten as 

(w~+ ,/2, q~h)h = (W~, eh)h -- Zgbh(W~, ~Oh), q~h ~ Vn. (3.10) 

This leads us to the direct discretization of the complete system (1.1) in the fully explicit form 

W k + l  (~ Wh,  (3.11a) 

(wk+ 1 q)h)h = ( Wk, q~h)h -- rkEbh(W~, q~h) + ah(w~, ¢h)], q~n ~ Vh, (3.1 lb) 

or in the semi-implicit form 

w~ +' ~ Wh, (3.12a) 

(w~+ 1, ¢h)h = (W~, eh)h -- ZkEbn(W~, eh) + ah(W~ + 1 ~Oh)], q)h ~- Vh" (3.12b) 

The form bn can be replaced by its higher order version 
#,j 

bh(wn, q~h) = Z qgh(P,) E Z H ( ~ , ~ ; , , n ~ ) g ~ j ,  Wh,~oh~Xh, (3.13) 
P~eah jeS(i) ¢t= 1 

where ffi~ and ~ i  represent the values of the higher order recovery defined in the same way as in 
Section 2.5 with the aid of the values w~ = wh(P~), i e J. 
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The above schemes can be applied only under  some stability conditions. In virtue of the explicit 
discretization of inviscid terms we apply the stability condi t ion (2.27). In the case of explicit 
discretization of the viscous terms (scheme (3.8, ii) or (3.11)) we consider, moreover,  the addit ional 
stability condi t ion in the form 

3 h "Ok max(/~,k) ~< CFL,  T • ~--h, (3.14) 
4 a l T I  

where h is the length of the maximal  side in ~--h and a = minr~¢~ O'T, a T = radius of the largest 
circle inscribed into T. 

4. Convergence 

The at tempts  to prove the convergence of numerical  methods  for the solution of the complete  
system describing viscous flow have not  yet been successful. Therefore, in order to suppor t  our  
computa t iona l  results obtained by the combined  finite volume - finite element method,  we confine 
our convergence analysis to a model  scalar nonlinear  convection - diffusion conservat ion law 
equat ion 

au U (u) 
Ot +i=1 Oxi - v A u  in~2, (4.1) 

equipped with initial and boundary  condit ions 

u(x,O) = u°(x), x • f2, (4.2) 

ulea×m,r~ = 0. (4.3) 

We assume that  v > 0 is a constant,  f~ • CI(~) and consider (4.1)-(4.3) formulated in a weak sense: 
Find u • L2(0, T;  H~(f2)) such that  

d u( , t ) v d x  ~ f/(u( , t ) )~x/dX + v Vu ( . , t ) .  Vvdx  0 
dt i = 1  

Vv ~ H~(f2) (4.4) 

in the sense of distr ibutions over (0, T). Under  some assumptions  onf~ we find that  u e C([0, T] ,  
(H~(O))*) and, hence, the initial condi t ion (4.2) has sense. By Hol(O) we denote  the well-known 
Sobolev space of all functions square integrable over O together with their first order distr ibution 
derivatives with zero traces on ~2. L 2 (0, T; Ho~ (f2)) denotes the Bochner space of square integrable 
functions with values in H~(f2). (H~(f2))* is the dual of H~(I2). 

We will formulate  two sorts of results for scheme (3.12a), (3.12b). Denot ing by u °, u~, . . . ,  uh u the 
values of the approximate  solution at time instants tk = kz, k = O, 1, . . . ,  N,  r = T / N,  we construct  
the piecewise linear cont inuous  function Uh," [0, T ]  ~ H~(O) such that  UMtk) = u~ for k = 0, . . . ,  N. 

(I) Lukfi6ovfi-Medvid'ovfi proved in [ 16-1 the convergence of approximate  solutions Uh, obtained 
by scheme (3.12a), (3.12b) to the unique weak solution of (4.1)-(4.3) under  the assumpt ion of"smal l  
data". 
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Theorem 4.1. Let fi(u) = vi(u)u, vi ~ CI(R), there exist constants Cl,C2 > 0 such that 

dvi(u) 
Ivi(u)l <~cllul, du ~ c 2 '  UE~, i =  1,2, (4.5) 

u ° ~ H~(f2), the numericalflux H has properties (1)-(3)from Section 2.2, u ° is the Ritz projection ofu °, 
consider a regular system of triangulations {9-h }h~tO.ho) and let the stability condition be fulfilled: 

there exist C1, C2 > 0, ~ e [0, 1) such that C1 <~ ~ <~ C2. (4.6) 

Moreover, we assume that cl,c2<< 1, I1 u° Ilnlt~) << 1. Then 

Uh~ --* U weakly in L2(0, T; H~(f2)), 
(4.7) 

Uh~ ~ U  strongly in L2(QT), 

as h,z ~ 0 ,  

and u is the unique weak solution of problem (4.1)-(4.3). 

(II) In [7] we have proved the convergence result without any restriction ofj'], but under 
additional assumptions on the triangulation J'h and numerical flux H: 

Theorem 4.2. Let us assume that j] ~ C1(~), u ° ~ Wx'P(f2), p > 2, u ° = rh u°  = the Lagrange interpo- 
lation of u °, {3-h}h~tO,ho) is a regular system of weakly acute type triangulations (all angles of all 
T ~ J-h are <<. ½n), the numericalflux H has properties (1)-(3)from Section 2.2 and is monotone (i.e., 
H(u,v,n) is nonincreasing with respect to v), ]u°l ~< M for some M and 

zc(M)lODil <~ IDi], i e J ,  h ~< const v, h,z  -gO. 

Then 

Uhr ~ U 

Uh r ---o. U 

Uh¢ ~ U 

weakly in Lz(0,T; HoX((2), 

weak-,  in L~(Qr) ,  

strongly in L2(QT), 

as h,z ~ 0 ,  

where u ~ L2(0 ,  T; H~(f2) )nL~(Qr)  is the unique weak solution of (4.1)-(4.3). 

(4.8) 

5. Computational results 

(1) Flow through the G A M M  channel (10% circular arc in the channel of width 1 m) for air, 
i.e., 7 = 1.4, and inlet Mach number M = 0.67 was solved by the Vijayasundaram higher order 
scheme applied on the dual mesh over a triangular grid (see Section 2.5(I)). In Fig. 2 the basic 
grid and dual mesh, respectively, are shown. Our aim was to obtain the steady state solution 
with the aid of time marching process for tk ~ oG. Fig. 3 shows the history of the convergence 
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Fig. 2. Triangular mesh in the GAMM channel and the dual mesh. 
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Fig. 3. Convergence history measured in LLnorm. 
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Fig. 4. Mach number distribution on the walls of the 
channel. 

measured in LX-norm, i.e., the behaviour of the quantity log{~i~ J IDil [(pk+ 1 k k - -  P i ) / P i [ } ,  in the 
dependence on k. Further, in Fig. 4 we see the Mach number distribution on the walls of the 
channel and Fig. 5 shows Mach number isolines and entropy isolines. 

(2) Inviscidflow past a cascade of profiles was solved by the Osher-Solomon scheme applied on 
a triangular mesh with the aid of adaptive technique described in Section 2.5(11) for a turbine 
cascade for which the wind tunnel measurements were carried out. Fig. 6 shows the adaptively 
refined mesh in the vicinity of shock waves and Mach number isolines computed with the aid of the 
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Fig. 5. Mach number isolines and entropy isolines. 

Fig. 6. Mesh and Mach number isolines for inviscid cascade flow. 

first order Osher-Solomon scheme. Fig. 7 represents the detail of the Mach number isolines and 
the comparison with a wind tunnel experiment (the courtesy of the Institute of Thermomechanics 
of the Czech Academy of Sciences in Prague). The experiment as well as the computation were 
performed for the following data: angle of attack = 19°18 ', inlet Mach number = 0.32, outlet Mach 
number = 1.18, 7 = 1.4. The coincidence of experimental and computational results is very satisfac- 
tory, although the real viscous gas flow is modelled with the aid of the inviscid Euler system. For 
further details, see [6]. 
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Fig. 7. Detail of Mach number isolines compared with the interferogram of the cascade flow. 

Fig. 8. Triangular mesh and dual mesh for viscous flow. 

(3) Viscous flow through the GAMM channel was computed for the following data: ~,-- 1.4, 
p =  1 . 7 2 . 1 0 - S k g m - l s  -1, 2 = - l . 1 5 . 1 0 - S k g m - l s  -1, k = 2 . 4 . 1 0 - 2 k g m s - a K  -1, cv= 
721.428 J kg K -  ~ and the inlet Math number M = 0.67. 

The solution of viscous flow was carried out by purely explicit combined finite volume - finite 
element inviscid-viscous operator splitting scheme (3.8, i-ii) using the Vijayasundaram numerical 
flux for the approximation of inviscid terms. In Fig. 8 we see the triangulation of the channel and 
the corresponding dual mesh that were used for the realization of the viscous and inviscid part of 
the scheme, respectively. The length of the time step z was controlled by the stability conditions 
(2.27) and (3.14). 
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Fig. 9. Convergence history in Ll-norm for the computation of viscous flow. 

Fig. 10. Mach number isolines of viscous flow. 

Fig. 9 shows the convergence history measured in the same way as above in Ll-norm. In Fig. 10 
Mach number isolines are drawn. Here we can see boundary layer at the walls, shock wave, wake 
and the interaction of the shock with boundary layer. 
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