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Abstract

Let T be a polynomial with complex coe.cients. First, we study the inverse images of the real and
imaginary axes under a polynomial mapping T in detail. Then for an arbitrary polynomial � and a sequence
(pn) of orthogonal polynomials the orthogonality behaviour of the sequence of polynomials (�(pn ◦T))n∈N
is investigated. In particular necessary and su.cient conditions are given such that (�(pn ◦ T))n∈N is a
subsequence of polynomials orthogonal with respect to a positive measure supported on a compact subset of
the real line.
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1. Introduction

Let K ⊂ C be a compact set and let T be a polynomial with complex coe.cients. Let p be a
polynomial which is extremal on K in some sense, for instance a polynomial which deviates least
from zero with respect to a weight function and the Lp-norm among all polynomials of degree n
with leading coe.cient one. Then it is natural to expect that this extremal property is inherited to
p ◦T on the set T−1(K) with respect to the transformed weight function, i.e., in the case of the
L2-norm that p ◦T is orthogonal on T−1(K) with respect to the transformed weight function. In
fact its known nowadays that such an inherity property holds (see [4,5,8,11,14,20,26]). In most cases
special polynomial mappings, i.e., real polynomial mappings with properties which guarantee that
all inverse images are real intervals, have been considered. With respect to orthogonal polynomials
such mappings have been considered in [5,11] and, interesting enough, arose at about the same time
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in a completely diDerent way as the so-called T -polynomials in the study of extremal polynomials
on several intervals with respect to the max-norm by the author [20,23,22]. A polynomial T is
called a T -polynomial on a set E of real intervals if T has simple real zeros only and E ⊆
{x∈R: |T(x)|6M}, where M =min{|T(y)|: T′(y)=0}. The notion T -polynomial on E, which is
an abbreviation for Chebyshev polynomial on E, has been chosen since it shares so many properties
with the classical Chebyshev polynomial Tn(x) = cos(n arccos x). Recently, it has been proved in
three diDerent ways [6,24,28] that a set of real intervals can be approximated arbitrary well by the
inverse images of [ − 1; 1] of a T -polynomial or in other words by a special polynomial mapping.
Therefore, it is not astonishing that certain properties are inherited not only to inverse images but
also to arbitrary sets of real intervals, see [27,28].

But let us return to orthogonal polynomials associated with a polynomial mapping. Marcellan and
his collaborators [15–17] considered orthogonal polynomials associated with polynomial mappings of
degree less or equal three. More precisely, among others they studied and solved for such polynomial
mappings the following question: Let (pn) be a sequence of polynomials orthogonal with respect to
a positive measure � with supp(�) ⊂ R and let � be a polynomial whose degree is less than the
degree of T. Under which conditions on � and the polynomial mapping T is the subsequence of
polynomials (�(pn◦T))n∈N orthogonal to a positive measure supported on a subset of R. In particular
orthogonal polynomials whose recurrence coe.cients are asymptotically periodic are closely related
to polynomial mappings; for instance this is reGected by the fact, see [12] and also [18,2,3] for
the complex case, that the essential spectrum of an Jacobi operator associated with a symmetric
tridiagonal matrix whose elements are asymptotically periodic is the inverse image of the interval
[ − 1; 1] under a polynomial mapping.

In this paper, we investigate 8rst the inverse images of the real and imaginary axes resp. of
real and imaginary intervals under a polynomial mapping T with complex coe.cients in detail
which is of interest also in its own. Then sequences of polynomials (�(pn ◦T))n∈N where � is an
arbitrary polynomial and (pn) is a sequence of polynomials orthogonal with respect to a de8nite
functional, are studied with respect to their orthogonality behaviour. Finally, it is shown that the
sequence (�(pn ◦ T))n∈N, where (pn) is a sequence of polynomials orthogonal with respect to a
positive measure with support [ − 1; 1], is orthogonal with respect to a positive measure supported
on a compact subset of the real line if and only if T is a T -polynomial and � satis8es certain
conditions.

2. Inverse polynomial images of real and imaginary intervals

We 8rst investigate the following sets

ZI := {z ∈C: Im T(z) = 0} =
N⋃

j=1

T−1
j (R) = T−1(R) (2.1)

and

ZR := {z ∈C: ReT(z) = 0} =
N⋃

j=1

T−1
j (iR) = T−1(iR); (2.2)
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which have already been studied by GauI [9] in proving that every polynomial of degree N has N
zeros in the complex plane, sometimes called the Main Theorem in Algebra, and then thoroughly
by Ostrovski [19]. Let us divide the complex plane in 4N angle sections by the half-rays seij�=N ,
j = −1; 1; 3; : : : ; 8N − 3, i.e., let us set for k = 1; : : : ; 4N

Ik =
(

2k − 3
4N

�;
2k − 1

4N
�
)

and for r ¿ 0

�r;k = {sei’: s¿ r; ’∈ Ik}:
Considering the polar coordinate representation of T(x; y), i.e.,

T(r; ’) :=T(r cos’ + ir sin ’)

= rN (cosN’ + i sin N’) +
N−1∑
j=0

rj(aj cos j’ + ibj sin j’);

cj = aj + ibj, and observing that for r ¿ r0, where r0 := max{1;
√

2
∑N−1

j=0 |cj|}, the following
inequalities hold

|ReT(r; ’) − rN cosN’|6 rN−1
N−1∑
j=0

|cj|¡ rN√
2

(2.3)

and ∣∣∣∣ 99’(Im T(r; ’)) − NrN cosN’
∣∣∣∣6NrN−1

N−1∑
j=0

|cj|¡N
rN√

2
; (2.4)

we conclude, since on I4k+1 (I4k+3), k = 0; : : : ; N − 1, cosN’¿ 0 (¡ 0) and |cosN’|¿ 1=
√

2, that
for r ¿ r0

ReT(r; ’) =

{
¿ 0 on I4k+1;

¡ 0 on I4k+3

(2.5)

and

9
9’(Im T(r; ’)) =

{
¿ 0 on I4k+1;

¡ 0 on I4k+3:
(2.6)

For the second relation we have taken into consideration the facts that sin N’ is strictly increasing
(decreasing) on I4k+1 (I4k+3) and has exactly one zero there. Analogously, it follows, since on
I4k+2 (I4k) sin N’¿ 0 (¡ 0) and |sin N’|¿ 1=

√
2, that for r¿ r0

Im T(r; ’) =

{
¿ 0 on I4k+2;

¡ 0 on I4k

(2.7)
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and

9
9’(ReT(r; ’)) =

{
¡ 0 on I4k+2;

¿ 0 on I4k :
(2.8)

Hence, for every r¿ r0 there are ’k(r)∈ I4k+1, k = 1; : : : ; N , and  k(r)∈ I4k+3, k = 1; : : : ; N , such
that Im T(r; ’k(r)) = 0 and Im T(r;  k(r)) = 0 for k = 1; : : : ; N . By continuity-arguments or by the
Implicit Function Theorem it follows that ZI ∩{z ∈C: |z|¿ r0} consists of 2N arcs Ck and C̃k with
Ck ⊂ �r0 ;4k+1 and C̃k ⊂ �r0 ;4k+3 for k = 1; : : : ; N . Now it can be shown (see [19]) that these 2N
arcs continue in the interior of |z|6 r0 in such a way that two arcs Ck and C̃k join each other
to one arc. Thus, ZI consists of N arcs Cj, j = 1; : : : ; N . More precisely, it is always possible to
choose the N arcs Cj in such a way that at the right-hand side of Cj, j = 1; : : : ; N , there is always
Im T(x; y)¿ 0 if one moves along Cj, where at a point at which some arcs Cj cross each other
one has to take the next arc at the right-hand side. Thus, every arc Cj, j = 1; : : : ; N , comes from
∞, enters the circle |z| = r0 in the sector �r0 ;4j+1, continues to the interior of |z|6 r0, leaves then
the circle |z| = r0 through �r0 ;4j+3 and continues to ∞. By the way, with the help of this approach
GauI [9] proved his famous theorem using the fact that T has obviously a zero on each Cj.

Next, let us summing up the above facts and let us show that ReT(x; y) is strictly monotone
decreasing on each Cj which is important in what follows.

Theorem 2.1. ZI consists of N arcs Cj, j = 1; : : : ; N , running from in6nity to in6nity, which can
be chosen such that at the right-hand side of each Cj, j = 1; : : : ; N , Im T(x; y)¿ 0. If the Cj are
chosen in this way then ReT(x; y) is strictly decreasing from ∞ to −∞ on each Cj, j = 1; : : : ; N .

Proof. In view of what had been said above only the statement on the monotonicity of ReT(x; y)
remains to be shown. For abbreviation let

u(x; y) = ReT(x; y) and v(x; y) = Im T(x; y)

and let (x(s); y(s)), s∈ (−∞;∞), be a parametrization of Cj, j = 1; : : : ; N .
If (d=ds)(x(s); y(s)) has no zero on (−∞;∞) then the assertion follows immediately by recalling

the fact that limr→∞ u(r; ’) tends to +∞ (−∞) if ’∈ I4k+1 (I4k+3).
Next we claim: If

d
ds

u(x(s); y(s))
∣∣∣∣
s=s0

= 0

then T′(z0) = 0, where z0 = (x0; y0) := (x(s0); y(s0)). Since

d
ds

u(x(s); y(s)) =
9u
9x (x(s); y(s))x′(s) +

9u
9y (x(s); y(s))y′(s) = 0 at s = s0 (2.9)

and since v(x(s); y(s))=0 we obtain by diDerentiation and by using the Cauchy–Riemann diDerential
equation that for s∈ (−∞;∞)

− 9u
9y (x(s); y(s))x′(s) +

9u
9x (x(s); y(s))y′(s) = 0: (2.10)
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Now assume that

T′(z0) =
9u
9x (x(s0); y(s0)) − i

9u
9y (x(s0); y(s0)) 
= 0;

i.e. (9u=9x)(x(s0); y(s0)) 
= 0, or (9u=9y)(x(s0); y(s0)) 
= 0, then by (2.9) and (2.10)(
9u
9x (x(s0); y(s0))

)2

+
(
9u
9y (x(s0); y(s0))

)2

= 0;

which is a contradiction.
Now let us suppose that T( j)(z0) = 0 for j = 1; : : : ; m, and T(m+1)(z0) 
= 0. Then it is well known

that in a neighbourhood of z0 the locus v(x; y) = v(x(s0); y(s0)) = 0 consists of m + 1 analytic arcs
through z0 cutting each other at z0 in successive angles �=(m + 1) and bisecting the angles between
the successive arcs of the locus u(x; y) = u(x(s0); y(s0)).

Furthermore, the neighbourhood of z0 is divided in u(x; y)¿u(x0; y0) and u(x; y)¡u(x0; y0),
respectively. Thus, (x0; y0) is a saddle point of v and u. Moreover, neither v nor u can have a local
maximum or minimum at (x0; y0). Thus, since the Cj’s have been chosen such that if we move
along Cj to z0 at z0 we have to take the next arc at the right-hand side, i.e., we do not cross the
saddle point z0, u(x; y) does not change its monotonicity behaviour along the curve Cj.

Corollary 2.2. Let T(z) = cN zN + · · ·, cN ∈C\{0}, be an arbitrary complex polynomial of degree
N and let T−1

j , j = 1; : : : ; N , be the inverse functions. Then the following propositions hold:
(a)

N⋃
j=1

T−1
j ([ − 1; 1]) = {z ∈C: Im T(z) = 0 and |Im T(z)|6 1}

consists of N arcs Cj, j = 1; : : : ; N , of 6nite length which can be chosen such that moving along Cj

we have at the right-hand side of each Cj that Im T(x; y)¿ 0.
(b) Suppose that T2(z) − 1 and T′(z) have no common zero and let wj, j = 1; : : : ; m, be the

zeros of T′ of multiplicity mj which are in
⋃n

j=1 T−1
j ([ − 1; 1]). Then for su9ciently small �,

�¿ 0, the set of level lines

A(T; �) = {z ∈C: log |T(z) +
√

T2(z) − 1| = �}
consists of at most n−∑m

j=1 mj simple closed curves ()(�) and if ()(�) surrounds exactly one zero
wj of T′ of multiplicity mj, then moving along ()(�) T takes on successively in the neighbourhood
of the endpoints of the arcs the values 1 + *1(�);−1 + *2(�); 1 + *3(�); : : : ;−1 + *mj+1(�) with
lim�→1 *k(�) = 0.

Proof. Part (a) follows immediately from Theorem 2.1.
(b) Obviously, from each arc C) which does not contain a zero of T′ there arises a simple closed

curve ()(�) with lim�→0 ()(�) = C). At a zero wj of T′ of multiplicity mj, mj + 1 of the arcs C)

touch each other (recall the choice of the arcs C)), where wj is contained in the interior of each C),
since by assumption |ReT(wj)|¡ 1. Hence, if

⋃mj+1
j=1 C)j does not contain another zero wj in its
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Fig. 1. The above pictures show the polynomial T5(z) = az3(z− 3=2)(z + 1), with a = 25; 000=(1786
√

94 − 11; 357), and
the arcs Cj from Corollary 2.2, i.e., on which T5 is real and |T5|6 1, are marked boldface. ±∞ gives the value to
which the polynomial tends if we move along Cj .

interior, the level set which arise from
⋃mj+1

j=1 C)j is a simple closed curve. Since by Theorem 2.1
ReT decreases from 1 to −1 along each arc C) the assertion follows by continuity arguments.

In Fig. 1, Theorem 2.1 and Corollary 2.2 are demonstrated for the polynomial T5(z) = az3(z −
3=2)(z + 1), a = 25; 000=(1786

√
94 − 11; 357).

To get the link with [23] let us observe that
⋃N

j=1 T−1
j ([−1; 1]) consists of l arcs with endpoints

aj, j = 1; : : : ; 2l, if and only if there exists a polynomial U such that

T2(z) − H (z)U2(z) = 1; (2.11)

where H (z) =
∏2l

j=1(z− aj). A point aj is called an endpoint if there exists an m∈{0; 1; 2; : : :} such
that (T±1)(k)(aj)=0 for k =0; : : : ; 2m. Let us mention that in [25] the polynomial mappings whose
inverse images of [− 1; 1] consist of two arcs only have been characterized with the help of elliptic
functions. Next let us turn to the description of the polynomial mappings whose inverse images are
real intervals only.

Corollary 2.3. Let T(x) = cNxN + · · ·, cN ∈C\{0}, be a polynomial. Then
N⋃

j=1

T−1
j ([ − 1; 1]) ⊂ R

if and only if all coe9cients of T are real, T has N simple real zeros and min{|T(y)|: T′(y) =
0}¿ 1.

Proof. Necessity: Since
N⋃

j=1

T−1
j ([ − 1; 1]) = {z ∈C: T(z)∈ [ − 1; 1]} ⊆ R;

it follows that for every -∈ (−1; 1) the polynomial T − - has N real zeros. Furthermore, we
claim that each of these zeros is simple. Let us assume to the contrary that T − - has a zero
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at x0 of multiplicity m + 1; m¿ 1, i.e., T(k)(x0) = 0 for k = 1; : : : ; m and T(m+1)(x0) 
= 0: Then
we have seen that there are m + 1 arcs Cj) , Cj) ⊂ ZI given in Theorem 2.1, which touch each
other at x0. Since |ReT(x0)| = |T(x0)| = |-|¡ 1, there exists an *¿ 0 such that |ReT(z)|¡ 1
for z ∈K(x0; *) := {z ∈C: |z − x0|¡*} and thus for any z ∈K(x0; *) ∩ Cj) , )∈{1; : : : ; m + 1}, we
have T(z)∈ [ − 1; 1]. Since Cj, j∈{1; : : : ; N}, have been chosen such that Im T(x; y)¿ 0 at the
right-hand side it follows, since m¿ 1, that

(K(z0; *) ∩ Cj)) ∩ (C\R) 
= ∅ for )∈{1; : : : ; m + 1};
which is a contradiction to {z ∈C: T(z)∈ [ − 1; 1]} ⊂ R. Hence, for every -∈ (−1; 1), T − -,
and in particular T, has N simple real zeros which implies that T(x)=aN has real coe.cients and
thus, because of T(z)∈ [− 1; 1], T has real coe.cients. Furthermore, it follows that T′ has N − 1
simple real zeros.

What remains to be shown is that min{|T(y)|: T′(y)=0}¿ 1. Let us assume that this statement
does not hold true. Then there exists a y0 ∈R such that T′(y0) = 0 and |ReT(y0)|¡ 1. As above,
then there are two arcs Cj) , ) = 1; 2, Cj) ⊂ ZI given as in Theorem 2.1, which touch each other at
y0 such that for *¿ 0 su.ciently small |ReT(z)|¡ 1 on K(y0; *) ∩Cj) , ) = 1; 2, which is again a
contradiction to {z ∈C: T(z)∈ [ − 1; 1]} ⊂ R.
Su9ciency: Since T has N simple real zeros and thus T′ has N − 1 simple real zeros

y1; : : : ; yN−1 ∈R it follows that T is strictly monotone in (yj; yj+1), y0 := −∞ and yN := ∞.
Now by assumption |T(yj)|¿ 1 for j = 1; : : : ; N − 1, which implies, taking a look at the graph
of such a polynomial, that for every -∈ [ − 1; 1] the polynomial T − - has all its N zeros real,
including multiplicity, which proves the assertion.

3. Orthogonal polynomials associated with polynomials mappings

First let us introduce polynomials orthogonal with respect to a functional. Let (ck) be a sequence
of complex numbers and L :P→ C be a linear functional on the space P of polynomials given by

L(zk) = ck for k ∈N 0 := N ∪ {0}; (3.1)

which is assumed to be extendable to the space of continuous functions on a compact set K ⊂ C.
Furthermore assume that the associated function

Q0(y) :=
∞∑
k=0

cky−(k+1) = L

(
1

y − z

)
(3.2)

converges in a neighbourhood of y =∞. Here, L acts on z. It is known (see [7, Chapter 1.3]) that
for a given function Q0 of form (3.2), which is not a rational function, there exists an in8nite unique
sequence of the so-called basic integers (n)), n0 := 0¡n1 ¡n2 ¡ · · ·, and a unique sequence of
monic polynomials (pn)) (pn) of degree n)) such that

L(zjpn)) = 0 for j = 0; : : : ; n)+1 − 2

and

L(zn)+1−1pn)) 
= 0:
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The polynomials (pn)) satisfy a recurrence relation of the form

pn)+1(z) = dn)+1(z)pn)(z) − /n)+1pn)−1(z) for )∈N 0; (3.3)

where dn)+1 ∈Pn)+1−n) , /n)+1 ∈C\{0}, p0(z) = 1 and p−1 = 0. If n) = n, i.e., if L is de8nite, then
(3.3) becomes the usual form

p)+1(z) = (z − 0)+1)p)(z) − /)+1p)−1(z):

The monic associated polynomials (p(k)
n ) of order k, k ∈N 0, with respect to the de8nite functional

L are de8ned by the shifted recurrence relation

p(k)
)+1(z) = (z − 0)+1+k)p(k)

) (z) − /)+1+kp
(k)
)−1(z);

where p(k)
0 (z) = 1 and p(k)

−1(z) = 0. Let us mention that the associated polynomials (of order one) of
(pn), also called polynomials of the second kind, have a representation of the form, n∈N,

/1p
(1)
n−1(z) = L

(
pn(z) − pn(x)

z − x

)
;

where /1 = L(1), with the help of which the PadOe-approximation property

/1p
(1)
n−1(z)

pn(z)
= L

(
1

z − x

)
+ O

(
1

z2n+1

)
as |z| → ∞

follows.
Certainly of foremost interest is the case that the moments ck have a representation of the form

ck =
∫
K
zk d�(z); (3.4)

where � is a complex (not necessarily real and/or positive) measure on the curve or arc K . Then
the polynomials orthogonal with respect to L become the polynomials orthogonal with respect to �
on K and the function Q0 becomes the so-called Stieltjes-function

Q0(y) =
∫
K

1
y − z

d�(z): (3.5)

A functional L is called positive de8nite if L has a representation of the form (3.5) with K ⊂ R
and � a positive real measure on K .

Following Bessis and Moussa [5], see also [10], let us show how a new functional is generated
in a natural way by the functional L and a polynomial (mapping) T.

De!nition 3.1. For given T∈PN \PN−1 and S ∈Pm, m6N − 1, de8ne

LT; S(f(z)) := L


 N∑

j=1

S(T−1
j (z))

T′(T−1
j (z))

f(T−1
j (z))


 ; (3.6)

where it is assumed that the right-hand side is well de8ned. Here, {T−1
j : j = 1; : : : ; N} denotes the

complete assignment of branches of T−1. The de8nition (3.6) of the linear functional LT; S is quite
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natural and can be understood in the following way: By partial fraction expansion we have

S(y)
T(y) − z

=
N∑

j=1

S(T−1
j (z))

T′(T−1
j (z))

· 1
y −T−1

j (z)
; (3.7)

from which we get for large y∈C and for all k ∈N 0

LT; S

(
T(z)
y − z

)
=

∞∑
)=0

y−()+1)LT; S(z)T(z))

=
∞∑
)=0

y−()+1)L


 N∑

j=1

S(T−1
j (z))

T′(T−1
j (z))

[T−1
j (z)])zk




=L


zk

N∑
j=1

S(T−1
j (z))

T′(T−1
j (z))

1
y −T−1

j (z)


 = S(y)L

(
zk

T(y) − z

)
: (3.8)

In particular, we have

LT;1(zk) = 0 for k = 0; : : : ; N − 2; and thus S(y)L
(

1
T(y) − z

)
= L

(
S(z)

T(y) − z

)
:

(3.9)

Thus T compositions have the following orthogonality property, see e.g., [26, Theorem 2(b)].

Proposition 3.2. Let T and S be polynomials of degree N and m6N − 1, respectively. Suppose
that L(zjf(z)) = 0 for j = 0; 1; : : : ; n− 1. Then

LT; S(zj(f ◦T)(z)) = 0 for j = 0; 1; : : : ; (n + 1)N − m− 2:

Let us mention that an analog orthogonality property holds with respect to the Hermitian inner
product (see [26, Theorem 2(a) and also Theorem 3]).

Now of special interest are functionals with an integral representation (3.4). Then transformation
(3.6) de8nes a measure d�T; S on the inverse image T−1(K) by

LT; S(f(z)) =
N∑

j=1

∫
K
f(T−1

j (z))
S(T−1

j (z))

T′(T−1
j (z))

d�(z)

= :
∫
T−1(K)

f(z) d�T; S(z): (3.10)

For the following we need an extension of the functional LT; S leading to important classes
orthogonal polynomials as such ones with periodic recurrence coe.cients. Let �∈P) be a polynomial
of degree ) and suppose that Q0 from (3.2) converges at the zeros of �. By the way, note that Q0
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certainly converges at the zeros of � if the moments have a representation of the form (3.4) and the
zeros of � are outside of the support of the measure �. Now let us de8ne a new functional L1=� by

�(y)L1=�

(
1

y − z

)
:= Y (y) + L

(
1

y − z

)
; (3.11)

where Y ∈P)−1 is that unique interpolatory-polynomial which satis8es at the zeros wi of �

Y (wi) = −L

(
1

wi − z

)
: (3.12)

We claim that

Y (y) = L

(
�(y) − �(z)

y − z
1

�(z)

)
: (3.13)

Indeed, obviously the expression at the right-hand side is a polynomial of degree 6 )− 1 and has
the interpolatory property (3.12) which, by uniqueness, proves the claim. Furthermore, we have

L

(
1

y − z

)
= L

(
�(z) − �(y)

y − z
1

�(z)

)
+ �(y)L

(
1

y − z
1

�(z)

)

and hence, by (3.13),

L1=�

(
1

y − z

)
= L

(
1

y − z
1

�(z)

)
; (3.14)

i.e., the moments c1=�
k of the new linear functional L1=� are given by

L1=�(zk)= : c1=�
k = L

(
zk

�(z)

)
:

Now, let L be the functional LT; S , introduced above then by (3.14) we have

LT; S=�

(
1

y − z

)
:= (LT; S)1=�

(
1

y − z

)
= LT; S

(
1

y − z
1

�(z)

)
: (3.15)

The following special case is of particular interest: Let K be a complex curve, let w :K → C an
integrable function, and put

d�(z) := w(z) dz +
n∑

)=1

�)6(z − y));

where �1; : : : ; �n; y1; : : : ; yn ∈C and where 6 denotes the Dirac-measure. Suppose that L has an
integral representation (3.5). Then applying (3.10) to f(z) = 1=(y − z)�(z) and by changing the
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variable of integration we get in view of (3.15)

LT; S=�

(
1

y − z

)
=
∫
T−1(K)

1
y − z

d�T; S=�(z)

with

d�T; S=�(z) =
S(z)
�(z)

(w ◦T)(z) dz

+
n∑

)=1

�)

N∑
j=1

S(T−1
j (y)))

T′(T−1
j (y))) · �(T−1

j (y)))
6(z −T−1

j (y))); (3.16)

where the orientation of integration on the subcurves of T−1(K) is given by the orientation of
integration on K . Note, if K = [− 1; 1] then the absolute continuous part in (3.16) can be written in
the convenient form (S(z)=�(z))(w ◦ T)(z) sgn T′(z) |dz|. The orthogonality property with respect
to L is inherited to LT; S=� as the following theorem shows.

Proposition 3.3. Let L be a linear functional given by (3.1) and let (pnk )k∈N 0 be a sequence of
polynomials of exact degree nk satisfying the orthogonality condition

L(zjpnk ) = 0 for j = 0; : : : ; nk − 1:

Furthermore, let TN ; Sm and �) be an arbitrary complex polynomials of degree N; m, and ),
respectively, with m+)6N−1. Then the sequence of polynomials (�)(pnk ◦TN ))k∈N 0 is orthogonal
to P(nk+1)N−m−2 with respect to the linear functional LTN ;Sm=�) .

Proof. The assertion follows immediately from Proposition 3.2 since

LTN ;Sm=�)(zj�)(z)(pnk ◦TN )(z)) = LTN ;Sm(zj(pnk ◦TN )(z)):

For example {�)(z)pn(zN )}n∈N, N ∈N, is orthogonal on the star T−1([ − 1; 1]) = {r exp 2k�i=N :
r ∈ [0; 1]; k = 0; : : : ; 2N −1} with respect to the weight function (Sm(z)=�)(z))w(zN ) exp(2k�i=N )|dz|
on the kth ray, k = 0; : : : ; 2N − 1 if (pn) is orthogonal on [− 1; 1] with respect to w(x). Next let us
give some more informations on the polynomials orthogonal with respect to LTN ;Sm=�) .

Theorem 3.4. Suppose that the polynomials (pn) orthogonal with respect to the de6nite functional
L satisfy the recurrence relation

pn(z) = (z − 7n)pn−1(z) − (npn−2(z); p0(z) = 1; p−1(z) = 0:

Furthermore assume that the functional LTN ;Sm=�) is de6nite, where TN has the leading coe9cient
1=L and Sm and �) are monic with m + ) = N − 1. Suppose that the polynomials (Pn) orthogonal
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with respect to LTN ;Sm=�) satisfy the recurrence relation

Pn(z) = (z − 0n)Pn−1(z) − /nPn−2(z); P0(z) = 1; P−1(z) = 0: (3.17)

Then the following relations hold:

(1) PkN+)(z) = �)(z)pk( [TN (z)) for k ∈N 0

(2) P(1)
kN+)−1(z) = P(1)

)−1(z)pk( [TN (z)) + const: · Sm(z)p(1)
k−1( [TN (z)) for k ∈N 0

(3)
∏kN+)+1

-=(k−1)N+)+2 /- = L2(k+1

(4) P(kN+))
N (z) − /kN+)+1P

((k−1)N+)+1)
N−2 (z) = T̂N (z) − L7k+1 for k ∈N

(5) P(kN+)+1)
N−1 (z) = �)(z)S̃m;k(z) for k ∈N 0.

Proof. Relation (1) follows immediately from Proposition 3.3. By the recurrence relation of (pk)
and (1) we have

P(k+1)N+)(z) = (T̂N (z) − L7k+1)PkN+)(z) − L2(k+1P(k−1)N+)(z): (3.18)

Since by Lemma 3.1(b) from [21]

bkN+)P(k−1)N+)(z) = P((k−1)N+)+1)
N−1 (z)PkN+)−1(z) − P((k−1)N+)+1)

N−2 (z)PkN+)(z);

where

bkN+) =
kN+)∏

-=(k−1)N+)+2

/-;

it follows from (3.18) that

P(k+1)N+)(z) =
(
T̂N (z) − L7k+1 + (L2(k+1=bkN+))P

((k−1)N+)+1)
N−2 (z)

)
PkN+)(z)

− (L2(k+1=bkN+))P
((k−1)N+)+1)
N−1 (z)PkN+)−1(z): (3.19)

On the other hand, we know by Lemma 3.1(c) from [21] that P(k+1)N+) has a unique representation
of the form

P(k+1)N+) = P(kN+))
N PkN+) − /kN+)+1P

(kN+)+1)
N−1 PkN+)−1;

which gives by (3.19) the relations (3)–(5).
Concerning relation (2) we have in view of (1)

const: · P(1)
kN+)−1(y) =LTN ;Sm=�)

(
�)(y)pk(TN (y)) − �)(z)pk(TN (z))

y − z

)

= pk(TN (y))LTN ;Sm=�)

(
�)(y) − �)(z)

y − z

)

+ Sm(y)LTN

(
pk(TN (y)) − pk(TN (z))

y − z

)
;
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which is in view of

LTN

(
pk(TN (y)) − pk(TN (z))

y − z

)
= pk(TN (y))L

(
1

TN (y) − z

)
−L

(
pk(z)

TN (y) − z

)

the assertion.

For the case � ≡ 1 Theorem 3.4 has been proved by diDerent methods in [5], see also [11,
Theorem 6]. If � ≡ 1 and if TN is the classical Chebyshev polynomial, i.e., TN (x)=cosN arccos x,
then one obtains the so-called sieved orthogonal polynomials, see [1].

If we put in Theorem 3.4 d�(x)=
√

1 − x2 then the weight function d�TN ;1=�=(
√

1 −T2
N (z)=�(z))

sgn T′
N (z) |dz| leads to orthogonal polynomials with periodic recurrence coe.cients from a certain

index n0 upwards. This fact can be proved in exactly the same way as in [21, Theorem 3.1], where
it is assumed that the coe.cients of TN are real. For orthogonal polynomials with periodic or
asymptotically periodic recurrence coe.cients see e.g. [10,13,21,22,2,3]. Next let us turn to the
question when polynomials from Theorem 3.4 are orthogonal with respect to a positive measure
supported on a subset of the real line.

4. Characterization of polynomial mappings generating positive de!nite functionals

Theorem 4.1. Let � be a positive measure with supp(�)=[−1; 1]. Suppose that (pn) is orthogonal
with respect to � and that T is a polynomial of degree N . Then the following statements are
equivalent:

(a) T has N simple real zeros and min{|T(z)|: T′(z) = 0}¿ 1
(b) all zeros of pn ◦T, n∈N, are real
(c) (pn ◦ T) is orthogonal with respect to a positive measure supported on a compact subset

of R.

Proof. (b) ⇒ (a). Let x1; : : : ; xn ∈ [−1; 1] be the zeros of pn and let y);j ∈T−1([−1; 1]), )=1; : : : ; N ,
j = 1; : : : ; n, be those numbers such that

T(y);j) = xj for ) = 1; : : : ; N;

i.e., the y);j’s are the zeros of pn ◦ T. Now, let us assume that T does not satisfy the given
conditions. Then it follows from Corollary 2.3 that T−1([ − 1; 1]) contains an arc C which lies
in C\R. Recalling the well-known fact that the zeros of {pn} are dense in [ − 1; 1] this implies
that pn ◦ T has complex zeros for su.ciently large n. But this is a contradiction to the fact that
(pn ◦T)n∈N is orthogonal with respect to a positive de8nite functional.

(a) ⇒ (b) and (c). In view of Theorem 3.3 and Corollary 2.3 (pn ◦T) is orthogonal on the set
of real intervals T−1([−1; 1]) with respect to the positive measure �T;T′

. Thus all zeros of pn ◦T
are in the convex hull of T−1([ − 1; 1]).

(c) ⇒ (b) is well known.
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Moreover we are able to give a necessary and su.cient condition such that {�)(pn ◦T)}n∈N is
orthogonal with respect to a positive measure.

Corollary 4.2. Suppose that L is positive de6nite and that the associated measure � has support
[ − 1; 1]. Let TN ; Sm; �) be polynomials of degree N; m and ), respectively, with m + ) = N − 1
and sgn Sm=�) = sgn T′

N on T−1
N ([ − 1; 1]). Then LTN ;Sm=�) is positive de6nite if and only if TN

has N simple real zeros and min{|TN (z)|: T′
N (z) = 0}¿ 1.

Proof. Necessity: Since LTN ;Sm=�) is positive de8nite and �) · (pn ◦TN ) is orthogonal with respect
to LTN ;Sm=�) , it follows that pn ◦TN has real zeros only.

Su9ciency: By the properties of TN , T−1
N ([ − 1; 1]) consists of real intervals only. In view of

the assumptions �TN ;Sm=�) is a positive measure, which proves the corollary.
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