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Abstract

Given an analytic function of one complex variable f, we investigate the arithmetic nature of the values
of f at algebraic points. A typical question is whether f(�) is a transcendental number for each algebraic
number �. Since there exist transcendental entire functions f such that f(t)(�)∈Q[�] for any t¿ 0 and any
algebraic number �, one needs to restrict the situation by adding hypotheses, either on the functions, or on
the points, or else on the set of values.

Among the topics we discuss are recent results due to Andrea Surroca on the number of algebraic points
where a transcendental analytic function takes algebraic values, new transcendence criteria by Daniel Delbos
concerning entire functions of one or several complex variables, and Diophantine properties of special values
of polylogarithms.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

At the end of XIXth century, after the proof by Hermite and Lindemann of the transcendence of
e� for nonzero algebraic �, the question arose (see [13]):

(*) Does a transcendental analytic function usually takes transcendental values at algebraic
points?
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In the example of the exponential function ez, the word “usually” stands for avoiding the exception
�=0. Recall also that a transcendental function is a function f (here a complex valued function in a
single complex variable) such that, for any nonzero polynomial P ∈C[X; Y ], the function P(z; f(z))
is not the zero function. If f is meromorphic in all of C, this just means that f is not a rational
function. If f is an entire function, namely a function which is analytic in C, to say that f is a
transcendental function amounts to say that it is not a polynomial.

However in 1886 Weierstrass found that a positive answer to the initial question (∗) can hold
only for restricted classes of functions: he gave an example of a transcendental entire function which
takes rational values at all rational points. He also suggested that there exist transcendental entire
functions which take algebraic values at any algebraic point. After the early works of Strauss and
StFackel at the end of XIXth century, one knows now that for each countable subset 	 ⊂ C and each
dense subset T ⊂ C there is a transcendental entire function f such that f(	) ⊂ T . According to
[9], in case the countable set 	 is contained in R, then the same conclusion holds also for a dense
subset T ⊂ R.

Denote by HQ the Ield of complex algebraic number ( HQ is the algebraic closure of Q into C). An-
other construction due to StFackel produces an entire function f whose derivatives f(t), for t=0; 1; : : :,
all map HQ into HQ. Furthermore, Faber reIned the result in f(t)( HQ) ⊂ Q(i) for any t¿ 0. Later
(1968), A.J. van der Poorten constructed a transcendental entire function f such that f(t)(�)∈Q(�)
for any t¿ 0 and any �∈ HQ. Surroca [16] recently revisited this construction of van der Poorten by
providing, for such a function f, a sharp lower bound for the number of �∈ HQ of bounded degree
and height such that f(�) has also a bounded height (see Section 2).

One may notice that all these constructions may be worked out so that the growth of the con-
structed function f is as small as possible (see [9]): given any transcendental entire function ’, one
may require

|f|R6 |’|R
for all suLciently large R, where

|f|R := sup
|z|=R

|f(z)|:

On the other hand Elkies and Surroca give, for a transcendental analytic function f, upper bounds
for the number of �∈ HQ of bounded degree and height such that f(�)∈ HQ has also bounded degree
and height. We discuss this topic in Section 2.

In view of such results, one needs to restrict the initial question (∗). Most often the restriction is
on the class of analytic functions: for instance one requires that the considered function satisIes some
diMerential equation. The case of entire functions satisfying a linear diMerential equation provides the
strongest results, related with Siegel’s E functions [7], Chapter 5 Ref. [7] contains most references
to the subject before 1998, including Siegel E and G functions. Philippon K-functions are introduced
in Ref. [14]. Another class of functions, which are analytic only in a neighborhood of the origin,
have also been introduced by Siegel under the name of G-functions [7], Chapter 5, Section 7. More
recently, generalizations of transcendence and independence results related to modular functions
to more general classes of functions have been introduced by Philippon with his new class of
K-functions [14]: typical such functions are Ramanujan P, Q and R functions.

Another type of diMerential equation is related with the solution, by Gel’fond, of Hilbert’s seventh
problem, and gives rise to the Schneider-Lang criterion. Once again this criterion started from a



M. Waldschmidt / Journal of Computational and Applied Mathematics 160 (2003) 323–333 325

transcendence result, it provides a general statement on the values of analytic functions, and then it
yields new transcendence results (here in connection with algebraic groups). A number of variations
have been produced. In Section 3 we quote a new result by Delbos which is a variant of a result by
Bombieri [1] dealing with functions of several variables satisfying algebraic diMerential equations.

A fashionable topic nowadays is the study of the arithmetic nature of special values of polyloga-
rithms. Despite the fact that very few information is available so far on the values of Riemann zeta
function, one may expect that extending the investigations to multiple zeta values will prove to be
a fruitful direction. We consider this topic in Section 4 where we notice that the open problem of
algebraic independence of logarithms of algebraic numbers reduces to a linear independence question
on the values of multiple polylogarithms at algebraic points: the point is that for n¿ 1, (log(1−z))n
is a multiple polylogarithm.

2. Algebraic values of analytic functions, following Surroca

In the course of his Diophantine investigations, Elkies [6] devoted attention to the number of
rational points of bounded height lying on a transcendental curve C. Assume C is a planar curve, in
C2, and denote by C(Q) the intersection C ∩Q2. One expects indeed the number of (�; �)∈C(Q)
with h(�)6N and h(�)6N to be quite small compared with the number of �∈Q with h(�)6N .
Here, h(p=q) = max{log |p|; log q} for p=q∈Q with gcd(p; q) = 1 and q¿ 0. In particular, given an
interval I ⊂ R (the problem is local), the number of p=q∈Q ∩I with h(p=q)6N is not too far
from eN .

A special case of Elkies result reads as follows:
Let f be a transcendental real analytic function on an open subset of R containing an interval I.

For N ¿ 0, consider the set

SN = {x∈Q ∩I;f(x)∈Q; h(x)6N; h(f(x))6N}:
Then, for each �¿ 0, there exists N0¿ 0 such that

|SN |6 e�N for N¿N0:

Several questions then arise: is this estimate best possible? Is it possible to improve it for inInitely
many N (in place of all suLciently large N )? Do similar results hold for algebraic points on a
transcendental curve, in place of rational points?

These questions, and much more, are addressed by Surroca [16]. Denote by h(�) the absolute
logarithmic height of an algebraic number �:

h(�) =
1

[Q(�) : Q]
logM (�);

where

M (�) =
∏
v

max{1; |�|v}

is Mahler’s measure of � (and v ranges over the set of normalized absolute values of Q(�)). For
�= p=q∈Q, one recovers the previous deInition of h(p=q).
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The number of algebraic numbers � with [Q(�) : Q]6D and h(�)6N has been investigated by
many a mathematician, including Schanuel, Evertse, Schmidt, Loher and Masser (see for instance
[11,12], where the question of counting points of bounded height is dealt with, and further references
are given). Loosely speaking, a rough estimate is eD(D+1)N .

In [16] and in her thesis, A. Surroca shows that Elkies’ result is not far from best possible, to a
certain extent:

Theorem 1. Let ! be a positive valued real function such that !(x)=x → 0 as x → ∞. There exist
a transcendental entire function f satisfying

f(t)(�)∈Q(�) for all t¿ 0 and �∈ HQ
and such that, for any positive integer D, there are in<nitely many N¿ 0, for which the set

SN = {�∈ HQ; |�|6 1; [Q(�) : Q]6D; h(�)6N; h(f(�))6N}
has cardinality

|SN |¿ eD(D+1)!(N ):

In the other direction, using transcendence arguments, Surroca [16] proves the following result, which
is exponentially sharper than Elkies’ one, but is valid only for inInitely many N :

Theorem 2. Let U be a connected open set in C and K a compact in U. There exists a positive
real number c¿ 0 such that, for any transcendental complex analytic function f in U and any
positive integer D, there are in<nitely many integers N for which the set

SN = {�∈ HQ ∩K;f(�)∈ HQ; [Q(�; f(�)) : Q]6D; h(�)6N; h(f(�))6N}
has

|SN |6 cD3N 2:

An explicit value for c follows from [16]. Further results are given in [16].

3. Transcendence criteria for entire functions of one or several complex variables

In this section we concentrate on entire functions in one or several complex variables: the local
question of analytic functions in an open subset is only brieRy discussed at the end of Section 3.
For an entire function f in Cn, we denote

|f|R = sup
|z1|=···=|zn|=R

|f(z1; : : : ; zn)|

the maximum modulus of f on a polydisc of radius R (any other norm would do), and we say that
f has order 6 % if

lim sup
R→∞

1
R%

log |f|R¡∞:
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We start with the easier case n = 1. A simple case of Schneider–Lang Transcendence Criterion in
one variable ([10] Chapter III, Theorem 1) is:

Theorem 3. Let f1; f2 be two algebraically independent entire functions of <nite order in C and
let K be a number <eld. Assume

f′
j ∈K[f1; f2] for j = 1 and j = 2:

Then the set

S = {w∈C;fj(w)∈K for j = 1 and j = 2}
is <nite.

Upper bounds for the number of elements in S are known—but here we are just interested in the
Initeness result.

One deduces Hermite–Lindemann’s Theorem on the transcendence of e� for algebraic � �= 0 by
considering

f1(z) = z; f2(z) = ez; S = {m�;m∈Z}:
Notice that when f1(z) = z, the assumption that f1; f2 are algebraically independent just means that
f2 is a transcendental function.

Another consequence of Theorem 3 is Gel’fond–Schneider’s Theorem on the transcendence of ��

for algebraic � and � with � �= 0, � �∈ Q, log � �= 0 and �� = exp{� log �}: just consider

f1(z) = ez; f2(z) = e�z; S = {m log �;m∈Z}:
Theorem 3 is only a special case of Schneider–Lang’s criterion in one variable in [10], Chapter
IV: the full statement deals with meromorphic functions and more general diMerential equations; in
particular it applies to elliptic and even to abelian functions.

An extension of Theorem 3 to several complex variables has also been considered by Schneider
and Lang; it deals with Cartesian products ([10] Chapter IV, Theorem 1 and [18], Chapter 4, Section
4.1). Here is a simpliIed statement, which is suLcient for us.

Theorem 4. Let f1; : : : ; fn+1 be algebraically independent entire functions of <nite order in Cn, K
a number <eld, (e1; : : : ; en) a basis of Cn over C and S1; : : : ; Sn subsets of C. Assume

(9=9z+)f′
j ∈K[f1; : : : ; fn+1] for 16 j6 n+ 1 and 16 +6 n:

Assume also

fj(w1e1 + · · · + wnen)∈K
for any j= 1; : : : ; n+ 1 and any (w1; : : : ; wn)∈ S1 × · · · × Sn. Then one at least of the sets S1; : : : ; Sn
is <nite.

This topic was Irst investigated in 1941 by Th. Schneider when he proved the transcendence of
the values of the beta function B(a; b) at rational numbers a and b with a, b and a + b not in Z.
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It was further studied by S. Lang around 1964 in connection with transcendence results on algebraic
varieties.

In 1980, Bertrand and Masser pointed out that Baker’s result on the linear independence of
logarithms of algebraic numbers was in fact a corollary of Theorem 4 (see Chapter 4 of [18]).

According to [10] Chapter IV, Nagata suggested that under the assumptions of Theorem 4, the
set

S = {w∈Cn;fj(w)∈K for 16 j6 n+ 1}
is contained in an algebraic hypersurface: this is obviously a stronger statement than Theorem 4.
This suggestion turns out to be right, as shown by Bombieri in 1970 [1].

Theorem 5. Let f1; : : : ; fn+1 be algebraically independent entire functions of <nite order in Cn and
K a number <eld. Assume

(9=9z+)f′
j ∈K[f1; : : : ; fn+1] for 16 j6 n+ 1 and 16 +6 n:

Then the set

S = {w∈Cn;fj(w)∈K for 16 j6 n+ 1}
is contained in an algebraic hypersurface.

Bombieri’s conclusion deals with the source set S ⊂ Cn. Another type of result has just been
produced by Delbos: under the same hypotheses as Theorem 5, the conclusion deals with the range
set f(S) ⊂ Cn+1, where

f = (f1; : : : ; fn+1) : Cn → Cn+1:

Theorem 6. Let f1; : : : ; f‘ be entire functions of <nite order in Cn and K a number <eld. Assume

(9=9z+)f′
j ∈K[f1; : : : ; fn+1] for 16 j6 ‘ and 16 +6 n:

Let S be a <nite subset of C such that

fj(w)∈K for all w∈ S and 16 j6 ‘:

Then there exists a positive constant c and a positive integer M such that, for each integer
N¿M , there is a nonzero polynomial QN in C[X1; : : : ; X‘] of degree 6 cN‘=n such that the function
FN = QN (f1; : : : ; f‘) has a zero of multiplicity ¿N at each point of S.

Again this result contains Baker’s Theorem on the linear independence of logarithms of algebraic
numbers: starting with a nontrivial linear relation

�0 + �1log �1 + · · · + �n−1log �n−1 = log �n

with algebraic �’s and �’s, one considers the functions

z0; ez1 ; : : : ; ezn−1 ; e�0+�1z1+···+�n−1zn−1 :

The proof of Baker’s result along these lines is more natural than the approach by Bertrand–Masser
using Theorem 4, but it requires a zero-estimate. On the otherhand, in contrast with the proof by



M. Waldschmidt / Journal of Computational and Applied Mathematics 160 (2003) 323–333 329

Bertrand and Masser, it is eMective and yields quantitative results (measures of linear independence
for logarithms of algebraic numbers.)

Other criteria are available from [5]. One may point out that such criteria also apply to real analytic
functions, by means of the “elementary approach” of Gel’fond and Linnik in [8]. See [2,3] for the
methods of Schneider and Gel’fond respectively. However, according to Delbos, the hypotheses
which are necessary for the elementary method to work (involving Rolle Theorem for real functions
as a substitute to Schwarz’ Lemma for complex functions) usually imply that the functions are just
restrictions to the real line of complex analytic functions of Inite order.

Further, most results in this section extend easily to meromorphic functions of several variables
(essentially, one only needs to avoid singularities). Furthermore, extensions are possible to functions
which are deIned only locally, say in a polydisc in Cn, but then the results are usually weaker: this
is the main reason for which p-adic results are sometimes weaker than their complex analogues.
A witness of this diLculty is the open problem of proving a p-adic analogue of the Lindemann–
Weierstrass Theorem on the algebraic independence of e�1 ; : : : ; e�n for linearly independent algebraic
�’s.

4. Polylogarithms

The classical polylogarithms

Lis(z) =
∑
n¿1

zn

ns

for s= 1; 2; : : : and |z|6 1 with (s; z) �= (1; 1), are ubiquitous. The study of the arithmetic nature of
their special values is a fascinating subject [4]: very few is known.

Several recent investigations concern the values of these functions at z = 1: these are the values
at the positive integers of Riemann zeta function

1(s) = Lis(1) =
∑
n¿1

1
ns

for s= 2; 3; : : : .
One knows that 1(3) is irrational [21], and that inInitely many values 1(2n + 1) of the zeta

function at odd integers are irrational (see the lectures by Rivoal and Zudilin at this conference).
A folklore conjecture is that the numbers

1(2); 1(3); 1(5); : : : ; 1(2n+ 1)

do not satisfy any nontrivial algebraic relation with rational coeLcients: this amounts to say that
the values at the odd integers of Riemann zeta function, namely 1(3); 1(5); : : : , are algebraically
independent over the <eld Q(2).

It is far easier to prove a statement of linear independence rather than a statement of algebraic
independence. For instance, according to the Lindemann–Weierstrass’ Theorem on the algebraic
independence of values of the exponential function, the numbers e�1 ; e�2 ; e�3 ; : : : are algebraically
independent if the algebraic numbers �1; �2; �3 : : : are linearly independent over the rational number
Ield. However most proofs establish the equivalent statement that the numbers e�1 ; e�2 ; e�3 ; : : : are
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linearly independent over the Ield of rational numbers if the algebraic numbers �1; �2; �3 : : : are
pairwise distinct. In the same way, the algebraic independence problem for the values of the Riemann
zeta function boils down to a linear independence result for the values of multiple polylogarithms
in one single variable, namely

1(s) = Lis(1) =
∑

n1¿n2¿···¿nk¿1

1
ns11 · · · nskk

for s= (s1; : : : ; sk) with s1¿ 2, where

Lis(z) =
∑

n1¿n2¿···¿nk¿1

zn1

ns11 · · · nskk

for z ∈C, |z|6 1 with (z; s1) �= (1; 1) (see [19]).
There are plenty of linear relations among these numbers, and a conjecture of Zagier [4,19,20]

predicts a precise value for the dimension dn of the vector space over the rational number Ield
spanned by these numbers 1(s) restricted to s1 + · · · + sk = n, namely

dn = dn−2 + dn−3

with d1 = 0, d2 = 1. It is known that d3 = 1 because 1(3) = 1(2; 1), also d4 = 1 because

1(4) = 1(2; 1; 1) = 41(3; 1) = 4
3 1(2; 2);

but d5 = 2 is equivalent to the open problem to prove that 1(5)=1(2)1(3) is irrational.
The fact that the integers dn are bounded from above by the numbers deIned by this inductive

formula has just been proved by Terasoma in [17]. As pointed out in [17], the same result was
announced by Goncharov in his preprints AG/0005069 and AG/0103059. See the related paper by
Deligne and Goncharov NT/0302267.

Several related conjectures are explained by Cartier [4]. Also the values at roots of unity of the
functions Lis(z) have been considered by a number of authors: in this case it is appropriate to
consider polylogarithms in several variables

∑
n1¿n2¿···¿nk¿1

zn1
1 · · · znkk
ns11 · · · nskk

for z = (z1; : : : ; zk)∈C, |zi|6 1 with (z1; s1) �= (1; 1). However here we shall consider only multiple
polylogarithms in a single complex variable.

We describe now another example of linearization of an algebraic independence question. One of
the main conjectures in transcendental number theory states that linearly independent numbers ‘ for
which e‘ are algebraic (one says usually that such ‘ is a logarithm of an algebraic number) are
algebraically independent. Let us show how this question reduces to a linear independence problem
on special values, at algebraic points, of multiple polylogarithms.

For simplicity let �1; : : : ; �m be positive real algebraic numbers such that the numbers ‘1 =
log �1; : : : ; ‘m = log �m are linearly independent.
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We introduce the notation {1}n for the sequence (1; 1; : : : ; 1) with n occurrences of 1. It is easy
to check that

Li{1}n(z) =
(−1)n

n!
(log (1 − z))n

for n¿ 1 and |z|6 1 with z �= 1 (this is formula (1.1) of [10]).

Let m and d be two positive integers and Zij be variables, with 16 i6m and 16 j6
(
d+1
m

)
.

The determinant

5(Z) = (Zi11j · · ·Zimmj);

with i1 + · · ·+ im6d and 16 j6
(
d+1
m

)
, as a polynomial in the variables Zij, does not vanish iden-

tically. Let aij be rational numbers such that the determinant 5 does not vanish at the corresponding
point. Writing

(X0 + a1jX1 + · · · + amjXm)d

as a linear form in the monomials X i00 · · ·X imm with i0 + · · · + im = d, we deduce that each of these
monomials is a linear combination with rational coeLcients of (X0 + a1jX1 + · · · + amjXm)d for

16 j6
(
d+1
m

)
.

Since

log u+ log v= log(uv)

for u; v¿ 0, it follows that the question of algebraic independence of logarithms of positive algebraic
numbers ‘1; : : : ; ‘m can be reduced to a question of linear independence of values of the multiple
polylogarithms Li{1}n (n¿ 1) (in a single variable), at algebraic points

1 − ‘b1
1 · · · ‘bmm

where b1; : : : ; bm are positive integers.
For instance we translate the (real case of the) four exponentials conjecture, namely:

• If a, b, c, d are algebraic numbers in the range 0¡x¡ 1 such that

(log a)(log b) = (log c)(log d);

then there exists (p; q)∈Z2 \ {(0; 0)} such that

ap = cq and bq = dp:

as follows:

• De<ne f(x) = Li11(1 − x) = (1=2)(log x)2 for 0¡x¡ 1. If a, b, c, d are algebraic numbers in
the range 0¡x¡ 1 such that

f(ab) − f(a) − f(b) = f(cd) − f(c) − f(d);

then there exists (p; q)∈Z2 \ {(0; 0)} such that

ap = cq and bq = dp:
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Polylogarithms in one variable are related by diMerential equation, namely they have a generating
series which satisIes the Knizhnik–Zamolodchikov equation

y′ =
(
x0

z
+

x1

1 − z
)
y;

where x0 and x1 are two noncommuting variables (see [4]).
Hence in the previous discussion diMerential equations are always there. However in the hypotheses

of Ramachandra’s criterion (transcendence criteria) [15], no diMerential equation is required, but
functional equations (like f(u+ v) = f(u)f(v) for the usual exponential function) are there. Also,
q-analogues of some the above questions have been extensively studied by TschakaloM, Lototskii,
Bundschuh, Wallisser, Popov and others (see for instance [7] Chapter 2, Section 8). A typical
example is the entire function

f(z) =
∏
n¿1

(1 + zq−n)

for q∈C, |q|¿ 1, which is solution of the functional equation

f(qz) = (1 + z)f(z):
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