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Abstract

This paper applies the variational iteration method and Adomian’s decomposition method to solve numerically the harmonic
wave generation in a nonlinear, one-dimensional elastic half-space model subjected initially to a prescribed harmonic displacement.
The results show that the variational iteration method is much easier, more convenient, and more stable and efficient than Adomian
decomposition method.
© 2006 Elsevier B.V. All rights reserved.
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0. Introduction

Wave generation in nonlinear thermoelasticity problems has gained a considerable interest for its importance in under-
standing the nature of interaction between the elastic and thermal fields as well as for its applications. Much effort was
paid on existence, uniqueness and stability of the solution of the problem, see Refs. [2,24,26] and the references cited
therein; variational principle and Hamilton principle were established [15–17], and various numerical techniques were
appeared [18,25]. Recently much attention has been devoted to numerical methods, which do not require discretization
of space–time variables or linearization of the nonlinear equations, among which the variational iteration method (VIM)
suggested in [6–14] shows its remarkable merits over others. The method was successfully applied to a nonlinear one
dimensional coupled equations in thermoelasticity [28], revealing the method is very convenient, efficient and accurate.
The basic idea of variational iteration method is to construct a correction functional with a general Lagrange multiplier
which can be identified optimally via variational theory. Adomian’s decomposition method (ADM) is to split the given
equation into linear and nonlinear parts, invert the highest-order derivative operator contained in the linear operator
in both sides, calculate Adomian’s polynomials, and finally find the successive terms of the series solution by recur-
rent relation using Adomian’s polynomials (see [1,4,5,19–23,27,29,30]). The aim of the present work is to apply VIM
and ADM to solve a real-life problem that exhibits nonlinear coupling between the mechanical and thermal fields and to
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produce one-dimensional wave solutions in case of thermoelastic half-space subjected initially to a prescribed harmonic
displacement.

1. The model problem

The aim of this paper is to solve the following system of nonlinear coupled one-dimensional partial differential
equations [2]:

utt − uxx(1 + 2�ux + 3�u2
x) = �1�x + �2(ux�)x , (1.1)

(
� − aux − 1

2bu2
x

)
t
− ((1 + �ux)�x)x = 0, 0�x < ∞ (1.2)

under the following initial conditions:

u(x, 0) = �(x, 0) = u0(1 − cos(x)), ut (x, 0) = �t (x, 0) = 0, (1.3)

and the boundary conditions

u(0, t) = �(0, t) = 0, ut (0, t) = �t (0, t) = 0, (1.4)

in the case of a thermoelastic half-space subjected initially to a mechanical disturbance.
The symbols u = u(x, t) and � = �(x, t) in (1.1), (1.3) denote, respectively, the dimensionless elastic displacement

and the dimensionless temperature, x and t are the spatial coordinate and the time. The constants involved in Eqs. (1.1),
(1.3) have obvious physical significance and will be assumed to have the following order of magnitude:

� = O(1), � = O(1 to 10−1), �1 = O(10−3), �2 = O(10−3),

a = O(10−1), b = O(10−1), � = O(1) and u0 = O(10−3).

2. Variational iteration method

Consider the following nonhomogeneous, nonlinear system of partial differential equations:

L1u(x, t) + N1(u(x, t), �(x, t)) = f (x, t), (2.1)

L2�(x, t) + N2(u(x, t), �(x, t)) = g(x, t), (2.2)

where L1, L2 are linear differential operators with respect to time, N1, N2 are nonlinear operators and f (x, t), g(x, t)

are given functions.
According to the variational iteration method, we can construct correct functionals as follows:

un+1(x, t) = un(x, t) +
∫ t

0
�1(�)[L1un(x, �) + N1(ũn(x, �), �̃n(x, �)) − f (x, �)] d�, (2.3)

�n+1(x, t) = �n(x, t) +
∫ t

0
�2(�)[L2�n(x, �) + N2(ũn(x, �), �̃n(x, �)) − g(x, �)] d�, (2.4)

where �1 and �2 are general Lagrange multipliers, which can be identified optimally via variational theory [6,7]. The
second term on the right-hand side in (2.3) and (2.4) is called the corrections and the subscript n denotes the nth order
approximation, ũn and �̃n are restricted variations. We can assume that the above correctional functionals are stationary
(i.e., �un+1 = 0 and ��n+1 = 0), then the Lagrange multipliers can be identified. Now we can start with the given initial
approximation and by the above iteration formulas we can obtain the approximate solutions.
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2.1. Implementation of VIM to the model problem

According to the variational iteration method and after some manipulation of Eqs. (1.1)–(1.3), the correct functionals
are as follows:

un+1(x, t) = un(x, t) +
∫ t

0
�1(�)[untt − ûnxx − �1�̂nx − ûnxx

· (2�ûnx + 3�û2
nx + �2�̂n) − �2ûnx �̂nx] d�, (2.5)

�n+1(x, t) = �n(x, t) +
∫ t

0
�2(�)[�nt − �

� �nxx − aûnxt − bûnxûnxt

− �ûnxx �̂nx − �ûnx �̂nxx] d�, (2.6)

where ûn and �̂n are considered as a restricted variation, i.e., �ûn = 0 and ��̂n = 0. Making the above correction
functionals stationary, and using the initial conditions (1.3):

�un+1(x, t) = �un(x, t) + �
∫ t

0
�1(�)[untt − ûnxx − �1�̂nx − ûnxx

· (2�ûnx + 3�û2
nx + �2�̂n) − �2ûnx �̂nx] d�

= �un(x, t) + �1�u̇n|�=t − �̇1�un|�=t +
∫ t

0
�̈1(�)�un d� = 0,

��n+1(x, t) = ��n(x, t) + �
∫ t

0
�2(�)[�nt − �̂nxx − aûnxt − bûnxûnxt

− �ûnxx �̂nx − �ûnx �̂nxx] d�

= ��n(x, t) + �2��n|�=t +
∫ t

0
(−�̇2)��n d� = 0

we obtain the following stationary conditions:

1 − �̇1(�)|�=t = 0, �̈1(�) = 0, �1(�)|�=t = 0, (2.7)

1 + �2(�)|�=t = 0, �̇2(�) = 0. (2.8)

The solution of equations (2.7), (2.8) are

�1(�) = � − t, �2(�) = −1. (2.9)

By substitution of the identified Lagrange multipliers into Eqs. (2.3)–(2.4) we have the following iteration relations:

un+1(x, t) = un(x, t) +
∫ t

0
(� − t)[untt − unxx − �1�nx − unxx

· (2�unx + 3�u2
nx + �2�n) − �2unx�nx] d�, (2.10)

�n+1(x, t) = �n(x, t) −
∫ t

0
[�nt − �nxx − aunxt − bunxunxt

− �unxx�nx − �unx�nxx] d�. (2.11)

In an algorithmic form, the VIM can be expressed and implemented in nonlinear coupling in thermoelasticity models
as follows:

Algorithm 1. Let n be the iteration index, set a suitable value for the tolerance (Tol)

Step 1: Compute the initial approximations u0 = u(x, 0) and �0 = u(x, 0) given by (1.3), set n = 0.
Step 2: Use the calculated values of un and �n to compute un+1 from (2.10).
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Step 3: Define un = un+1.
Step 4: Use the calculated values of un and �n to compute �n+1 from (2.11).
Step 5: If max |un+1 − un| < Tol and max |�n+1 − �n| < Tol stop, otherwise continue.
Step 6: Set un+1 = un.
Step 7: Set n := n + 1 and return to step 2.

2.2. Numerical experiments

The algorithm presented above was tested in order to put evidence the effects of nonlinearity and of the dif-
ferent material constants involving in the equations. Using the above algorithm we can obtain directly the other
components as

u1(x, t) = 0.001(1 − cos(x)) + t2(2.5 × 10−8 cos(2x) − 3.0 × 10−10 cos(3x)

+ cos(x)(0.0010000253 × 10−6 sin(x)) + 0.000025 sin(x)),

�1(x, t) = 0.001(1 − cos(x)) − (t cos(x)(−0.001 − 2.0 × 10−6 sin(x))).

The rest of the components of the iteration formulas (2.10), (2.11) were obtained in the same manner using the
Mathematica Package. The behavior of the solutions obtained by VIM is shown for different time values in Figs. 1–6
in Appendix A. The numerical results show that the iterative steps number 2–7 in the above algorithm can be done in
three steps only for the model problem where Tol = 10−5.

3. Description of the Adomian’s decomposition method

To illustrate the basic concepts of the Adomian’s decomposition method for solving the above system (1.1)–(1.2),
first we rewrite it in the following operator form:

Lttu = Lxxu + �1Lx� + M(u, �), (3.1)

Lt� = Lxx� + aLxtu + N(u, �), (3.2)

where the notations

Lt = �

�t
, Ltt = �2

�t2 , Lx = �

�x
, Lxx = �2

�x2 and Lxt = �

�x�t

symbolize the linear differential operators. The nonlinear operators M(u, �) and N(u, �) are defined by

M(u, �) = uxx(2�ux + 3�u2
x + �2�) + �2ux�x ,

N(u, �) = buxuxt + �uxx�x + �ux�xx .

By using the inverse operators and (1.3), we can write (3.1)–(3.2) in the following form:

u(x, t) = u(x, 0) + L−1
t t (Lxxu + �1Lx�) + L−1

t t M(u, �), (3.3)

�(x, t) = �(x, 0) + L−1
t (Lxx� + aLxtu) + L−1

t N(u, �), (3.4)

where the inverse operators are defined by

L−1
t t (.) =

∫ t

0

∫ t

0
(.) dt dt, L−1

t (.) =
∫ t

0
(.) dt .

The solutions u(x, t) and �(x, t) can be decomposed by an infinite series (see [3]) as follows:

u(x, t) =
∞∑
i=0

ui(x, t), �(x, t) =
∞∑
i=0

�i (x, t), (3.5)
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where ui(x, t) and �i (x, t) are the components of u(x, t) and �(x, t) that will be elegantly determined. The nonlinear
terms M(u, �) and N(u, �) are defined by the following infinite series:

M(u, �) =
∞∑

m=0

Am, N(u, �) =
∞∑

m=0

Bm, (3.6)

where Am and Bm are called Adomian polynomials (see [3]) and defined by

Am = 1

m!

[
dm

d�m M

(
m∑

i=0

�iui,

m∑
i=0

�i�i

)]
�=0

, i�0, (3.7)

Bm = 1

m!

[
dm

d�m N

(
m∑

i=0

�iui,

m∑
i=0

�i�i

)]
�=0

, i�0. (3.8)

The components ui and �i , i�0, can be defined by the following recursive relationships:

u0(x, t) = u(x, 0), �0(x, t) = �(x, 0),

un+1(x, t) = L−1
t t (unxx + �1�nxx) + L−1

t t (An), (3.9)

�n+1(x, t) = L−1
t (�nxx + aunxt ) + L−1

t (Bn). (3.10)

This will enable us to determine the components un and �n recurrently. For numerical comparisons purpose, we construct
the solutions u(x, t) and �(x, t) as follows:

Lim
n→∞ 	n = u(x, t), Lim

n→∞ 
n = �(x, t), (3.11)

with the recurrence relation (3.9) and (3.10), where

	n(x, t) =
n−1∑
i=0

ui(x, t), 
n(x, t) =
n−1∑
i=0

�i (x, t), i�0.

Moreover, the decomposition series solutions (3.5) are generally convergent very rapidly in real physical problems (see
[19,5]). The convergence of the decomposition series has investigated by several authors [3,20,23,29].

In an algorithmic form, theADM can be expressed and implemented in nonlinear coupling in thermoelasticity models
as follows:

Algorithm 2. Let n be the iteration index, set a suitable value for the tolerance (Tol)
Step 1: Compute the initial approximations u0 = u(x, 0) and �0 = u(x, 0) given by (1.3), set n = 0.
Step 2: Compute the Adomian polynomials An and Bn from (3.7) and (3.8), respectively.
Step 3: Use the calculated values of un and �n to compute un+1 from (3.9).
Step 4: Define un = un+1.
Step 5: Use the calculated values of un and �n to compute �n+1 from (3.10).
Step 6: If max |un+1 − un| < Tol and max |�n+1 − �n| < Tol stop, otherwise continue.
Step 7: Set un+1 = un.
Step 8: Set n := n + 1 and return to step 2.

3.1. Numerical experiment

Algorithm 2 was tested in order to put evidence the effects of nonlinearity and of the different material constants
involving in the equations. Using Algorithm 2 we can obtain directly the other components as follows:

A0 = u0xx(2�u0x + 3�u2
0x + �2�0) + �2u0x�0x ,

B0 = b u0xu0xt + �u0xx�0x + �u0x�0xx ,
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A1 = u1xx(2�u0x + 3�u2
0x + �2�0) + u0xx(2�u1x + 6�u0xu1x + �2�1)

+ �2u1x�0x + �2u0x�1x ,

B1 = b(u1xu0xt + u0xu1xt ) + �(u1xx�0x + u0xx�1x + u1x�0xx + u0x�1xx).

Then the first components of the solution are computed and given in the following form:

u1(x, t) = t2(2.5 × 10−8 cos(2x) − 3.0 × 10−10 cos(3x)

+ cos(x)(0.0010000253 × 10−6 sin(x)) + 0.000025 sin(x)),

�1(x, t) = (t cos(x)(0.001 + 2.0 × 10−6 sin(x))).

The rest of components of the iteration formulas (3.9), (3.10) were obtained in the same manner using the Mathematica
Package. The numerical results show that the iterative steps 2–8 in the above algorithm can be done in three steps only
for the model problem where Tol = 10−5. The numerical results of the ADM are of the same order as VIM which
presented in Figs. 1–6 in Appendix A. However, many terms can be calculated in order to achieve a high level of
accuracy of the decomposition method.

4. Comparison between VIM and ADM

It can be seen from the computation process that:

(1) When we begin with the initial conditions as initial approximation in VIM, the correction functional can be easily
constructed by a general Lagrange multiplier, and the multiplier can be optimally identified by variational theory.

(2) Comparison of VIM with the ADM reveals that although the numerical results of both methods when applied to
the above system (1.1), (1.3) are nearly the same to some tolerance, the approximations obtained by VIM converge
faster to the solution than those of ADM.

(3) The main advantage of VIM is to overcome the difficulty arising in calculating Adomian’s polynomials in the ADM
which it is, in general, very big terms and the consuming time to compute it is big, so it needs a large computer
memory and time.

5. Conclusions

The variational iteration method and the Adomian decomposition technique were used to find numerical solutions of
a model problem in nonlinear one-dimensional thermoelasticity with given initial conditions and no exact solution is
available. It may be concluded that the two methods are very powerful and efficient techniques in finding an acceptable
solution for wide classes of nonlinear problems.Also, it can be noted that there are many advantage of these methods, the
main advantages are the fast convergence to the solutions, does not require discretizations of space and time variables,
no need to solve nonlinear system of equations as in finite element methods and finite difference methods, then, no
necessity of large computer memory. The numerical experiments show that the variational iteration method is easier
and faster than the Adomian decomposition.

Appendix A

In this part, numerical calculations for the mechanical displacement and for the temperature distribution in the media
are carried out, the following results are obtained by using VIM the same results can be calculated by ADM.

The Figs. 1 and 2 show the distributions of the mechanical displacement and the temperature as a function of the
distance for the different time values. It is noted that the curves at the wave front becomes larger as time increasing.

The Figs. 3 and 4 show the effect of the linear thermoelastic coupling constant �1 on the distributions of the mechanical
displacement and the temperature for two different values of � as a function of time at x = 100.

Fig. 5 shows the approximate mechanical displacement solution at u(x, t) at x ∈ (0, 15) and t ∈ (0, 50). Fig. 6
shows the approximate temperature �(x, t) at x ∈ (0, 15) and t ∈ (0, 50).
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Fig. 1. The displacement at different times t = 50, 100, 150, 200, 250. �1 = �2 = 0.05, a = b = 0.5, � = 0.8, � = 1, � = 1, x = 0 to 30.
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Fig. 2. The temperature at different times t = 50, 100, 150, 200, 250. �1 = �2 = 0.05, a = b = 0.5, � = 0.8, � = 1, � = 1, x = 0 to 30.
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