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Abstract

Polynomial moments are often used for the computation of Gauss quadrature to stabilize the numerical calculation of the orthogonal
polynomials, see [W. Gautschi, Computational aspects of orthogonal polynomials, in: P. Nevai (Ed.), Orthogonal Polynomials-Theory
and Practice, NATO ASI Series, Series C: Mathematical and Physical Sciences, vol. 294. Kluwer, Dordrecht, 1990, pp. 181–216 [6];
W. Gautschi, On the sensitivity of orthogonal polynomials to perturbations in the moments, Numer. Math. 48(4) (1986) 369–382
[5]; W. Gautschi, On generating orthogonal polynomials, SIAM J. Sci. Statist. Comput. 3(3) (1982) 289–317 [4]] or numerical
resolution of linear systems [C. Brezinski, Padé-type approximation and general orthogonal polynomials, ISNM, vol. 50, Basel,
Boston, Stuttgart, Birkhäuser, 1980 [3]]. These modified moments can also be used to accelerate the convergence of sequences to a
real or complex numbers if the error satisfies some properties as done in [C. Brezinski, Accélération de la convergence en analyse
numérique, Lecture Notes in Mathematics, vol. 584. Springer, Berlin, New York, 1977; M. Prévost, Padé-type approximants with
orthogonal generating polynomials, J. Comput. Appl. Math. 9(4) (1983) 333–346]. In this paper, we use Legendre modified moments
to accelerate the convergence of the sequence Hn − log(n+ 1) to the Euler’s constant �. A formula for the error is given. It is proved
that it is a totally monotonic sequence. At last, we give applications to the arithmetic property of �.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The Euler constant � = 0.577215 . . . is the limit of the sequence

Hn − log(n + 1),

where Hn is the harmonic number defined by

n∑
k=1

1

k
.
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An integral representation for Euler’s constant is

� =
∫ 1

0

(
1

ln u
+ 1

1 − u

)
du. (1)

The sequence (Sn)

Sn :=
∫ 1

0

(
1 − un

log u
+ 1 − un

1 − u

)
du

= Hn − log(n + 1)

converges to � but very slowly, as O(1/n).
The error � − Sn satisfies

� − Sn =
∫ 1

0
un

(
1

log u
+ 1

1 − u

)
du (2)

and can be considered as moments with respect to the weight function w(u) = (1/ log u + 1/(1 − u)) on the interval
[0, 1].

2. Legendre modified moments

Suppose we are given a sequence of real or complex numbers (xn)n converging to l and satisfying the property

xn − l =
∫ 1

0
un d�(u)

where d� is a positive measure on the interval [0, 1].
If the error of a sequence is of this form, then a way to decrease this error and so accelerate the convergence is to

use modified moments, i.e. by replacing the monomial un by some suitable polynomials Pn normalized by Pn(1) = 1.
For

Pn(u) =
n∑

k=0

�(n)
k uk ,

∫ 1
0 Pn(u) d�(u) =∑n

k=0 �(n)
k

∫ 1
0 uk d�(u) =∑n

k=0 �(n)
k (xk − l) =∑n

k=0 �(n)
k xk − l. In that case, the error between the

limit l and the transformed sequence (yn) defined by yn := ∑n
k=0 �(n)

k xk becomes

yn − l =
∫ 1

0
Pn(u) d�(u).

To improve the convergence, the polynomial Pn can be chosen to be orthogonal with respect to some weight. In our
case, because of the behavior of the weight function around 1 (w(u) ∼ O(1), u = 1), a good choice will be the shifted
Legendre polynomials which are orthogonal on [0, 1]∫ 1

0
P ∗

n (t)P ∗
m(t) dt = 0, n �= m.

These polynomials can be expressed in different bases

P ∗
n (t) =

n∑
k=0

(
n

k

)2

tn−k(t − 1)k (3)

=
n∑

k=0

(
n

k

)(
n + k

k

)
(−1)n+ktk . (4)
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Theorem 1. For 0�m�n, let us define

Jn,m :=
∫ 1

0
un−mP ∗

n (u)

(
1

ln u
+ 1

1 − u

)
du, (5)

Ln,m := −
∫ 1

0

(
1 − un−mP ∗

n (u)

ln u

)
du, (6)

An,m :=
∫ 1

0

(
1 − un−mP ∗

n (u)

1 − u

)
du (7)

then

� = An,m − Ln,m + Jn,m, (8)

Ln,m =
n∑

k=0

(
n

k

)(
n + k

k

)
(−1)n+k ln(n − m + k + 1), (9)

An,m = 2Hn. (10)

Proof. We first prove the identity (8) linking Euler’s constant �, the linear combination of logarithms numbers Ln,m, the
rational numbers An,m and the integrals Jn,m. From formula (1), one substitutes the integrand w(u)=(1/ ln u+1/(1−u))

by an approximation involving Legendre Polynomials as follows:

� =
∫ 1

0

(
1

ln u
+ 1

1 − u

)
du

=
∫ 1

0

(
1 − un−mP ∗

n (u)

ln u
+ 1 − un−mP ∗

n (u)

1 − u

)
du +

∫ 1

0
un−mP ∗

n (u)w(u) du.

The expression (4) of P ∗
n leads to analogous expressions Ln,m.

By linearity

Ln,m = −
n∑

k=0

(
n

k

)(
n + k

k

)
(−1)n+k

∫ 1

0

(
1 − uk+n−m

ln u

)
du (11)

=
n∑

k=0

(
n

k

)(
n + k

k

)
(−1)n+k ln(n − m + k + 1). (12)

An,m is treated quite differently: from the orthogonality relation between two polynomials P ∗
n∫ 1

0
P ∗

n (u)q(u) du = 0 for all polynomial q of degree less than n (13)

by taking q(u) = (1 − un−m)/(1 − u), another expression for An,m is

An,m =
∫ 1

0
P ∗

n (u)q(u) du +
∫ 1

0

1 − P ∗
n (u)

1 − u
du =

∫ 1

0

P ∗
n (1) − P ∗

n (u)

1 − u
du (14)

and so An,m is independent of 0�m�n.
Let us now compute the integral in (14).
Legendre polynomials satisfy a three term recurrence relation which is

(n + 1)P ∗
n+1(u) = (2n + 1)(2u − 1)P ∗

n (u) − nP ∗
n−1(u), (15)

P ∗
0 (u) = 1, P ∗

1 (u) = 2u − 1. (16)
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Thus, An,m’s also satisfy a similar recurrence relation

(n + 1)An+1,m = (2n + 1)An,m − nAn−1,m, (17)

A0,m = 0, A1,m = 2. (18)

With (17) and (18), it is not difficult to prove that

An,m = 2Hn, 0�m�n. � (19)

In Section 4 , we will prove the asymptotic formula

� = An,m − Ln,m + O(4−n). (20)

Actually, we will prove that the error term Jn,m is a totally monotone sequence (i.e. a sequence of monomial moments
with respect a positive measure), converging to 0 as 4−n.

Before, we need to investigate the analytic property of the weight function w.

3. An interesting integral representation for Euler’s constant

Euler constant can be written as sum of series or with integral representation. (See http://numbers.computation.free.fr/
Constants/Gamma/gamma.html).

A complete study (with more than 130 references) can be found in [7].
In this section, we give an integral representation of the weight w in Lemma 2, which leads to a formula for � first

proved by Schlömlich [12] in 1880 and rediscovered by Krämer [7, p. 129]. We give another proof of this formula.

Lemma 2. The function 1/ ln(1 − u) + 1/u is a Markov–Stieltjes function. More precisely,

1

ln(1 − u)
+ 1

u
=
∫ 1

0

1

1 − ut
�(t) dt , (21)

where the weight function � is

�(t) := 1

t (ln2(1/t − 1) + �2)
.

Proof. After a change of variable (u → (1 − u) and x = 1/t − 1), formula (21) is equivalent to

1

ln(u)
+ 1

1 − u
=
∫ ∞

0

1

x + u

1

ln2x + �2
dx. (22)

The weight function � can be found with the Stieltjes inversion formula (see [16]). Another way to prove formula (22)
is to apply residue theorem to the function

f (x) := 1

x + u

1

ln x + i�
.

Taking the determination of ln x on the complex plane cut along the positive real axis, the poles of f are x = −u and
x = −1.

Let us define �r a small semi-circle z = rei�, −�/2����/2, r > 0. D+
r the line z = x + ir , x running from 0 to R,

�R the circle z = Rei�, 0���2� and D−
r the line z = x − ir , for x from R to 0.

Now, we compute
∫
C f (x) dx where C is the union of D+

r , �R , D−
r and �r , with the theorem of residue to obtain∫ ∞

0

1

x + u

(
1

ln x + i�
+ −1

ln x − i�

)
dx =

∫ ∞

0

1

x + u

( −2i�

ln2x + �2

)
dx (23)

= − 2i�

(
1

ln u
+ 1

1 − u

)
. � (24)

Now, we are in position to prove the integral of Schlömlich for Euler’s constant � with a new method.

http://numbers.computation.free.fr/Constants/Gamma/gamma.html
http://numbers.computation.free.fr/Constants/Gamma/gamma.html
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Theorem 3. The Euler’s constant � satisfies

� =
∫ +∞

−∞
ln(1 + e−z)ez

z2 + �2
dz (25)

Proof. In the integral representation (1) of �, let us substitute the integrand by the expression (21). This leads to

� =
∫ 1

0
− ln(1 − t)

t

1

t (ln2(1/t − 1) + �2)
dt (26)

=
∫ ∞

−∞
ln(1 + e−z)ez

z2 + �2
dz (27)

with the change of variable t = (1 + ez)−1. �

With the expression of the weight function as a Markov Stieltjes function, it is possible to deduce some interesting
properties for the error, for example to show that it is a sequence of moments.

4. Behavior of the error

Theorem 4. For each fixed integer m, the sequence ((−1)mJn,m)n defined in Theorem 1 is totally monotonic. More
precisely

(−1)mJn,m =
∫ 1/4

0
vn�m(v) dv = O(4−n), (28)

where the weight function is

�m(v) =
∫ (1+√

1−4v)/2

(1−√
1−4v)/2

(
u − u2 − v

uv

)m
1

(u − u2 − v)

(
�2 + ln2

( −uv

u2 − u + v

)) du.

Proof. Jn,m = ∫ 1
0 un−mP ∗

n (u)(1/ ln u + 1/(1 − u)) du appears as Legendre modified moments of the weight function
(1/ ln u + 1/(1 − u)).

For some particular cases of weight function, a sequence of polynomial modified moments can be itself a sequence of
monomial moments, with respect to a positive measure (see [10]). Using Rodrigues formula for orthogonal polynomials,
Lemma 2, Fubini’s theorem and after n integrations by parts, it arises

Jn,m =
∫ 1

0
un−m (−1)n

n!
dn

dun
(un(1 − u)n)

(
1

ln u
+ 1

1 − u

)
du (29)

=
∫ 1

0
un−m (−1)n

n!
dn

dun
(un(1 − u)n) du

∫ 1

0

1

1 − (1 − u)t
�(t) dt (30)

=
∫ 1

0

∫ 1

0

(−1)n

n! un(1 − u)n du
dn

dun

(
un−m

1 − (1 − u)t

)
�(t) dt . (31)

The computation of dn/dun(un−m/(1 − (1 −u)t)) needs the partial decomposition of the rational function un−m/(1 −
(1 − u)t) = q(u) + ((t − 1)/t)n−m1/(1 − (1 − u)t), where q is polynomial of degree n − m − 1.

Another expression of Jn,m is then

Jn,m =
∫ 1

0

∫ 1

0
un(1 − u)n

(
t − 1

t

)n−m
tn

(1 − (1 − u)t)n+1
�(t) dt du. (32)
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We do the following change of variable

v = u(1 − u)(1 − t)

1 − (1 − u)t
∈ [0, 1/4] ⇔ t = 	(v) = u2 − u + v

(u − v)(u − 1)
∈ [0, 1].

Let 	1(v) and 	2(v) denote the two roots of the quadratic equation v = u − u2, 	1(v) = (1 + √
1 − 4v)/2, 	2(v) =

(1 − √
1 − 4v)/2.

Jn,m =
∫ 1/4

0
vn dv

∫ 	2(v)

	1(v)

( −	(v)

	(v) − 1

)m
u2�(	(v))

(u − 1)(u − v)2

(−1)m du

1 − (1 − u)	(v)
(33)

which can be simplified to give the result. �

As quoted in [2,9,10], the sequence (An,m − Ln,m)n converging to � with an error totally monotonic on the interval

[0, R] with R= 1
4 can be accelerated by the ε-algorithm to obtain an error of orderO(((2/R−1)−

√
(2/R − 1)2 − 1)n)=

O((7 − √
48)n).

Remark. There exists some sequence converging to � with an error of order O(e−8n) [1], but they do not provide
arithmetic property for �, as we can do in the last section.

5. Approximation of � by rational numbers

In the numerical computation of formula

Ln,m =
n∑

k=0

(
n

k

)(
n + k

k

)
(−1)n+k ln(n − m + k + 1),

the problem is the evaluation of logarithmic functions.
A mean to avoid this drawback is the substitution of ln(n − m + k + 1) by some suitable approximations. We will

show now that Padé approximants are good enough to preserve the speed of convergence O(4−n).
Another expression of Ln,m is

Ln,m = ln(n − m + 1) +
n∑

k=0

(
n

k

)(
n + k

k

)
(−1)n+k ln

(
1 + k

n − m + 1

)
. (34)

By substituting in Ln,m, ln(n + 1 + k − m) by its Padé approximant [n/n], a rational approximation is obtained as
following: for n − m + 1 = 2p, p ∈ Z, let us define

L̃n,m := p[n/n]t=1 +
n∑

k=0

(
n

k

)(
n + k

k

)
(−1)n+k[n/n]t=k/(n−m+1), (35)

where [n/n] is the Padé approximant of ln(1 + t) at t = 0

[n/n]t =
t
∑n

k=0

(
n

k

)(
n + k

k

)(∑k−1
i=0

t i−k+n(−1)i

i + 1

)

∑n
k=0

(
n

k

)(
n + k

k

)
tn−k

. (36)

If we replace in (8), the quantities Ln,m by L̃n,m, we get an approximation of � by rational numbers:

Theorem 5. For integers n, m, p such that n − m + 1 = 2p

� = An,m − L̃n,m + O(4−n). (37)
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Proof. The Padé error for the logarithmic function is

ln(1 + x) − [n/n]x = (−1)nxn+1

P ∗
n (−1/x)

∫ 1

0

tn(1 − t)n

(1 + xt)n+1
dt . (38)

Let us set

L′
n,m := ln(n − m + 1) +

n∑
k=0

(
n

k

)(
n + k

k

)
(−1)n+k[n/n]t=k/(n−m+1). (39)

We have to evaluate the difference 
n,m := Ln,m − L′
n,m. For sake of simplicity, we set �k = k/(n − m + 1).


n,m =
n∑

k=0

(
n

k

)(
n + k

k

)
(−1)n+k(ln(1 + �k) − [n/n]t=�k

) (40)

=
n∑

k=0

(
n

k

)(
n + k

k

)
(−1)k

�n+1
k

P ∗
n (−�−1

k )

∫ 1

0

tn(1 − t)n

(1 + �kt)
n+1

dt . (41)

Since �k ∈ [0, 1] and P ∗
n has all its roots in [0, 1], |�n

k/P
∗
n (−�−1

k )|�1/|P ∗
n (−1)|. On the other hand, the integral∫ 1

0

tn(1 − t)n

(1 + �kt)
n+1

dt �4−n

∫ 1

0

1

(1 + �kt)
n+1

dt �4−n 1

n�k

. (42)

So,

|
n,m|�
n∑

k=0

(
n

k

)(
n + k

k

) ∣∣∣∣∣ �n+1
k

P ∗
n (−�−1

k )

∣∣∣∣∣
∣∣∣∣∣
∫ 1

0

tn(1 − t)n

(1 + �kt)
n+1

dt

∣∣∣∣∣
�

n∑
k=0

(
n

k

)(
n + k

k

)
�k

|P ∗
n (−1)|4−n 1

n�k

� 1

|nP ∗
n(−1)|4−n

n∑
k=0

(
n

k

)(
n + k

k

)
= 1

|nP ∗
n(−1)|4−n|P ∗

n (−1)| = (n4n)−1.

The goal is partly reached since the error between Ln,m and its approximation is less than Jn,m. Now, let us consider
the approximation of ln(n − m + 1). It is difficult to approximate this number (which tends to infinity) with an error
less than 4−n. So, we consider sequences of integers n, such that n − m + 1 is a power of 2: n − m + 1 = 2p. With this
hypothesis, ln(n − m + 1) = p ln 2.

In (38), if x = 1, ln 2 − [n/n]x=1 = (−1)n/P ∗
n (−1)

∫ 1
0 (tn(1 − t)n/(1 + t)n+1) dt . The asymptotic for Legendre

polynomials are well known

Pn(�) ∼ (� +
√

�2 − 1)n for � ∈ R\[−1, 1].
Thus the shifted Legendre Polynomials satisfy

P ∗
n (t) ∼ ((2t − 1) + 2

√
t2 − t)n for t ∈ R\[0, 1].

The maximum of the fraction (t (1 − t)/(1 + t)) for t ∈ [0, 1] is obtained for t = √
2 − 1, and its value is (3 − 2

√
2).

Thus

| ln 2 − [n/n]x=1|� (3 − 2
√

2)n

(3 + 2
√

2)n
ln 2. (43)

For n−m+1=2p, ln(2p)−p[n/n]x=1 �p(3−2
√

2)2n which is a o(4−n/n). At last, the error |Ln,m − L̃n,m| satisfies

|Ln,m − L̃n,m| = O(4−n/n).
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Now,

� − An,m + L̃n,m = Jn,m + L̃n,m − Ln,m = O(4−n) + O(4−n/n) = O(Jn,m) (44)

and the theorem is proved. �

6. Application to the arithmetic property of �

The irrationality of � remains an open question. In this section, we prove some sufficient conditions for the proof
of the irrationality of Euler’s constant. Corollary 6 is similar to the results found in [13,14,8], but it involves only the
computation of rational numbers.

On the other hand, Corollary 7 is new because it depends on the decrease of a numerical sequence involving logarithms
numbers.

Corollary 6. Let us denote by {x} the fractional part of the real number x:

{x} := x − �x�
and dn := LCM(1, . . . , n) (lower common divisor). If for some integer m, {d2p+m−1(−1)mL̃2p+m−1,m} does not
converge to 0 when p tends to infinity, then � is irrational.

Proof. Suppose that � is rational, then there exists a pair of integers A, B such that � = A/B. Then, for n greater than
some integer N, dn� is an integer. For integers n, m, p such that n − m + 1 = 2p, the relation

� = An,m − L̃n,m + O(Jn,m),

leads to

dn� = dnAn,m − dnL̃n,m + dnO(Jn,m).

An,m = 2Hn, so dnAn,m is an integer, and thus the fractional part of (−1)mdnL̃n,m is equal to the fractional part of the
positive sequence (−1)mdnO(Jn,m) which converges to zero since limn d

1/n
n = e [11].

So, if for some integer m, the fractional part ({d2p+m−1(−1)mL̃2p+m−1,m})p does not converge to 0, then � is
irrational. �

Another sufficient condition comes from the property of the error term in the asymptotic formula (20) and from the
upper and lower bound of the LCM(1, . . . , n):

Corollary 7. Let P be the following property: A sequence (xn)n satisfies P if

∀N ∈ N, ∃n�N, xn − xn+1 < 0.

If for some integer m, the sequence {d2p (−1)mL2p,m} satisfies P then � is irrational.

Proof. For the proof, we exploit the property of totally monotonic sequences (TMS).
A sequence un is called TMS if there exists a non negative measure d� with infinitely many points of increase such

that

∀n ∈ N, un =
∫ ∞

0
xn d�(x).

If the support of the measure d� is the interval [0, 1/R], then ∀n, un+1/un �R and limn un+1/un = R. If R = 1, it is
equivalent to

∀n ∈ N, ∀k ∈ N, (−1)k�k(un) > 0,

where �0(un) := un and �k+1un = �kun+1 − �kun. (See [16, p. 108].)
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The previous properties can be applied to the sequence Jn,m for which we prove some convergence properties. Since
{dn(−1)mJn,m} = dn(−1)mJn,m = {dn(−1)mLn,m}, if they are not satisfied by {dn(−1)mLn,m} then � is irrational.

First we will prove that Jn,m satisfies d2n(−1)mJ2n,m < dn(−1)mJn,m: the numbers dn and Jn,m satisfy
2n �dn < e1.039n (see [15, pp. 12–13] for the lower bound and [11] for the upper one) Jn+1,m/Jn,m < 1

4 (property
of totally monotonic sequence [16, p. 135]).

dnJn,m

d2nJ2n,m

>
2n

e1.039×2n
4n > 1.0014.

Thus, for all integer m, (d2p (−1)mJ2p,m)p∈N is a positive decreasing sequence, converging to 0. So, if
({d2p (−1)mL2p,m})p is nondecreasing for p greater than any integer, then � is irrational. �

Consequence: If for some m, {d2p (−1)mL2p,m} satisfies P, then � is irrational.
Suppose that for some m, and some p {d2p (−1)mL2p,m} < {d2p+1(−1)mL2p+1,m}, then it implies that if � is rational

then its denominator is greater than 2p.
Numerical computation show that it is true for m= 1, p = 15. So, if � is rational, then its denominator is greater than

215 = 32768.
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