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1. Introduction

In a famous series of papers, [ 1-4], Slepian, Landau and Pollack have given a complete and detailed study of the subject of
prolate spheroidal wave functions. Starting from a non-classical version of the uncertainty principle, they have shown that
among the set of band-limited functions with bandwidth ¢ > 0, the most concentrated functions on the interval [—1, 1],
are the solutions of the following eigenvalue problem

Dsinc(x — y)

YncAy = 2n(O)Pnc(x), x€R. (M
1 T(x—Yy)

Since the operator F is written as F. = Q Q., where Q. is the finite Fourier transform operator given by

FUne) () = [

1
Q) = / &V (y)dy, x € R @)
1

then the PSWFs (. c)n>0 are also the eigenfunctions of Q.. For more details, the reader is referred to [4]. Moreover, in [2],
the authors have proved that these PSWFs have the desirable properties to form an orthogonal basis of L*([—1, 1]), an

* Corresponding author. Tel.: +216 97059868.
E-mail address: Abderrazek.Karoui@fsb.rnu.tn (A. Karoui).

0377-0427/$ - see front matter © 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.cam.2009.07.037


http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
mailto:Abderrazek.Karoui@fsb.rnu.tn
http://dx.doi.org/10.1016/j.cam.2009.07.037

316 A. Karoui, T. Moumni / Journal of Computational and Applied Mathematics 233 (2009) 315-333

orthonormal system of L?(R) and more importantly, an orthonormal basis of B, the Paley-Wiener space of band-limited
functions given by

= {f e I*(R), Supp'f C [—¢,cl},

where Supptf denotes the support of f(x). Here, T(x) is the Fourier transform of f(x). Although, the PSWFs have very
desirable properties, they have been and still regarded as tedious functions that are difficult to compute and with no standard
representation in terms of elementary functions. Recently, a special interest is devoted to the development of new methods
for the computation of the PSWFs, (see for example [5-8]) for the 1D case and [9,3] for the bi-dimensional case. The interest
for the PSWFs is partly due to their promising applications in different fields such as pure and applied mathematics, physics
and digital signal processing, (see for example [10-14]).

On the other hand, the CPSWFs have found very interesting applications in different area. For example, in Optics, they
are used in the reconstruction of optical objects with super-resolution from diffraction-limited images, [15]. They are also
used in the study of confocal laser modes or wave aberrations, (see for example [16]). In MRI (magnetic resonance imaging)
the CPSWFs have been used in the frame work of 2D PSWFs to get an appropriate tradeoff between spatial and temporal
resolution and increase data acquisition speed for dynamic magnetic resonance imaging, [17]. In Astrophysics, the CPSWFs
are used in the study and the better understanding of stellar coronagraphy, [16].

The promising potential applications of the CPSWFs as well as the development of practical methods for computing their
values are the main motivations behind this work. In this paper, we are interested in the study of the following eigenvalue
problem

1
Hen()(x) = / YIn(exy) ¢(y)dy = Bo(x), x = 0. (3)
0

Here c, N are two real numbers satisfyingc > 0, N > —1 and Jy(-) is the Bessel function of the first type and order N, given
by

_ )7
ING) = ( ) Z(— )]4’]‘F(N T yeR. (4)

The operator HC,N is called the finite Hankel transform operator. It is well suited for solving several initial boundary problems
that model many problems from physics and engineering, see for example [18].

As already mentioned in [3], the spectrum of H y is closely related to the spectrum of the second version of the finite
Hankel transform operator given via the following eigenvalue problem,

1
Hen () (x) = / VexyIn(exy) yydy =y (x), x = 0. (3)
0

The reader can easily check that the operator H.y is self-adjoint and compact. Note that the eigenvalues and the
eigenfunctions of the operators H, y and H, y are related to each other by the following relations

V=0, yan(©) =VcBun(©), ¥ X = Vg (0, x=0. (6)

We should mention that the eigenfunctions given by (3) are used as the radial parts of the multi-dimensional PSWFs on
the unit sphere, (see [3]). Moreover, we show that the CPSWFs, the eigenfunctions of H. y, constitute an orthogonal basis of
L?([0, 1]), an orthonormal basis of the space of Hankel band-limited functions.

In this work, we are interested in developing two methods for computing the spectrum and the eigenfunctions of the
compact operators H y and H. y. Unlike other existing methods, our proposed methods do not use the differential operator
that commutes with the finite Hankel transform integral operator. Moreover, they are easy to use and provide highly
accurate numerical approximations. Also, since our methods do not depend on any differential operator, they have the nice
property to be easily adapted to the computation of the spectrum and the eigenfunctions of more general compact integral
operators. We should mention that some integral operator based computational methods of the classical prolate spheroidal
functions have been already given in [7,8]. Our first method for computing the CPSWFs is based on an appropriate matrix
representation A of the operator H, y. This representation uses a special orthonormal basis of L?([0, 1]) with basis functions
given by

Tan(®) = 22k + N + DxM172pMN0 (1 — 2x2), k> 0. (7)

Here, N > —1is a fixed real number and P,EN‘O) (-) denotes the Jacobi polynomial of degree k. We should mention that these
basis functions have been already used in [3] to tridiagonalize the differential operator that commutes with the integral
operator He n. If (N (€))n>0 denotes the infinite set of the eigenvalues of H. y arranged in the decreasing order

[Yon(©] > [yin(©)] > - > [yan(O)] > -+,



A. Karoui, T. Moumni / Journal of Computational and Applied Mathematics 233 (2009) 315-333 317

then, we prove that for any positive integer M, the first M eigenvalues of H, y are approximated accurately by the first M
eigenvalues of an appropriate submatrix of A. Moreover we show how to compute the eigenfunction ¥ (x) associated
with the eigenvalue y, y(c). Note that unlike Slepian’s method given in [3], our first method is not restricted to the positive
integer values of N and it is valid for any real number N > —1.

Our second methoc’lv for the computation of the spectrum of H. y is based on an efficient quadrature method applied to
the integral operator H, y. This method is based on the use of a special set of orthonormal polynomials (Q,(x))n>0, Over
[0, 1] and with respect to the measure do (x) = xdx. Based on some desirable properties of the orthogonal polynomials, we
provide a rapid method for computing the different quadrature nodes and weights. This second method has the advantage
of working well for small as well as relatively large values of the parameter c. However and unlike the first method, this
second method provides approximations of the values of 1//# . at the quadrature nodes only. To overcome this problem, we
provide the reader with an efficient interpolation method for the approximation of w,ﬁ{ (%) along the interval [0, 1].

This paper is organized as follows. In Section 2, we give some properties of the CPSWFs and prove the exponential
decay of their expansion coefficients with respect to the orthonormal basis given by (7). In Section 3, we describe the
matrix representation technique for solving the eigenvalue problem (5). In Section 4, we develop a quadrature method
that approximates with high accuracy the eigenvalues and the eigenfunctions of the operator H, y given by (3). In Section 5,
we give two maple programs that implement the methods described in the previous two sections. Finally, in Section 6, we
provide the reader with some numerical results that illustrate the results of this work.

2. Circular prolate spheroidal wave functions
In this section, we prove some desirable properties of the CPSWFs (1//,2‘{6)“20, the set of the eigenfunctions of H. y. We let
HB. denotes the space of Hankel band-limited functions given by
HB, = {f € L*([0, +o0), Supp' (#x()) < [0, c]}.

Here #y is the Hankel transform operator defined by

+o0

Hn(f) %) = VYINGYF Wy, f € L([0, +ooD).

0

Next, we assume that the eigenfunctions w,’x -(x) are normalized by the following rule

1
2
/ (Yo 0)" dx = cynn(c)’. (8)
0
The following proposition gives us some important properties of the CPSWFs.

Proposition 1. Under the above notation and hypothesis, the eigenfunctions wﬁ,\f - (x) satisfy the following properties:

(P1) For any integer n > 0, w,’;fc is Hankel band-limited function with bandwidth c.

(P,) Theset B = {1//#5, ,n > 0}isan orthogonal basis of L*([0, 1]), an orthonormal system of L*([0, +oo[) and an orthonormal
basis of HB,.

Proof. We prove property (P;) by showing that

VEZ0, Hn(Yy)E) = Ve <§> X.c1(8). (9)

CVn,N(C)

It is well known, (see [18]), that the operator Fy is its proper inverse, that is JfN_l = Hy. Hence, if f € L?([0, 4+00]), then

+o00  p+o0
o0 = / JRIN ) B ) (dedy,  ae.x € [0, +ool. (10)
0 0
Moreover, from (5), one has
+00
Y (%) = VYN (exy) ¥ ) xp0.11 () dy. (11)
Yan(€) Jo
Hence,
1 +00 +00
Hn (Y (€) = — / VRN YN W) X101 ) dyy/x Eln(xE)dX, Y = cy,
n, 0 0

1 400 p+oo
_ / VRV YU (Y /0) 0,01 (V )y /X Eln (6. (12)
cyan(©) Jo 0
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By using the equality (12) together with (10), one concludes that
1

CVn,N(C)

In (Y (§)) = Yne <§> Xwo.c(§), ae§ =0. (13)

Moreover, from (5), it is easy to see that 1/f,’1‘fc is continuous over [0, +oo[. Consequently, the equality (13) holds for any
£>0.

The proof of (P,) is easily done as follows. Since B is the set of the different eigenfunctions of the self-adjoint Hilbert
Schmidt operator H. v, over L2([0, 1]), then B is an orthogonal basis of L?([0, 1]) N [I(er(HCJ\,)]l . Moreover, it is easy to
check that the operator H, y is one to one on L?([0, 1]). Hence, 8 is an orthogonal basis of L?([0, 1]). Also, by using (8) and
(9) and Parseval formula for the Hankel transform, (see [18]), one gets

+00 +00

ARG

Fn (Y o) () FHn (Y, ) (O)dt
0

; ¢ N E N E _
CZVH,N(C)Vm n(0) / Ve ( ) Vim.c <C> dt, t=cu

S — f PPl wdu

C¥n, N(C)Vm n(c)
1
= ——— YN () 8m = Sum.
YN (€)Y (C) YnN " "
Finally, we prove that 8 is an orthonormal basis of HB.. Let f € HB,, then for any x > 0, we have
+00
F) = 37" () (0 = VXyIn (xy) Hn (F) (v)dy (14)

0

f VXYINGY) HN () dy,  y =cu
0

1
C/ Jexuly (exu) FHn (f) (cu)du. (15)
0

As for the classical Fourier band-limited functions, it can be easily checked that a Hankel band-limited function is an entire
function over [0, +oo[. Moreover, since 8 is an orthogonal basis of L2([0, 1]), then by using (9), it is clear that there exists
a sequence of real numbers («,), € [*(N) such that

Vue[0,1], Hy()(cu) =Y o (). (16)

n>0

Moreover, Mercer’s theorem (see [19]), applied to HC,NH;"’N implies that (yn,N(c))n € P(N). Hence, the sequence
(anyn,N(c))n € I'(N). Hence, by combining the equalities (15) and (16), one concludes that

1
f@) = c[ ~exuy (cxu) (Zanyn N(C) nel )> x>0. (17)
0

n>0 nN( )

w,, (W)

Since the function u — +/cxujy (cxu) MG

€ C([0, 1]) and since (@, yu.n(c))n € [1(N), then by using (5) and (17), one gets

f@® =" enyan(©) / ﬁmxu)w’”() du =" anyan©Yl (). O

n>0 ) n>0

To proceed further, we need the following notation.
Notation: In what follows, we let [x] denotes the integer part of the real x. Also, we let lll,i\fc (x) denotes the re-normalized

eigenfunction of (5) given by

oY (x) = Y .(x), x>0.

1
\/E Ya,N(C)
It is important to mention that as in the classical case, the eigenvalues y;, y(c) associated with the CPSWFs decay
exponentially. This is given by the following lemma. Note that the proof of this lemma is based on some techniques very
similar to those used in [3] in the classical case.
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Lemma 1. For any integer n satisfying n > , we have

Fn+ D +N+1) e _
n 2 o p(t.n)dt @n+N+1)log2. 18
lyan(©)] < v/e/( 7T)< i NT D) e e (18)

[ec—2N+1]

Here p(t, n) is the function defined on [0, c], by

w2 =1 20+ N+1

0,n) =0, t,n) = , te€]o,c]. 19
p(0, n) p(t, n) > ; 10, c] (19)
Proof. In [3], the author has proved that
im Yan(©) (=D"n'(n+N+1) 20)
c—>0 C2MHN+1/2 7 220+N+HIP (20 + N+ DIQ2n+ N +2)°
+0o0

Here, I'(-) denotes the gamma function defined by I'(x) = fo t*~le=tdt,x > —1. Also, note that the re-normalized

eigenfunction tI/,f”C (x) satisfies the following condition f01 lI/r{‘fC (x)2dx = 1. Moreover, in [3], it has been shown that

8)/n,N (C) — Vn,N(C)
ac 2c

Equality (21) is equivalent to

(1) =1). (21)

dlogynn(@) _ 1y io
e = 50 (W) —1). 2

Consider areal 0 < c¢g < c, then by integrating (22) over [cp, c], one obtains

C2n+N+1/2
log ya n(c) = log yu n(co) +/ —

]

dr + /Cp(t, n)dt. (23)

o

The following result given in [3],

242
e (1) = (=1)"/2@n+ N + 1) (1 + Nt ) +0(t%),

42n+ N)2(2n+ N + 2)2

shows that the function p(t, n) is continuous over [0, c]. By exponentiating the members of (23), one gets

24N+1/2
C C
) el POMIC (24)

¥an(€) = Yan(Co) (—
Co
By letting co go to 0 in the equality (24) together with (20), one obtains the following equality
(=D"n!T(n+ N + 1)c2ntN+1/2

efocp(t,n)dt' (25)
22tNHIP2n+ N+ 1DI'2n+ N + 2)

YaN(C) =
Moreover, by using the following consequence of Stirling’s formula, (see [20])

Vs>0, T(s+1)>2rsT2es, (26)

we conclude that for all n > [£=]

+N+1/2 2n4+N+1.204+N+1/2 204N+1/2
c - e c - ec e/2m)
F2n+N+2) = 2r@2n+ N+ 1)2+N+3/2 — \2n 4+ N + 1 2n+N+1
Je/(2m)
T 2n+N+1

Hence,

—ontN+1log2 VE/QmT(n+ DI'(n+ N+ 1) o5 pEm e
r2n+N+1)

O

lyan(©)] <e
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Remark 1. Numerical evidences show that for any integer n > 0, for allt > 0, p(t, n) < 0. Hence, the above decay bound
can be replaced with the following better bound.

1 Je/Rm)T(n+ HI'(n+ N+ 1)
[Yan (O] < PR i iN D) . (27)

Our computations of the CPSWFs are heavily based on the use of the Jacobi polynomials. Note that for any two real
numbers «, B > —1, the Jacobi polynomial P(D‘”g)(x) of degree n is given by the following Rodrigues formula
(="

PP =

(1 =x)"Y1+x)" ﬁ [(1 0“1+, n>o. (28)

Moreover, if
2P (n4a+ DI+ B+ 1)
T nlle4+B+2n+De+B+n+1)
then the set{ P@( ﬂ)(x) n € N} is an orthonormal basis of (L*[—1, 1], d), where dz(x) = (1 — x)*(1 + x)?dx. For more

details, the reader may consult Reference [21].
In [3], the author has considered an integer N > 0 and has used the following set of functions

Tin(®) = 2@k + N + D201 —2¢%), k>0, (29)
to get a symmetric tridiagonal matrix representation of a differential operator having the same eigenfunctions as the

operator He y. Moreover, since 8 = {Ty y(x), k € N} is an orthonormal basis of (L?[0, 1], dx), then for any real N > —1 and
any integern > 0, 1//,?{ () has the following series expansion with respect to 8,

YN = d w0, x€[0,1]. 0)

k>0

>0,

In what follows, we shall prove that basis 8 is also well adapted for the matrix representation of the operator H. y. This
is partly due to the existence of exact and explicit simple formulae for the different moments of the basis functions Ty y ().
This is the subject of the following proposition.

Proposition 2. For any integers j, k > 0 and any real number N > —1, let M; x denotes the moment of T y given by

1
My = / PHIT L (dx, (31)
0
Then, we have

N+1 ! C(N+j+1

v L i e 2L WHITD s ps0 -

Jide = 2 (G-I T(N+j+k+2) (32)
0 ifo <j < k.

Proof. Since
1
M = CN.k/ XN+%+21XN+%13,’:”0(1 —2x°)dx, cvx=+/22k+N+1),
0

then by the change of variable u = 1 — 2x? applied to the above integral and by using the Rodrigues formula, one obtains

k k
o Nk N+1 -1 - N-+k k
My = / (=0 (1 - (- 0N ) du

on k(=¥

= / (1— u)f — w1+ w) du. (33)

ON+j+2+k |

Note that, for any integer 1 < | < k, if fi(u) = £z &l ((1 = wNt (1 + wk), then fi(1) = fi(—1) = 0. Hence, by applying a
successive k integrations by parts to (33), one gets

ank(=1D* ! Nt k 1+u
Mk = SN Tz Dk 71(1—U) A+widy,  v=—
CN,]((—l)’<2N+j+k 1 Nt '
= N A vV (1 —v)'dv
v k(=D

= —— BN Lk+1
k! (N+j+1,k+1).
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Here (a), denotes the shifted factorial defined by
V>0, (@=a@+1---(a+l-=1), (1)o=1
It is well known, (see [21]), that for Re(x) > 0 and Re(y) > 0, we have

1 rxr
B(x,y) :/ 11—t de = M. (34)
0 Fx+y)
Hence, by using equality (34), one concludes that, for allj > k > 0, we have
enk(=D*G@ T(N +j+ DI (k+ 1 N+1 I(N+j+1
M = Nk (—1) (e T'( —}—J-I-.)(—i-):(_]),< K+ + .J ( _.H+) . (35)
’ 4k! T(N+j+k+2) V 2 G—KIT(N+j+k+2)
Next,if0 < j < kand since deg P,"°(1—2x%) = 2I,where deg P""*(1—2x?) is the degree of the polynomial P,"°(1—2x?), then
we havex¥ = Y_ a0 (1—2x2) or equivalently xN 2% — /o aiTin(x). Hence Mj; = Y, o f01 Ty.n ()T v (X)dx. By

using the orthonormality of {Tk,N(x)}k>0 over [0, 1], we finally obtain (T; v, Ty ) = 0, where (., .) denotes the usual inner
product of L?([0, 1]). Consequently, forall 0 < I < j < k, it follows, Mjx=0. O

We should mention that in [3], the author has shown that if N > 0 is an integer, then for x > 1 the eigenfunction 1//55 )
is given as follows

VAR > dy ,/2(21<+N+1)M%, NeNx>1. (36)

VnN( ) k>0

The proof in [3] is restricted to the integer values of N and is based on finding a complicated second order differential

equation with a solution given by Fy »(x) = fol /XYIn (xy) Ty (y)dy. The following proposition generalizes (36) to the case
of any real number N > —1. The proof of this proposition is based on Proposition 2 and it is much more easier than Slepian’s
proof, (see [3]).

Proposition 3. Under the above notations, for any real number N > —1 and for all x > 1, we have

> dl 2@k + N+ 1)M. (37)
J&x

Yn, N(C) k>0

Y (x) =

Proof. Since 1//,’2{ (%) is an eigenfunction of H. y associated with the eigenvalue y;, y(c), then by using (30), one gets Vx > 1,

Vne(0) = ” N(c)/ VXN (xy) ¥y (v)dy
= dy T,
M(C) ﬁ 1N<cxy)kzoj EnTen )
_ ny (=1 (cxp)?
" @ 2 “2/ Va7 () girarsp T 00 (38)

Note that the permutation of the integral and the summation signs are made possible thanks to the fast decay of the sequence

(dk )k (see Theorem 1) and the uniform convergence over [0, 1] of the series Sy(y) = Z]’;%O %TM (), (see the proof

of Theorem 2). Hence, by using the equality (38) together with Proposition 2, one concludes that

(— 1Y (0 PHN+3

1
N _ N+2j+1
X) = . 2T, d
Y ) J/nN(C) k§>0 kn E < NGHITN+j+ 1) Jo y kN ()dy

_ 1 Y a f (— 1) (cx)¥N+3 "
@ & e AN D

(—1Y (cx)2HN+3 N+1  JTN+j+1)
= > an g (DN e+ T
ynN(C) =0 VTN +j+ 1) 2 (—BI'N+j+k+2)

B \/TH X (1Y (ex) PN+ (1) 1
B ynN(r:)\FZ o 2N/ +k U JID(N 4] +2k+2)

k>0
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S dY, 2@k N+ @)
Jax

yn N(C) k>0

The following theorem shows that coefficients dﬁ » in (30) decay exponentially.

Theorem 1. Forany k > ky = [<="*1], we have

2
e4(N+2k+2) 1\ Ntk

Ay, < ov——=— < ) , (39)

b VT Y ©)]

where cy is a positive constant only depending on N.

Proof. We note that for any real number N > —1, there exists My > 0, such that sup,- x(Jy (x))? < My. The proof of this

result will be included in the proof of Theorem 4 of Section 3. Let cy = +/My, then the previous inequality combined with
(5)and (8) give us for allx > 0

1 !
ool < — [ edy) 1o
n ()] " mers o

|yn (C)|||wnc”2[0 1 = ()lflynN(C)|—CNf

Hence, we have

"YW
‘/0‘ \/@ d <2CN

To show the decay of the sequence (d’,:’ n) we use the following equality

keN
1
/ In(e) /Ty )y = 2@k + N + 1)’””%, (40)
0

which can be seen from the proof of Proposition 3. Note that w,’l‘fc satisfies

1
Vx>0, / VYN ) dy = van (© Y (). (41)
0

By multiplying (41) by Ty y (x) and integrating it from O to 1, one gets,

1 1 1
/ Tew(®) ( f «ﬁcxyMcxy)wn”,ccy)dy) dx = Y () / Tew ! (x)dx.
0 0 0

By using Fubini’s theorem and equality (40), we obtain

J2GkINT D) / wnc(y)]NJri;ﬂ(y) Y = yan(©dY,.

or equivalently,

V22k+N+1) Int2k1(cy)
= wn W———dy
Vn,N(C) v y

Using equality (42) together with the series expansion of Bessel’s function, we conclude that
2(2k+ N +1 IN+2k1(cy)
iy = LIEIED [y ure),,
YN (C) NG
_ V2QkFNFD 1 \MPe 1 X (Ste2?)
/ 11//11 c( ) 7CX = |
 (© Vex 4 OJF(N+2’<+]+2)
22k N 1 +00 1 1 N+2k+1 -1 j
_V (2k+ N + )Z / wévc(x) ECX TC22

1
) —
YN (C) 7 JIT(IN +2k+j+2) ) VX

dﬁ (42)

dx
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B m f (%)N+2k+l C(N ) ] k)
Yan(©) S IN+2k+14)) - (N+2k+2) (N +2k+2) 7777
P(@)
where
C(N,n,j, k) = / ] YN (RN T (_lczxz)] idx.
o 4 Vex
Note that

) L. 1 2\ 2\
[C(N,n,j, k)| < (/(; |1ﬂn,c(x)|\/adx> <Z) <2y (Z) .

Moreover, since P(j) > (N + 2k + 2, then we have

k1 2y
22k+ N+ (5" f <4>

ldy .| < 2cn - -
’ [Vnn(C)] I'(N 4+ 2k + 2) = JU(N + 2k + 2y
)N+2k+1 2
e INHTRTD) |

22k+N+1D (5
[Vnn (€)] I'(N + 2k +2)

Using the inequality (26), we obtain for all k > ky = [£=21]

(%)N+2k+1 1 eN+2k+1 (%)N+2k+1

D(N+2k+2) = V27 (N + 2k + 1)N+2k+§

1 ec N+2k+1 1
T (2(N+2k+1)> 2JN f2k+ 1

1 1\ N2kt 1
< — (= -
T V27 <2> 24/N 4+ 2k +1

Combining (43) and (44), one obtains the desired inequality

2
ec—N+1 e AN+ 2kFD) 1\ NHk+1
Vk = [] ’ |d;:ln| <(N—F—— (7) .
2 ’ VA an(©] \2

3. Matrix representation of finite Hankel transform operator and spectral analysis

323

In this paragraph, we study a matrix representation of the operator H. y, given by (5). This strategy was also followed
in [6]. This representation will provide us with an efficient method for computing accurate approximations of the different

eigenvalues of this operator. This is given by the following theorem.
Theorem 2. Consider a real number N > —1 and let A = [awy (¢)]k ¥ >0 be the infinite matrix given by
(—1) cN+2+3

w©= ) 2V ATN ++ 1)

j>max(k,k'

M; kM

(46)

Here, the M; i are as given in (35). The spectrum of H. y coincides with the spectrum of A. Moreover the coefficients of A have the

following decay estimate

2
O < i ;
— 2NFKHIKIN(IN +K + DN+ 2K + 1)

N+2K

|y K = max(k, k'); k kK >0.

Moreover if |k — K| > i, then

CN+2K

< ; K = max(k, k); k kK > 0.
Ol = NFZHTKIT(N + K + 1)I(N + 2K + 1) (k. k) =

| Qg
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Proof. Since H. y has a symmetric kernel Ky, given by Ky (x, y) = /cxyJy(cxy) and since Ky (x, y) € [2([0, 11?), then Hcy is
a Hilbert-Schmidt self-adjoint operator. Consider the orthonormal basis B of L?([0, 1]) given by 8 = {Ti,n(x), k > 0}, then

1
HenTin (%) = / VexyIn (exy) Ty (v)dy
0

1 +o0 N+2j+3 1\
=/ (cxy) CV vy, xe [0 1].
0

2 VAT +j+ 1)

It is well known, (see [21]) that

(N +k)
sup [P0 )| = (RINEDT 7T 2 (“7)
yel—1.1] ~1/k if — 3> N> —1.

Hence, it is clear that

()N ¥tz (—1)
2NjI4T(N +j+ 1)

Vx €[0,1], S.(y) = Z

j=0

Tk,N (y)dy

converges uniformly in [0, 1]. Consequently, we have
CUnN+2+3 (—1)

1
‘ N+2j+5 T d
NN +j+1) Jo 7 knQ)dy

Hen(Ten) @) = V2 3"

j=0

2 i

c?(—=1y 1

— N+3 N+2j+3

=2 E 5 Mjx" 72,
j=0

NjI4UT(N +j+ 1)

Since for all j < k, we have Mj ; = 0. Then, for all k, k¥’ > 0, it follows that

21V
1 cd(—1y
e (€) = (HenTiew, To ) = cVH2 : M; (M .
e (€) = (He nTin, T n) PZOZNJ!4’F(N+]'+1) i kM k
Hence, if A = [aw (c)]kx>0, then A is the matrix representation of H.y with respect to the orthonormal basis B.

Consequently, H. y and A have the same spectrum.
To prove the decay estimate of the coefficients ay (c), we first note that for allj > k > 0, we have

1 . % 1 % 1
, IN+14+4j 2 _
|M,.,k|s(/o . dx) ([0 (Ten () dx) o e s

Moreover, from (32), one has
MM = (=1 Ml M e |

Since for all j < k we have Mj; = 0. Then for all k, k" > 0, it follows that

D**a () =2 Y ) MM i .
J2VMT(N+j+ 1

j>max(k,k’
If K = max(k, k), then
N+% 1
ape (c)] <
e (O] = 2ND(N +K + 1) 2(N + 2K + 1)

)6

. -
Since Zj>K S-S oxeT, then

)

il
i=x I

1
N+2K+ 2 2

c 2 2
T =eyg(c)e7,

) < e
©l = 2NHI(N + 2K + 1)4KK!

|y
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By using (35), one gets

/ Czj(—l)j 1 . ;
— 1) g (c) = N2 : M; M | = N2 —1Yak* (0),
(=D aye () ;szjwrwﬂﬂ)' M i | j;(( Yo (c)
with
aii© G+ DN +j+1)

(o) A1 —RGHT—K)YN+j+k+2)(N+j+ K +2)
This shows that if |k — k'| > i, then Vj > K = max(k, k'), we have

qﬂ@)<§ 1 G+ o
o) A=K GHR+ DGR+

Hence (—1)"+kla,<k/(c) is written as the remainder of a convergent alternating series with decreasing coefficients.
Consequently

N+3 c c

M: M .| <
2N 41<1<!F(N+1<+1)| M| = 2VAKKID(N + K 4+ 1) 2(N + 2K + 1)

2K N+3+2K 1

lawe (©)] < =eyk(c). O

Next, if eig(H. ) = {yan(c),n > 0}, where eig(H. y) is the set of the eigenvalues of H. y and y;, y(c) are arranged in
the decreasing order of their magnitudes, |yon| > |[yin] = - |¥an(c)| = --- > 0, then by Theorem 2, we know that
eig(Hcn) = A(A). In practice one can only consider a finite order submatrix A (c) = [ (¢)]o<k k<. Of A, and consider
the eigenvalues of A;(c) as approximate eigenvalues of the first K eigenvalues of H. y for some 0 < K < L. The following
theorem shows that for any positive integer K, one can get highly accurate approximation of the first K eigenvalues of H. y
by considering the first K eigenvalues of an appropriate submatrix of A. The proof of this theorem is based on the well known
Weyl perturbation theorem, (see [22]).

Theorem 3 (Weyl'’s Perturbation Theorem). Let A and B be hermitian matrices (finite or infinite order). Then
mjaX [2;(A) — 2;(B)] < |A— B].

Here ||All = supj =1 |{x, Ax)| and A;(A), A;(B)j > O are the eigenvalues of A and B, arranged in the decreasing order of their
absolute values.

Theorem 4. For any € > 0 there exists a positive integer L. such that YK > L., we have
lw() —yn@)l <€, VO<j=<K, (48)
where the 1(j) and y; n(c) are the decreasing sequences of the eigenvalues of Ax(c) and H. y respectively.

Proof. The proof of the theorem is divided into two parts.

First part. We prove that for any real numbers N > —1, ¢ > 0, there exists a constant My such that ||H. y||?> < My. It is
clear that under the above conditions, the kernel Ky(x, y) = ./cxyjy(cxy) € L*([0, 1]?) and consequently H, y is a Hilbert

1/2
Schmidt operator. Also, it is well known that if ||[H. n || = (fo] fol (Ky (x, y))zdxdy) is the Hilbert Schmidt norm of H y,

then ||Hc n|| < ||[Hcnll 5. On the other hand, if Yy (x) denotes the Bessel function of the second kind and of order N, where
N > 0is a positive integer, then it is shown in [23], that the function 7(.) defined by n(x) = x(],%, x) + Y,ﬁ(x)), x> 0is
decreasing. Moreover Yy (x) has an infinite number of zeros on ]0, +o00[. Let zy denote the first zeros of Yy (x), then for all
X > zp, we have

N2(X) < 202 (20) + Y2(20)] = 203 (z0) = Mo (49)
Moreover, since X — x]ﬁ (x) is continuous on [0, zg], then

Vx € 0,201, X[R(X) < My n. (50)
If My = max(My n, M1,n), then by combining (49) and (50) one concludes that

x(IN(X)? <My, VYx>0. (51)
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Hence, for any integer N > 0, we have

1 1 1 1
[ He w117 =/ f exy(In (cxy))*dxdy 5/ / Mydxdy = My.
0 0 0 0

Next, for an arbitrary real number N > —1, we use (4) to get the following inequality,
2
ec/4

F'N+1°

N
Vxyel0. 11, Uy(exy)l < (?)

Consequently, we obtain again,

1 pl R c1H2Nac?/2 1 p1 Lo 1eaN
X cxy))?dxdy < —8M—— x1 TNy I+ dxdy = M.
/0 /0 y(Un (cxy))“dxdy < (F(N+1))24N/0 /0 y y N

Second part. In this part, we prove (48). Let A = [ay (C) Ik k>0 and A; = [ayw (¢) o<k k<1, then A — A; is a matrix representation
of a Hilbert-Schmidt operator ¢, ; with Hilbert-Schmidt norm given by ||eC,L||!2” = Zk,k’>L(ak’</ (c))?, but from part I, we
showed that |le. ;]| — 0asL — +oo. Hence, Ve, L, € N such that ||e. ]| < €. By Weyl's perturbation theorem, we
have

Jnax 14i(A) — A AD] = A= ALl < 1A = Arllse = llecellze < €.

This concludes the proof. O

Remark 2. For small values of the parameter ¢ and for reasonable small values of the tolerance ¢, the value of L, given by
the above theorem is not large. As an example, for c = 15, ¢ = 1073, we have found that L, = 40.

Note that the computation of accurate approximations of the different eigenvalues and eigenfunctions of H, y is done as
follows. By using the matrix representation A(c) = [aww (¢)]k >0 Of He n it is clear that for an integer n > 0, the sequence

(d{:{ n) y0 1S nothing but the eigenvector corresponding to y, ny(c). Moreover by Theorem 4, one can get highly accurate

approximation p(n) of y, n(c) by using a submatrix of A of order L > 0. The eigenvector (Ei’,zn) . is taken as a good

0<k=<

approximation in the L?-norm of (d}f

kn)so- Consequently

L
V@) = ZaﬁnTk,N(x), xe€[0,1] (52)
k=0

is the approximation of the exact eigenfunction w,’:’ (%) on the interval [0, 1]. The eigenvector (ag’ n) is normalized
’ "/ 0<k<L

so that ZLO |dﬁ " |> = 1. An approximation of the analytic continuation of the normalized w,’xc is given By the following
formula

PN (x) = ! jagn 2(2k+N+l)w, x> 1. (53)
' Hn(C) pr Jex

4. Approximate spectrum of ﬁc, ~ by a quadrature method

In this_paragraph, we develop a quadrature method for approximating the spectrum and the eigenfunctions of the
operator H. y given by (3). Then by using (6), one obtains approximations of the CP'SWFs and their associated eigenvalues.
We should mention that for the classical finite Fourier transform, some efficient generalized Gaussian type quadrature
methods on the unit circle have been successfully used to approximate the 1D PSWFs and their eigenvalues, (see [5]).
Recently, in [9], the author has provided a quadrature method for the approximation of the 2D PSWFs on the unit circle
and it is essentially based on an appropriate quadrature method for solving the eigenvalue problem (5). In this paragraph,
we propose a different method for solving (5) through a quadrature method adapted to (3). This method is heavily based on
a special set of orthonormal polynomials. It can be considered as a generalization of a similar method we have developed
in [24]. To proceed further, we need the following mathematical preliminaries.

4.1. Mathematical preliminaries

We first construct a set of orthonormal polynomials over [0, 1] and with respect to the measure do (x) = xdx. This set of
polynomials is then used for the construction of a Gaussian quadrature for problem (3). A candidate of a set of polynomials
{Qn(x), n > 0} satisfying the previous conditions is given by the following Rodrigues Formula

1 d"
Q) =c

v T [Xn+1(1 _ x)”] _ n>o. (54)
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Here c, is a normalization constant to be fixed in what follows. From the equality (54), it is clear that for any integern > 0, Q,
is a polynomial of degree n. Moreover, one can easily check that for any two integers 0 < m < n, n integrations by parts
give us

1 1 . dn ] dm )
/ Qn(X)Qu (x) xdx = cncm(—l)m/ X1 =" [ " —X)’")} dx
0 0

dxn | x dxm
0 ifm<n,
- n!(2n + 1)! (nh?
2 2
) ——Bn+2,n+1) =(c ifm=n
(cn) D) n+2,n+1) (n)2n+2
Hence, the desired set of orthonormal polynomials Q,(x), n > 0, is given by
V2n+21 d"
Qe = Y21 S g ] nxo. (55)
n!  xdx"

It is well known, (see for example [21]), that if {P,(x), n > 0} is a set of orthogonal polynomials over an interval [a, b],
then this family satisfies a three-term recursion formula of the following type
Ppy1(%) = (Anx + Bp)Pp(x) — CiPpq(x), n>0. (56)
Moreover, if the highest coefficient of P, is k, > 0, then

_ ki1 o An
" kn ’ n An—l
Note that the sequence (B,), given in (56) can be computed by equating the coefficient of X" from both sides of this equality.
In the special case of the orthonormal polynomials Q,(x) given by (55), straightforward computations show that for any
integer n > 0, we have k,;, = \/z;'ﬁ ((2nn++11))!!_ Hence, sequence Q,(x) satisfy the recursion formula (56) with the sequences
(A, (Bp)n and (Cy,), given explicitly as follows

, Vn>1. (57)

22n+3 2n+3 1)3/2
AH=L’ Cn=i n i Bn=—4(n+—), n>1, (58)
n+Dn+2) 2n+1VYn+2 @2n+1DV/n+2

with the starting terms Qq(x) = V2, Q4 (x) =4 — 6x.

Also, note that from the theory of Classical Orthogonal Polynomials, (see [21]), one concludes that for all n > 0,
the introduced polynomials Q,(x) has n different zeros inside. Moreover, these n different zeros are simply given as the
eigenvalues of a tridiagonal symmetric matrix D of order n, given by

Bi_4 —1

D= [di,j]@-,jfn, di; = A, dijiv1 = dit1i = A dij=0 ifj#i—114i+1, (59)

where the A; and B; are given by (58).

Remark 3. Note that formula (59) provides us with an excellent and very fast method for the computation of the different
zeros of Q,(x), even if the degree n is large.

4.2. A quadrature method and approximate spectrum of He

In this paragraph, we use the previous results to construct a quadrature method for the eigenvalue problem (3). A
Gaussian quadrature method of order 2n, associated with an orthogonal P, (x), defined on [a, b], and orthogonal with respect
to a measure da (x), is given by [21]),

b n
| rovdaco = Yoo, (60)
a k=1
where f € C([a, b]), the different nodes (xx)1<k<n are the different zeros of P,(x). It is interesting to note that the different
quadrature weights (wy)1<k<n are simply given by the following practical formula

k 1
n+17,7 1<k<n. (61)
kn Pn+1 (Xk)Pn (Xk)

Here, k, is the highest coefficient of P,(x). It is well known, (see [21]), that if f € C?*([a, b], R), then we have the following
desirable formula for estimating the error of the quadrature formula (60),

b n 1 f@n
[ rovdaco = Yo + 5o <b. (62)

, a=n=
— k2 (2n)!

wp = —
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In the special case of our set of orthonormal polynomials Q,(x), n > 0, the Gaussian quadrature (60) becomes

! . 22n+3 1
/ fooxdx~ Y of ), op = — ) ___ 1<k=n, (63)
0 e /12 4 3n + 2 Qi1 () Qy (xk)
where the nodes x; are the eigenvalues of the matrix D given by (59). In the special case where da(x) = xdx and

fx) =Jn(cxy),y € [0, 1] is fixed, Eq. (62) becomes

n!(n + D)2 d
2(n+ D2MI((2n + 12 dx2n

1 n
/ Iv(ey) xdx =) " ady(cuy) +
0

k=1

[Jw(cxy)} m, 0=n=<1. (64)

The following theorem borrowed from [24] provides a discretization formula for eigenproblem (3) as well as an interpolation
formula for the approximate CPSWFs.

Theorem 5. Let N be a fixed positive integer and let € be an arbitrary real number satisfying 0 < € < 1. Let K. =
max ([Z(ec + N+ 2)], [% + N+ 2]) , then under the above notation, we have

Ke

Ban(€) ]; win (cxy)én )

ce
< —.
[Bn.n (O]

sup
xel0,1]

P c(0) —

(65)

Here, (¥j)1<j<n denote the different zeros of the orthogonal polynomial Q,(x) and ¢,’1‘{ (), Bun(c) are given analogously to (3).

Remark 4. Although the sequence (|8, n(c)|), has a fast decay to zero, the approximation formula given by the Theorem 5
remains practical even for relatively large values of n. This is mainly due to the log-term in the expression of K.

Remark 5. As in the classical finite Fourier case, (see [5]), the accuracy of the interpolation formula (65) depends essentially

on the accuracy of the approximation of the integral Iy(y) = f(; xJn(cxy)dx by a quadrature method. If a 2nth order
quadrature method based on an orthogonal Legendre polynomial over [0, 1], is used to approximate Iy (y), then one gets

(n!)4 dZn
(2n + 1)((2n)")3 dx2"

1
/ X (exy)dx = )~ axidy () +
0

n
k=1

{xjw(cxy)}(n), 0<n=<1 (66)

By comparing (64) and (66), one concludes that our proposed quadrature method is slightly more accurate than the classical
Gauss quadrature method. Moreover, the error analysis of our proposed quadrature method is easier to handle than in the
case of Gauss quadrature. For more details, the reader is referred to [24].

As a result of Theorem 5, we obtain the following discretization scheme for the eigenvalue problem (3),

Ke

D wv(exydn 0) = Ban (@O (x), 1 <ij<Ke, (67)

=1

where the x;, y; and the w; denote the different nodes and weights of our proposed quadrature method. If Ax denotes the
square matrix of order K, defined by

A= [wj]N(CXiyj)]]S,'_jSK ’ (68)

then the set of the eigenvalues of Ay defines approximate values of a finite subset of the eigenvalues of the operator ﬁc,N,
introduced by (3). Moreover, for any integer 0 < n < K, the eigenvector 5,1 corresponding to the approximate eigenvalue
Bun(c) is given by U, = [¢,’Xc(xi)]l<i<l( . Finally, to provide approximate values qﬁ,ﬁ‘{c(x) of qb,’xc(x) along the interval [0, 1],
we use the following interpolation formula based on [24].

K
> o (exypdn o), 0<x<1. (69)

j=1

N (x) =
e (X) ﬂn,N(C)

Finally, approximate values of the CPSWFs along the interval [0, 1], are given by the following formula,

PN ) = Vxol (x), 0<x<1. 70)
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Remark 6. As predicted by Theorem 5, interpolation formula (69) is highly accurate. As an example, forc = 10,N =2, n =
3 and K = 35, we have numerically found that the relative approximation error over [0, 1] of the previous formula is given

by
N (x) — P (%)

oV (%)

o (x0) — P (x0)

~ = 6.00481e-13.
N (x0)

x€[0,1]

Here, xo = 0.92216 and the references values on [0, 1] of the exact eigenfunction 5,7 .(+) are obtained by using a higher order

quadrature formula with K = 70 quadrature nodes. Moreover, we have found that the L?([0, 1], xdx)— approximation error
for this example is given by

| @Y. (x) — @ (%), = 3.66235e-18.

5. Computation of the spectrum of the finite Hankel transform operators: Maple programs

In this paragraph, using the results of Sections 3 and 4, we construct two Maple programs for computing the CPSWFs and
their associated eigenvalues. For a given bandwidth ¢ > 0, and a real number N > —1, the first program computes the Kth
order submatrix Ag of A, the matrix representation of H. y. Then, the program computes accurate approximate values of the
first eigenvalues of H, y. Also, the program uses formulae (52) and (53) and computes approximate values of the normalized
CPSWFs along the domain [0, oof.

Program 1: Computation of the CPSWFs and their eigenvalues by method 1.

\4

# Initialization
> with(linalg) :Digits:=40:N:=1:c:=20:
if floor(c) <= 40 then K:=max(floor(2*c),20+floor(c)):else
K:= max(floor(c)+20,floor(6/5%c)): fi:
> # To use a different value of K,
# enable the following command and insert your choice of K.
> #K:=
> # Compute the different moments M_{1k}
> for 1 from O to K do M[1,0]:=evalf(sqrt((N+1)/2)/(N+1+1)):0d:
1:=’1°:for k from 1 to K do for 1 from O to K do M[1,k]:=0:0d:o0d:
1:=21’:k:="k’:for k from 1 to K do for 1 from k to K do
M[1,k]:=(-1)"k*evalf (sqrt ((2xk+N+1)/2)*1!/(1-k) ! *GAMMA (N+1+1) /GAMMA (N+1+k+2)) :0d;od:
> # Compute the eigenvalues and the eigenvectors of H_{c,N}.
> b:=array(1l..K,1..K):k:="k’:j:=’j’:for k from O to K-1 do for 1 from O to K-1 do
blk+1,1+1] :=evalf (sum((-1/4)~j/(2"N*j ! *GAMMA (N+j+1) ) *M[j , k]I *M[j,1]*c~ (N+2*j+1/2),
j=max(1l,k)..K)):od:od:
> F:=eigenvectors(b) :L:=[seq(abs(F[i] [1]),i=1..K)]:L:=sort(L):
# Reorder the eigenvalues of H_{c,N}
for m from 1 to K do R[m]:=0:od:for i from 1 to K do for j from 1 to K do
if ((abs(L[i])-abs(F[j1[11))=0) then R[i]:=j:else R[j]:=R[j1+0:fi:od:od:
# To print the ordered eigenvalues, enable the following command.
# i:=’i’:for i from 1 to K do print(i-1,abs(F[R[K+1-i11[1]1));0d;
# Computation of the basis T_{N,k}
Y:=Y?:PP[0]:= 1:PP[1]:= 1.0/2*%((N+2)*Y+N) :for k from 1 to K do
PP[k+1] := expand(1/ (2% (k+1)* (k+N+1)* (2*%k+N) ) * ((2xk+N+1) * (N~ {2}+Y* (N+2*k+2) * (N+2xk) )
*PP [k] -2*k* (k+N) * (2xk+N+2) *PP [k-1]) ) :0d:x:="x’:Y:=1.0-2.0*x~{2}:
for k from O to K do T[k]:= expand(sqrt(2.0%(2xk+N+1))*x~(N+1/2)*PP[k]) :0d:
> # construct the different normalized circular PSWFs
> x:=’x’: psi:=proc(n,x) a:=evalf(sqrt(sum((F[R[K+1-n]][3,1] [kk])~{2},kk=1..K))):
if(x=1) then evalf(1.0/a*sum(F[R[K+1-n]][3,1] [kk]*T[kk-1],kk=1..K));
else (-Heaviside(x-1)+Heaviside(x))*evalf(1.0/a*sum(F[R[K+1-n]][3,1] [kk]=*T[kk-1],
kk=1..K))+Heaviside(x-1)* evalf(1/F[R[K+1-n]] [1]*sum(1/a*F[R[K+1-n]][3,1] [kk]*
sqrt (2% (2+¥kk+N-1) ) *BesselJ (N+2*kk-1,c*x) /sqrt (c*x) ,kk=1..K)) :fi:end:
> # To plot the graph of psi_{n,c}(x) over [0,b],
# enable the following command with your choice of n and b.
> # x:=’x’:n:=1:b:=2:plot(psi(n+1,x),x=0..b);

VvV Vv

VvV V V V
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The second program computes approximate values of the CPSWFs and their eigenvalues by using the quadrature method
of Section 4. More precisely, for the given values of c > 0, N > —1 and the positive integer K, the program computes the
different K quadrature nodes and weights. Then, it computes approxirgate values of the first eigenvalues S, y(c). Finally the
program uses formula (70) and computes approximate values of the ¢,’X (%) along the interval [0, 1].

Program 2: Computation of the CPSWFs and their eigenvalues by method 2.

# Initialization

> restart;with(linalg) :Digits:=50:¢:=30.0:N:=1:K:=50:x:="x":

> # Compute the orthogonal polynomials Q_n(x) by Rodrigues Formula.

> for n from K to K+1 do a:=evalf((n!)/(sqrt(2.0*n+2.0))):

Q[n] :=expand ((-1)"n/(a)*1.0/x*diff ((x~(n+1)*(1-x)"n,x$n))):

k[n] :=evalf ((sqrt (2*n+2)*(2xn+1) 1)/ (n!*(n+1) 1)) :0d:dQ[K] :=diff (Q[K] ,x):

# Compute the K nodes as the eigenvalues of the tridiagonal matrix D1

> n:=K:A[0]:=sqrt(2.0)*3.0:B[0] :=-evalf (2.0*sqrt(2.0)):for i from 1 to K do
Ali] :=evalf (2% (2*i+3)/(sqrt ((i+1)*(i+2)))):
Bli] :=evalf (-4*(i+1)~(3/2))/((2*i+1)*sqrt(i+2)) :od:
Di:=array(l..K,1..K):for i from 1 to K do for j from 1 to K do D1[i,j]:=0.0:0d:0d:
i:=’i’:for i from 1 to K-1 do D1i[i,i]:=-evalf(B[i-1]/A[i-1]):
Di1[i,i+1]:=evalf(-1/A[i-1]): D1[i+1,i]:=D1[i,i+1]:0d:D1[K,K] :=-evalf(B[K-1]/A[K-1]):
X:=eigenvals(D1):

> # Compute the different nodes by the use of formula (63).

> for 1 from 1 to K do x:=X[1]:W[1] :=evalf(-k[K+1]/k[K]*1.0/(Q[K+1]*dQ[K])):0od:x:="x":

> # Check the accuracy of the approximate quadrature weights
#and change the precision if necessary.

> a:=evalf(sum(W[ii],ii=1..K)):if (abs(a-0.5)>=10"(-7)) then
print (‘A precision problem: restart the program with a higher value of Digits‘); fi:

> # Compute the eigenvalues of A

> Digits:=40:A2:=array(1..K,1..K):for i from 1 to K do for j from 1 to K do
A2[i,j]:=W[jl*BesselJ(N,c*X[i]#X[j]) :od:0d:F:=eigenvectors(A2):
beta:=sort([seq(abs(F[i] [1]),i=1..K)]1):

> # Reorder the eigenvalues Gamma_{n,N}=|sqrt(c)*beta_{n,N}|

for m from 1 to K do R[m]:=0:0d:for i from 1 to K do for j from 1 to K do

if ((abs(betali])-abs(F[jI1[1]1))=0) then R[i]:=j:else R[j]:=R[j]1+0:fi:od:od:

i:=’i’:for i from 1 to K do Gammal[i] :=evalf (sqrt(c)*beta[K+1-i]):o0d:

# To print the ordered eigenvalues, enable the following command.

#i:=’i’:for i from 1 to K do print(i,Gamma[i]);od:

# Construct the Circular PSWFs according to formulae (69) and (70).

psi:=proc(n,x) sqrt(x)*1/F[R[K+1-n]] [1]*

sum (W [kk] *BesselJ (N, cxx*X [kk] ) *F [R[K+1-n]] [3,1] [kk] ,kk=1. .K) :end:

# To plot the graph of psi_{n,c}(x), enable the following command.

> # n:=1: plot(psi(n+l,x),x=0..1);

Vv

V V V V \2

Vv

6. Numerical results

To illustrate the results of Section 3, we have considered different values of the bandwidth ¢ and the parameter N. Also, we
have used the method of Section 3 to construct for each value of ¢, the corresponding square matrix Ax of order K +1 = 31.
The integer K used to truncate the series representing the different coefficients a (c) is also set to 30. Table 1 shows the
eigenvalues |y, y(c)|, for the values of 0 < n < 35,N = 1. Moreover, we have used (52) and (53) with a maximum
truncation order L = 20, and obtained accurate approximations to the normalized CPSWFs lI/,!,‘fc(x) along the interval

[0, +oo[. Table 2 lists the approximate values 12/01 ) of lI/()l,c (x), for different values of x. The different approximation errors
in absolute value |!If& ) = !1/& ()| are given by Table 3. Note that reference values of lI/& - (x) are obtained by the method
of Section 3 with large enough values of the parameter K. The plots of the CPSWFs l;n{c(x), forc =5,10andn = 0, 1 are

given by Figs. 1 and 2, respectively. Moreover, in Fig. 3, we have given the graphs of l;& (), for c = 15, 20, 25.

In [3], the author has used a differential operator based method for the computation of the eigenvalues A, y(c) =
c(ynn(c))?. Tabulated numerical approximations of the A, y(c) with different values of 0.1 < ¢ < 17,0 < n < 3 and
0 < N < 2 are given in [3]. By comparing these tabulated results with those obtained by our Maple programs, we have
found that both programs provide highly accurate approximate values of the A, y(c). Moreover, the results given in [3]
agree with our results to 7 digits after the decimal point.

For large values of the bandwidth c, we have computed the spectrum of H. y by the use of the quadrature method of
Section 4. Table 4 shows the obtained numerical values of (—1)"y, ny(c) obtained by this method with K = 120,N = 1
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Table 1
Values of (—1)"y, n(c), N = 1 obtained by the matrix representation technique.
n c=5 c=10 c=15 c=20 c=25

4.328318175e—01
1.196803059e—07
6.405453090e—19
3.064597888e—32
6.113522480e—47
1.102382564e—62
2.871151025e—79
1.480100480e—96

3.162250925e—01
3.284074138e—04
1.883448918e—12
9.281147765e—23
1.898881328e—34
3.508271891e—47
9.359081975e—61
4.941159911e—-75

2.581988895e—01
2.733547500e—03
1.113343361e—08
3.234887597e—17
3.839225644e—27
4.099371147e—38
6.312637325e—50
1.922863730e—62

2.236067978e—01
1.954103152e—01
4.955905388e—06
2.713156779e—13
5.806750350e—22
1.107359178e—31
3.036036535e—42
1.644460526e—53

2.000000000e—01
1.999229711e—01
4.968332728e—04
2.891621901e—10
5.953367985e—18
1.070060302e—26
2.747172638e—36
1.389720689e—46

Table 2

Values of {IV/U{C (x) for different values of x.

x=0.5

x=1.0

x =10

1.284982709234547

6.786508504640555e—01

1.491587327754714 1.732760660998238e—02
1.179651185830145 2.277910990652706e—04
0.815969572910883 2.428300661805786e—06
0.526090079255421 2.322645561508451e—08

1.073274758507817e—02
2.573063153232900e—05
2.542232373640525e—06
3.327010256089710e—08
2.878140653809407e—10

and different values of n and c. We should mention that all the above numerical results are obtained by the use of the
Maple programs of the previous section. Also, for small values of the parameter ¢ (c < 100), the method of Section 3
is more appropriate to use. It provides highly accurate approximations to the spectrum of the finite Hankel transform
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Table 3
The approximation error |¥ . (x) — ¥ . (%)].
c x=0.5 x=1 x=10

5 1.1442838286e—13 6.2982408797e—13 1.8550801301e—14
10 1.5787484492e—14 1.4403313533e—13 3.7308645328e—15
15 2.7529448221e—13 1.7946177540e—12 2.4168978400e—14
20 1.9856873138e—13 4.0101035991e—12 1.1262346357e—14
25 3.8239830938e—13 4.0120555290e—12 8.5623318288e—15
Table 4
Values of (—1)"y,n(c), N = 1.
n ¢ =100 n ¢ =200

0 1.00000000000e—01 0 7.07106781187e—02
20 1.00000000000e—01 50 7.07106781187e—02
30 9.45634141276e—02 60 7.06774639718e—02
40 4.43455780887e—09 70 8.85617955333e—07
50 4.80218801960e—20 80 1.30912062099e—15
60 6.41679645801e—33 90 6.11717011336e—26

operator. Moreover, it has the advantage of providing very good approximations to the values of the CPSWFs along the
interval [0, +o00[ without the use of any interpolation formula. Nonetheless, for larger values of ¢, method 1 becomes slow
and no longer practical. This is due to the increase in the computation load of the truncated matrix representation of H. y.
Method 2 of Section 4 is better adapted for moderate large values of the parameter c. This second method has the advantage
of handling larger values of the bandwidth c. As other known quadrature based methods for computing the PSWFs or the
CPSWFs and unlike our first method, our second method has to use an interpolation formula in order to approximate the
values of the CPSWFs on [0, 1].

7. Conclusion

We have given some extended theoretical results concerning the spectral properties of the finite Hankel transform
operator H, y. Also, we have developed two numerical methods for the accurate approximation of the eigenvalues and the
eigenfunctions of the latter. The first method is restricted to small values of the parameter c. It has the advantage of providing
accurate approximations of the CPSWFs, the eigenfunctions of H, y along the domain [0, +o0o[. The second method is based
on a special quadrature formula. It is well adapted for moderate large values of ¢ and provide accurate approximations of
the CPSWFs along the interval [0, 1]. Also, we have provided the reader with two Maple programs. Program 1 and program 2
implement method 1 and method 2, respectively. Note that the computation of the K quadrature nodes and weights required
by method 2, has to be performed by the use of a high enough precision arithmetic. This is the reason why this second method
cannot be applied for very large values of the parameter c. Nonetheless, in [24], one of us has developed a composite Gaussian
based quadrature method for high frequency CPSWFs. This last method is well adapted for the accurate computation of the
spectrum of H, y, where the parameter ¢ may vary from few hundreds to several thousands.
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