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a b s t r a c t

This paper mainly studies the numerical differentiation by integration method proposed
first by Lanczos. New schemes of the Lanczos derivatives are put forward for reconstructing
numerical derivatives for high orders from noise data. The convergence rate of these
proposed methods is O

(
δ
4
n+4

)
as the noise level δ → 0. Numerical examples show that

the proposed methods are stable and efficient.
© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Numerical differentiation provides a way of numerically determining the derivatives of an unknown function from its
approximate values; and it is an important method in scientific research and engineering disciplines. For example, solutions
related to image processing [1], magnetic resonance electrical impedance tomography [2,3] and identification [4] can be
improved if the derivatives are obtained by a high accuracy approximationmethod. The problemof numerical differentiation
is well known to be ill-posed, which means that the small errors in measurement data of the function can induce large
errors in its computed derivatives. Therefore, various numerical methods have been suggested for obtaining the numerical
derivatives [1,5–11]. Theseworksmainly fall into four types: themollificationmethods [5], the finite differencemethods [6],
the regularization methods [1,7,8] and the differentiation by integration methods [9–11]. The differentiation by integration
methods, i.e. using the Lanczos generalized derivatives, are simple and effective methods firstly proposed by Lanczos [9].
The Lanczos generalized derivative [9] Dh, defined by

Dhf (x) =
3
2h3

∫ h

−h
tf (x+ t)dt =

3
2h

∫ 1

−1
tf (x+ ht)dt, (1.1)

approximates f ′(x) in the sense f ′(x) = Dhf (x)+ O(h2). Recently, Rangarajana et al. [11] generalized it to the case for high
order derivatives with

D(n)h f (x) =
1
hn

∫ 1

−1
ρn(t)f (x+ ht)dt, n = 1, 2, . . . , (1.2)

which is an approximation of the nth-order derivative f (n)(x) and obtained by choosing ρn(t) such that

D(n)h f (x) = f
(n)(x)+ O(h2). (1.3)

In fact, it is shown in [11] that ρn(t) is proportional to the Legendre polynomial Pn(t) by Taylor expansion, namely
ρn(t) = γnPn(t),where Pn(t) is the nth-order Legendre polynomial and γn = 1×3×5×···×(2n+1)

2 .
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In this paper, we continue to work on the differentiation by integration methods to propose new schemes for obtaining
the Lanczos derivatives for high orders. This paper is organized as follows: New schemes for obtaining the Lanczos
derivatives for high orders are proposed with the corresponding convergence rate in Section 2. Numerical examples are
given in Section 3 for verifying the efficiency and stability of the proposed schemes.

2. New schemes for obtaining high order derivatives

Introducing the following operator denoted by D(n)h f :

D(n)h f (x) =
1
hn

∫ 1

−1
Pn(t)[αnf (x+ ht)+ βnf (x+ λnht)]dt, (2.1)

where Pn(t) is the nth-order Legendre polynomial, we choose αn, βn, λn such that

D(n)h f (x) = f
(n)(x)+ O(h4). (2.2)

Since Pn(−t) = (−1)nPn(t), we conclude that D
(n)
h f (x) = D

(n)
−hf (x). So, we always take h to be positive in the following.

To get the rate of convergence of (2.1), we assume that f (x) is bounded and has a continuous (n + 4)th derivative on
some interval I containing the points x, x±h, x±λnh. Assume further that f δ(x) is some bounded integrable approximation
of f (x) satisfying

‖f δ(x)− f (x)‖∞ = sup
x∈I
|f δ(x)− f (x)| ≤ δ, (2.3)

where δ is the noise level. To determine the coefficients αn, βn, λn, we write the Taylor expansion for a given n as follows:

f (x+ ht) = f (x)+ htf ′(x)+ · · · +
hntn

n!
f (n)(x)+

hn+1tn+1

(n+ 1)!
f (n+1)(x)

+
hn+2tn+2

(n+ 2)!
f (n+2)(x)+

hn+3tn+3

(n+ 3)!
f (n+3)(x)+

hn+4tn+4

(n+ 4)!
f (n+4)(ξ). (2.4)

Substituting (2.4) into (2.1) and noting the orthogonal property of Legendre polynomials, we know that

αn

k!

∫ 1

−1
tkPn(t)+

βnλ
k
n

k!

∫ 1

−1
tkPn(t)dt = 0, ∀k < n. (2.5)

Furthermore, noting that

αn

(k)!

∫ 1

−1
tkPn(t)+

βnλ
k
n

(k)!

∫ 1

−1
tkPn(t)dt = 0, k = n+ 1, n+ 3, (2.6)

we require that αn, βn, λn satisfy

αn

n!

∫ 1

−1
tnPn(t)dt +

βnλ
n
n

n!

∫ 1

−1
tnPn(t)dt = 1, (2.7)

αn

(n+ 2)!

∫ 1

−1
tn+2Pn(t)dt +

βnλ
n+2
n

(n+ 2)!

∫ 1

−1
tn+2Pn(t)dt = 0. (2.8)

Let pn =
∫ 1
−1 t

nPn(t)dt . From (2.7) and (2.8), we obtainαn + βnλnn =
n!
pn
;

αn + βnλ
n+2
n = 0.

(2.9)

By solving the system (2.9), we get

αn = −
n!λ2n

pn(1− λ2n)
, βn =

n!

pn(λnn − λ
n+2
n )

. (2.10)

From (2.10), λn is a free parameter. That is to say, there are infinitely varied schemes of (2.1) for computing the nth-order
derivative. Does there exist an optimal λn? We will answer this problem in the sequel from the viewpoint of computation.
Since

∫ 1
−1 t

n+3Pn(t)dt = 0, we have the following theorem from (2.4)–(2.8).
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Theorem 1. Let f (x) ∈ Cn+4(I), and say there exists a positive constant M such that |f (n+4)(x)| ≤ M. Then

‖D(n)h f (x)− f
(n)(x)‖∞ ≤ C1h4,

where C1 =
(|αn|+|βn||λ

n+4
n |)M

(n+4)!

∫ 1
−1 |t

n+4Pn(t)|dt, αn, βn and λn satisfy the system (2.9).

Theorem 2. Let f (x) ∈ Cn+4(I), and say there exists a positive constant M such that |f (n+4)(x)| ≤ M. Then

‖D(n)h f
δ(x)− f (n)(x)‖∞ ≤ C1h4 + C2

δ

hn
,

where C1 be the same constant of Theorem 1, C2 = (|αn| + |βn|)
∫ 1
−1 |Pn(t)|dt. Moreover, if we choose h = dδ

1
n+4 , then

‖D(n)h f
δ(x)− f (n)(x)‖∞ = O

(
δ
4
n+4

)
, δ→ 0,

where d is a constant, αn, βn and λn satisfy the system (2.9).

Proof. Since

‖D(n)h f
δ(x)− D(n)h f (x)‖∞ =

∥∥∥D(n)h (
f δ(x)− f (x)

)∥∥∥
∞

≤
δ

hn
(|αn| + |βn|)

∫ 1

−1
|Pn(t)|dt,

one gets

‖D(n)h f
δ(x)− f (n)(x)‖∞ ≤ ‖D

(n)
h f (x)− f

(n)(x)‖∞ + ‖D
(n)
h f

δ(x)− D(n)h f (x)‖∞ ≤ C1h
4
+ C2

δ

hn
,

where C2 = (|αn| + |βn|)
∫ 1
−1 |Pn(t)|dt .

Let ψ(h) = C1h4 + C2 δhn . By simple calculation, the minimizer of ψ(h) is

h∗ =
(
nC2δ
4C1

) 1
n+4

(2.11)

and the minimum value is

ψ(h∗) =
n+ 4
4

(
4
n

) n
n+4

C
n
n+4
1 C

4
n+4
2 δ

4
n+4 . (2.12)

Then, the proof is completed. �

Remark 3. In the proposed schemes (2.1), the convergence rate is improved from O(h2) to O(h4) for the exact function f (x).
Naturally, the convergence rate is improved from O(δ

2
n+2 ) to O(δ

4
n+4 ) for the noisy function if we choose h = dδ

1
n+4 , where

d is a constant.

From the expression of C1, C2 and (2.10), by direct computation we can rewrite the minimum value ψ(h∗) for fixed n as

ψ(h∗) = C3

(∣∣∣∣ λ2n

1− λ2n

∣∣∣∣+ ∣∣∣∣ λn+2n1− λnn
∣∣∣∣)

n
n+4

(∣∣∣∣ λ2n

1− λ2n

∣∣∣∣+ ∣∣∣∣ 1

λ2n − λ
n+2
n

∣∣∣∣) δ 4
n+4 , (2.13)

where C3 is a constant which depends on n andM .
Let

g(λn) ≡
(∣∣∣∣ λ2n

1− λ2n

∣∣∣∣+ ∣∣∣∣ λn+2n1− λnn
∣∣∣∣)

n
n+4

(∣∣∣∣ λ2n

1− λ2n

∣∣∣∣+ ∣∣∣∣ 1

λ2n − λ
n+2
n

∣∣∣∣) . (2.14)

Therefore, we can choose an optimal λ∗n , which is a minimizer of the function g(λn), to minimize the minimum value
ψ(h∗) for fixed n. However, the minimizer of the function g(λn) is not easy to obtain by methods of calculus. In view
of the symmetry of g(λn) and the practical applications, we only need to find the locally approximate minimizer by a
discrete method. The locally optimal approximate minimizers of λn for different n, which are contained in the intervals
(0, 1) and (1, 5) respectively, are shown in Table 1. It is interesting that the locally optimal values of λn decrease
with n.
In the following,we investigate the convergence of the new scheme (2.1) for high order derivatives under assumptions on

the function f (x) that areweaker than Cn+4(I). Obviously, it is easy to verify that the convergence rate is at leastO(hk)+O( δhn )
if f (x) ∈ Cn+k(I) and the derivative f (n+k)(x) of f is bounded for k = 1, 2, 3. In particular, D(n)h f (x) converges to the
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Table 1
Locally optimal approximation values of λn .

n λ∗n ∈ (0, 1) λ∗n ∈ (1, 5) n λ∗n ∈ (0, 1) λ∗n ∈ (1, 5)

1 5.3242e−001 3.3917e+000 6 4.8771e−001 1.9567e+000
2 5.1067e−001 2.5488e+000 7 4.7892e−001 1.9166e+000
3 5.0352e−001 2.2541e+000 8 4.6860e−001 1.8879e+000
4 4.9938e−001 2.1044e+000 9 4.5744e−001 1.8667e+000
5 4.9449e−001 2.0150e+000 10 4.4611e−001 1.8507e+000

(a) n = 1. (b) n = 2.

(c) n = 3. (d) n = 4.

Fig. 1. The function f (n)1 (x) and its approximation D(n)h f
δ
1 (x) for δ = 0.005.

average value of the right and left hand derivatives for the nth order, supposing that f (x) ∈ Cn−1(I) and these one-sided
derivatives exist. In the following, we denote the right and left hand derivatives for the nth order as f (n)+ (x) and f (n)− (x),
respectively.

Theorem 4. Let f (x) ∈ Cn−1(I). If f (n)+ (x) and f (n)− (x) exist at the point x, then

lim
h→0
D(n)h f (x) =

1
2

(
f (n)− (x)+ f (n)+ (x)

)
, (2.15)

where αn, βn and λn satisfy the system (2.9).

Proof. By the local Taylor formula with the Peano remainder term [12], for any given ε > 0, there exists δ > 0 such that∣∣∣∣∣f (x+ t)− Q (t)− f (n)− (x)
n!

tn
∣∣∣∣∣ < ε|t|n, −δ < t < 0 (2.16)
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(a) n = 1. (b) n = 2.

(c) n = 3. (d) n = 4.

Fig. 2. The function f (n)1 (x) and its approximation D(n)h f
δ
1 (x) for δ = 0.05.

and ∣∣∣∣∣f (x+ t)− Q (t)− f (n)+ (x)
n!

tn
∣∣∣∣∣ < εtn, 0 < t < δ, (2.17)

where Q (t) = f (x)+ f ′(x)
1! t +

f ′′(x)
2! t

2
+ · · · +

f (n−1)(x)
(n−1)! t

n−1.

Since αn, βn, λn satisfy the system (2.9) and
∫ 1
0 t
nPn(t)dt =

∫ 0
−1 t

nPn(t)dt , we have

1
hn

∫ 1

0
Pn(t)

[
αn
f (n)+ (x)
n!

(ht)n + βn
f (n)+ (x)
n!

(λnht)n
]
dt =

1
2
f (n)+ (x) (2.18)

and

1
hn

∫ 0

−1
Pn(t)

[
αn
f (n)− (x)
n!

(ht)n + βn
f (n)− (x)
n!

(λnht)n
]
dt =

1
2
f (n)− (x). (2.19)

On the other hand, according to the orthogonality of Legendre polynomials we obtain

1
hn

∫ 1

−1
Pn(t)[αnQ (ht)+ βnQ (λnht)]dt = 0. (2.20)
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(a) n = 1. (b) n = 2.

(c) n = 3. (d) n = 4.

Fig. 3. The function f (n)2 (x) and its approximation D(n)h f
δ
2 (x) for δ = 0.005.

From (2.16)–(2.20) and noting that |Pn(t)| ≤ 1 for t ∈ [−1, 1], we have by simple computation∣∣∣∣D(n)h f (x)− 12 [f (n)− (x)+ f (n)+ (x)]
∣∣∣∣ ≤ 2(|αn| + |βn||λn|n)n+ 1

ε

for 0 < max{h|t|, h|λn||t|} < δ. Since D(n)h f (x) = D
(n)
−hf (x), we conclude that

lim
h→0
D(n)h f (x) =

1
2

(
f (n)− (x)+ f (n)+ (x)

)
.

Then, the proof is completed. �

3. Numerical examples

In this section, we give three examples to verify the effect of the new schemes. They are two smooth functions and a
non-smooth function. All codes are written in Matlab. Noise data are generated by f δ(x) = f (x) + δ · R(x), where δ is the
noise level, and R(x) is a random function with zeromean value and standard deviation σ = 1 and generated by the built-in
function ‘‘randn’’. The integral (2.1) is computed at 101 equally spaced values t ∈ [−1, 1] by using the trapezoidal method.
Figs. 1–5 are plotted by taking the approximately optimal values λ∗n ∈ (0, 1) from Table , and h = h

∗
= (

nC2δ
4C1
)1/(n+4)

depending on λ∗n . Thus, the derivatives at the point x ∈ [a, b] are computed from the f (x) data on the interval [a− h, b+ h].
In the following examples, we always fix a = −2, b = 2.
To compare performances for the choice λ∗n ∈ (0, 1) and the choice λ

∗
n ∈ (1, 5), we provide the errors ‖D

(n)
h f

δ(x) −
f (n)(x)‖∞ in Table 2 for the functions f1(x), f2(x) that satisfy the condition f (x) ∈ Cn+4(I). The values of Table 2 are obtained
by using noise level δ = 0.005 and the same noise data generated by the Matlab function ‘‘randn’’ with STATE reset to 0.
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(a) n = 1. (b) n = 2.

(c) n = 3. (d) n = 4.

Fig. 4. The function f (n)2 (x) and its approximation D(n)h f
δ
2 (x) for δ = 0.05.

Table 2
Errors ‖D(n)h f

δ
− f (n)‖∞ for λ∗n ∈ (0, 1) and λ

∗
n ∈ (1, 5)with δ = 0.005.

f (x) n 1 2 3 4

f1(x) λ∗n ∈ (0, 1) 4.6643e−002 2.4631e+001 6.2629e+002 5.6343e+004
f1(x) λ∗n ∈ (1, 5) 4.7997e−002 2.6377e+001 6.3639e+002 5.7059e+004
f2(x) λ∗n ∈ (0, 1) 2.1096e−002 5.2504e−001 1.0911e+001 1.8942e+002
f2(x) λ∗n ∈ (1, 5) 2.6317e−002 6.1763e−001 1.1805e+001 1.9397e+002

The results of Table 2 show that the choice λ∗n ∈ (0, 1) is better than the choice λ
∗
n ∈ (1, 5). For other random noise data,

we also verify that the above conclusion is correct.

Example 1. The exact function is chosen as f1(x) = ex
2
. The numerical results are shown in Figs. 1 and 2 in which the solid

lines represent f (n)1 (x) and the star (∗) lines represent D(n)h f
δ
1 (x). The noise level is δ = 0.005 in Fig. 1 while it is δ = 0.05 in

Fig. 2.

Example 2. The exact function is chosen as f2(x) = sin(2πx)e−x
2
. The numerical results are shown in Figs. 3 and 4 in which

the solid lines represent f (n)2 (x) and the star (∗) lines represent D(n)h f
δ
2 (x). The noise level is δ = 0.005 in Fig. 3 while it is

δ = 0.05 in Fig. 4.

Example 3. Consider a non-smooth function

f3(x) =


−
1
6
x3 + 2x, x ≤ 0,

1
6
x3 + 2x, x > 0.
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(a) n = 1, δ = 0.005. (b) n = 2, δ = 0.005.

(c) n = 1, δ = 0.05. (d) n = 2, δ = 0.05.

Fig. 5. The function f (n)3 (x) and its approximation D(n)h f
δ
3 (x).

Its second derivative is f ′′3 (x) = |x|, and its third derivative at the point x = 0 does not exist. So, this function does not satisfy
the condition f (x) ∈ Cn+4(I) of Theorem2. The numerical results are shown in Fig. 5 inwhich the solid lines represent f (n)3 (x)
and the star (∗) lines represent D(n)h f

δ
3 (x). Fig. 5(a)–(b) are computed with the noise level δ = 0.005, and Fig. 5(c)–(d) are

plotted for δ = 0.05.
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