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a b s t r a c t

Explicit multi-stage solvers are routinely used to solve the semi-discretized equations that
arise in Computational Fluid Dynamics (CFD) problems. Often they are used in combination
with multi-grid methods. In that case, the role of the multi-stage solver is to efficiently
reduce the high frequency modes on the current grid and is called a smoother. In the past,
when optimizing the coefficients of the scheme, only the damping characteristics of the
smoother were taken into account and the interaction with the remainder of the multi-
grid cycle was neglected. Recently it had been found that coefficients that result in less
damping, but allow for a higher Courant–Friedrichs–Lewy (CFL) number are often superior
to schemes that try to optimize damping alone. While this is certainly true for multi-stage
schemes used as a stand-alone solver, we investigate in this paper if using higher CFL
numbers also yields better results in a multi-grid setting. We compare the results with
a previous study we conducted and where a more accurate model of the multi-grid cycle
was used to optimize the various parameters of the solver.

We show that the use of the more accurate model results in better coefficients and that
in a multi-grid setting propagation is of little importance.

We also look into the gains to be made when we allow the parameters to be different
for the pre- and post-smoother and show that even better coefficients can be found in this
way.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Explicit multi-stage schemes are commonly used to solve ordinary differential equations resulting from the space
discretization of partial differential equations. When used as a stand-alone solver, such a scheme can either be designed
for high order accuracy or to reach steady state quickly when the order of accuracy is less important. As it can easily be
shown that low frequency error components are difficult to damp, a multi-stage scheme that improves the propagation of
these components generally yields a faster solver; a characteristic of these solvers is the higher CFL number.

When amulti-stage iteration is used in conjunctionwithmulti-grid, the aim is to reduce those low frequency components
on a coarser grid; if the number of nodes on the coarser grid is low, a direct solution on that grid can be cost-effective.
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The multi-stage solver is then often designed to eliminate the high frequency components of the error (which cannot be
represented on the coarser grid) and is called a smoother. In the past, these coefficients have been optimized by trial and
error [1] or by geometric methods [2].

These and other studies [3–5] focused on minimizing the smoothing factor over the high frequency domain. Still, it was
realized that designing the multi-stage scheme to be an optimal smoother, as would be desirable for multi-grid to work,
would not result in an optimal (i.e. fastest) overall scheme, but that some precedence had to be given to the propagative
behavior [6]. Recently the optimization of the damping and propagative efficiencies was expressed within the framework
of constrained non-linear optimization [7]. Different objective functions with a variety of constraints were constructed on a
heuristical basis and their effect on the convergence rate of the numerical schemewas studied. Multi-stage coefficients that
are comparable with values used in the past were found.

In [8] we chose to look at a complete 2-grid cycle which closely modeled the interaction between multi-stage solver,
defect correction, restriction and prolongation. Multi-stage solvers with an improved performance were found, although
their smoothing capacity was sacrificed to some extent.

In this paper we refine the model established in [8] by also looking at the propagation characteristics. Again we are only
interested in reaching convergence quickly using a multi-grid scheme, and therefore focus on the multi-stage scheme for
which the 2-grid cycle will remove all frequencies as quickly as possible, either by propagation or by damping. We focus
on the 1 dimensional advection equation; this limitation is justified, as Hosseini and Alonso [7] have shown that 1D wave
equations can serve as a good indication of the performance of real flow solvers.

This paper is organized as follows. In Section 2 we formulate the equation under consideration, the Fourier footprints of
the space discretizations and the transmittance function of themulti-stage time-stepping scheme; in Section 3wemodel the
remainder of the 2-grid cycle and give the transmittance function of its components; in Section 4we deduce the propagation
and damping that results from a transmittance function and formulate the analytical framework for optimization; in
Section 5 the results are analyzed in two cases: identical or different parameters for pre- and post-smoother.

Remark. We use i as a symbol for the complex unit (=
√

−1) and i as an index.

2. The model: the scalar 1D advection equation

2.1. General formulation

We are interested in the advection equation

∂u
∂t

+ a
∂u
∂x

= 0 (1)

to which we add a suitable boundary condition, which in our case are the inlet value of u. Applying a given space
discretization to (1) on an equidistant mesh with N nodes results in the semi-discretized nodal equation (j = 1, . . . ,N):

dũj

dt
+ řj = 0 (2)

where the space discretization operator řj, which is a residual for the steady state solution, is of the form

řj =

k+−
k=k−

βj+kũj+k (3)

where k− and k+ depend on the stencil that is used for the space discretization.
If uexact,j, is the solution to (2), we can write uj = uexact,j + ej, where ej is the (nodal) error of uj with respect to uexact,j.
Eq. (2) can then be transformed into the form

dẽj
dt

+

k+−
k=k−

βj+kẽj+k  
rj

= 0. (4)

We assume that [ẽ1 ẽ2 · · · ẽN ] can be written as an infinite sum of Fourier modes, of which we now only consider the
p-th: ẽj,p = êp(t)eijp1x (j = 1, . . . ,N). A similar expression will be used for rj. Alternatively, when introducing the phase
angle θ = p1xwe get ẽj,θ = êθ (t)eijθ with θ ∈ [−π, π] (j = 1, . . . ,N).

Inserting this in Eq. (4) we get an expression for the amplitude of the error êθ of the form

dêθ

dt
= −r̂θ = λ(θ)êθ (5)
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wherewe call λ : R → C the Fourier symbol of the space discretization. Afterwardwe apply an explicit (single ormulti-step)
scalar time-integration resulting in

êθ (t + 1t) = µ(λ(θ)) · êθ (t) (6)

with µ : C → C : z → µ(z) being the transmittance function to which we add a stability constraint: supθ∈[−π,π ]

|µ(λ(θ))| ≤ 1.

2.2. Time discretization

Integrating the ODE of Eq. (2) with a single-stage explicit time-stepping scheme results in the following discretization

ũj(t + 1t) = ũj(t) − řj1t (7)

or applied to resp. Eqs. (4) and (5)

ẽj(t + 1t) = ẽj(t) − 1trj (8)

êθ (t + 1t) = (1 + 1tλ(θ))  
µ(λ(θ))

êθ (t). (9)

An m-stage (Runge–Kutta) time-stepping scheme is given by (after dropping the subscripts):

U (o)
= ũ(t)

U (1)
= U (o)

− α11t ř (o)

...

U (l)
= U (o)

− αl1t ř (l−1)

...

U (m)
= U (o)

− αm1t ř (m−1)

ũ(t + 1t) = U (m).

(10)

As a consequence of Eq. (10) we can write

êθ (t + 1t) =


1 +

m−
l=1


m∏

i=m−l+1

αi


(1tλ(θ))l


  

µ(λ(θ))

êθ (t). (11)

As themulti-stage parametersαi are always encountered in conjunctionwith1t we can regroup them into a newparameter
α̃i = αi1t without this restriction. We chose not to do so to clearly emphasize the effect of the time-step (and hence the
CFL number) in the parameters.

2.3. Space discretization

If we discretize (1) (with a = 1 for simplicity) with a first order upwind discretization (U1) we find the following space
discretization for the interior nodes

řj =
ũj − ũj−1

1x
(12)

λ(θ) =
e−iθ

− 1
1x

. (13)

In the case of a second order upwind discretization (U2) we find

řj =
3ũj − 4ũj−1 + ũj−2

21x
(14)

λ(θ) = −
3 − 4e−iθ

+ e−2iθ

21x
. (15)

In the case of a third order upwind-biased discretization (K3) we find

řj =
2ũj+1 + 3ũj − 6ũj−1 + ũj−2

61x
(16)

λ(θ) = −
3 + 2eiθ − 6e−iθ

+ e−2iθ

61x
. (17)
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3. The effect of the multi-grid cycle

If we want to optimize the coefficients of the multi-stage time-stepping scheme used as a smoother in a multi-grid
setting, we can add the effect of the defect correction of the multi-grid.

1. Pre-smoothing with anm-stage time-stepping scheme.
2. Restriction by full weighting.
3. Defect correction on the coarse grid with a coarsening factor of 2. We assume that the defect equation on the coarse grid

is solved exactly. While we implicitly assume this is done by a direct solver, it could be done with an accurate iterative
scheme.

4. Prolongation by linear interpolation.
5. Post-smoothing with anm-stage time-stepping scheme.

The effect of the smoother has been looked at in the previous paragraphs and will henceforth be characterized by the
transmittance functions µpre, µpost.

A model for the combined transmittance of restriction, defect correction and prolongation was established in [8], which
we call µDC :

µDC (λ(θ)) =


1 −


cos

θ

2

4 2λ(θ)

λ(2θ)


for θ ∈


−

π

2
,
π

2


(18)

= 1 for θ ∈ [−π, π] \


−

π

2
,
π

2


. (19)

The combined 2-grid cycle can then be expressed as:

êθ (t + 1t) = µpost(λ(θ))µDC (λ(θ))µpre(λ(θ))êθ (t). (20)

Remark. Although the above model represents a 2-grid cycle, it could also be used for any type of multi-grid cycle (V, W or
F), as long as the defect correction with respect to the coarsest grid is solved exactly.

4. Quantifying damping and propagation

When we look at the way an iterative scheme eliminates error modes, we see that there are two mechanisms at
play: damping and propagation. We will establish an analytical expression that allows us to quantify both, based on the
transmittance function. If we only look at the transmittance of the smoother we will be interested in the high frequency
modes, i.e. those with θ ∈


−π, −π

2

 
π
2 , π


. If a complete 2-grid cycle is considered, the objective is to eliminate all

modes as quickly as possible.
In previous studies [9,5] themain focus lay on the damping properties of the smoother, meaning that it was tried to keep

the amplification factor |µ(λ(θ))| of the smoother as small as possible for the high frequencies (possibly with a maximal
number of zeros). Still, it was realized that some attention had to be paid to the CFL number. In [7,10] the authors went
a step further and proposed a number of minimizers combining CFL number (to quantify propagation) and amplification
factor (to quantify damping). The main conclusion was that the contribution of propagation to convergence is far superior
to that of damping, provided that one does not find itself at the limits of stability. Implicitly these studies assumed that the
same scheme was used for the pre- and post-smoother while the quantitative effect of the defect correction was ignored.

In [8] we showed that, in order to obtain optimal performance, the smoother had to be tuned to be as complementary as
possible to the defect correction.

The transmittance function (either of the smoother, or the complete 2-grid cycle) can be split as

µ(λ(θ)) = σ(θ)e−iω(θ) (21)

where σ , ω : R → C.
From the modulus we get the stability condition

sup
θ∈[−π,π ]

|σ(θ)| ≤ 1. (22)

From Eq. (6) we obtain;

êθ (t + 1t) = σ(θ)e−iω(θ)êθ (t)

⇒ ẽj,θ (t + 1t) = σ(θ)êθ (t)e
ip

j1x− ω(θ)

θ
1x


⇒ ẽj,θ (t + 1t) = σ(θ)êθ (t)ei(jθ−ω(θ)). (23)

As such, the amplitude of the p-th mode is modulated by σ(θ), while the argument is modified by ω(θ); that is, it is shifted
by a distance ω(θ)

θ
1x (to the right if ω(θ)

θ
1x > 0).
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A mode can disappear from the system by

• propagation, determined by ω(θ)
• damping, determined by σ(θ).

We define by L the length of the domain and by ε the required reduction of the amplitude of the error with respect to
the initial value. A mode has disappeared if, after n steps, either n−

i=1

ω(θ)

θ
1x

 ≥ L or

 n∏
i=1

σ(θ)

 < ε. (24)

If we use the same iterative scheme (which can mean the whole multi-grid cycle) throughout the whole solution process,
then all modes will have disappeared when

max
θ∈T


min


n
ω(θ)

θ
1x
− L, |σ(θ)|n − ε


= 0. (25)

Conversely, the number of iterations needed to damp out the different modes, ndamp, is given by

ndamp(θ) =
log ε

log |σ(θ)|
(26)

and the number of steps needed to convect those modes out of the system, nconv, is given by

nconv(θ) =

 θL
ω(θ)1x

 . (27)

The best scheme is thus the one that minimizes the following function

I = max
θ∈T

{min(ndamp(θ), nconv(θ))} (28)

with the constraint (22).
If we only want to optimize the coefficients of the smoother, we limit ourselves to high frequency modes

T = [−π, π] \

−

π
2 , π

2


and take the transmittance of the multi-stage time-stepping. If we are interested in coefficients

that optimize the whole cycle, we take the corresponding transmittance and look at the whole range of θ (T = [−π, π])
when minimizing I.

Remarks.

1. We like to point out that the optimal choice of parameters will now depend on L and ε, both of which are problem-, grid-
and user-dependent.

2. Although we have not stated this explicitly, the formula above does not take into account any reflection at the end of the
domain.

3. The constraint in (22) can be relaxed, as long as the instability is not that strong that the iteration blows up before the
instable modes have been propagated out of the mesh.

5. Results

We now take a closer look at the advection equation (1), discretized with the U1, U2 and K3 schemes and look into
the coefficients of the multi-stage solver that give the fastest convergence speed. For the Dirichlet boundary condition the
method of ghost cells was used for the higher order discretization schemes.

We compare the optimal coefficients that were found in [8,5] and those obtained by optimizing I in Eq. (28). For all sets
of coefficients we give σmax = 2m


supθ∈[−π,π] |σ(θ)|, which is a measure for the damping performance of the 2-grid cycle,

averaged over the number of stages of the Runge–Kutta smoother.
We take a = 1 and 1x = 1 for simplicity, as the aim of this study is to validate the new approach to find the

optimal coefficients and to verify to which extent the use of Fourier analysis can yield good coefficients for the higher order
discretization schemes.

5.1. Previous studies

The optimal coefficients from [5] for the U1, U2 and K3 discretization are found in resp. Tables 1–3. Here the objective
was to have as much zeros for the transmittance of the smoother in the high frequency range as possible. The quantitative
effect of the defect correction was ignored and the same coefficients were used for the pre- and post-smoothing.

The optimal coefficients [8] found in resp. Tables 4–6. Here the objective function was σmax, and the pre- and post-
smoother were identical.
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Table 1
Optimal m-stage coefficients for smoothing. Advection equation U1 according to [5].

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

α1 1 0.3333 0.1481 0.0833 0.0533 0.0370
α2 1 0.4000 0.2069 0.1263 0.0851
α3 1 0.4265 0.2375 0.1521
α4 1 0.4414 0.2562
α5 1 0.4512
α6 1
1t 1/2 1 1.5 2 5/2 3
σmax 0.7056 0.7159 0.7703 0.8071 0.8329 0.8521

Table 2
Optimal m-stage coefficients for smoothing. Advection equation U2 according to [5].

m = 2 m = 3 m = 4 m = 5 m = 6

α1 0.4242 0.1918 0.1084 0.0695 0.0482
α2 1 0.4929 0.2602 0.1602 0.1085
α3 1 0.5052 0.2898 0.1885
α4 1 0.5060 0.3050
α5 1 0.5063
α6 1
1t 0.4693 0.6936 0.9214 1.1508 1.3805
σmax 0.8655 0.8839 0.9000 0.9127 0.9222

Table 3
Optimal m-stage coefficients for smoothing. Advection equation K3 according to [5].

m = 2 m = 3 m = 4 m = 5 m = 6

α1 0.6621 0.2884 0.1666 0.1067 0.0742
α2 1 0.5010 0.3027 0.1979 0.1393
α3 1 0.5275 0.3232 0.2198
α4 1 0.5201 0.3302
α5 1 0.5181
α6 1
1t 0.8276 1.3254 1.7320 2.1668 2.5975
σmax 0.8491 0.8426 0.8531 0.8668 0.8788

5.2. This study

5.2.1. Identical pre- and post-smoother
In a first phase we search for the parameters that minimize I in Eq. (28) when the pre- and post-smoother are identical.

The purpose is to investigate to which degree propagation has to be taken into account when looking for the optimal
coefficients of the smoother. A relatively short domain length of L = 100 and high damping requirement of ε = 10−10

was chosen in order to promote the effect of elimination by propagation.
We modeled the algorithm in Matlab 7.0. Because I was highly non-linear and non-derivable, two different search

methods were used. The first consisted in taking an interval in which each of the coefficients would probably lie (based
on previous results) and create a large number of coefficient sets at random in this interval. These were used as starting
points for Matlab’s fminsearch function (which uses the Nelder–Mead simplexmethod). Of all the local minima found in this
way, the best was retained. A second search pattern used a genetic algorithm that gave an optimal set of coefficients which
were then further refined with fminsearch.

The resulting coefficients were almost identical to those found in [8], with only the very low frequencymodes sometimes
disappearing first by propagation. When averaging over the number of stages in the smoother this confirmed the findings
of [8] that a lower number of stages was computationally the most efficient, in contrast to the findings of most previous
studies. Experiments on real solvers closely followed those of the model.

As we found that the values were not different enough from those in Tables 4–6 and the gains negligible, we have chosen
not to copy them here. It shows however that in a multi-grid setting the propagation effect is insignificant, even for short
domain lengths. We point out, that in the current framework the defect correction was solved exactly, by a non-specified
solver. If on the coarsest grid, which typically has a limited number of nodes, an iterative solver were to be used, then – just
as for stand-alone solvers – it will be beneficial to add some weight to the propagative behavior of that solver.

5.2.2. Different pre- and post-smoother
In a second phase we allowed the coefficients for the pre- and post-smoothing to be different and optimized for I.

Except for the first iteration, the classical multi-grid cycle will result in a sequence on the finest grid where the m-stage
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Table 4
Optimal m-stage coefficients for a smoother when looking at the complete 2-grid cycle but
with identical pre- and post-smoothing. Advection equation using U1.

m = 1 m = 2 m = 3 m = 4 m = 5 m = 6

α1 1 0.3745 0.1824 0.1084 0.0717 0.0514
α2 1 0.4907 0.2713 0.1733 0.1209
α3 1 0.5465 0.3275 0.2199
α4 1 0.5868 0.3704
α5 1 0.6210
α6 1
1t 0.5000 0.9985 1.4985 1.9999 2.4983 2.9504
σmax 0.7056 0.7046 0.7475 0.7790 0.8011 0.8201

Table 5
Optimal m-stage coefficients for a smoother when looking at the complete 2-grid cycle but
with identical pre- and post-smoothing. Advection equation using U2.

m = 2 m = 3 m = 4 m = 5 m = 6

α1 0.5333 0.2451 0.1427 0.0934 0.0659
α2 1 0.6606 0.3528 0.2217 0.1521
α3 1 0.7072 0.4101 0.2703
α4 1 0.7267 0.4436
α5 1 0.7342
α6 1
1t 0.3879 0.5890 0.7900 0.9906 1.1925
σmax 0.8557 0.8636 0.8721 0.8797 0.8863

Table 6
Optimal m-stage coefficients for a smoother when looking at the complete 2-grid cycle but
with identical pre- and post-smoothing. Advection equation using K3.

m = 2 m = 3 m = 4 m = 5 m = 6

α1 0.7268 0.3006 0.1753 0.1276 0.0944
α2 1 0.6874 0.37514 0.2538 0.1895
α3 1 0.6811 0.4152 0.2988
α4 1 0.6768 0.4458
α5 1 0.6877
α6 1
1t 0.6499 1.0537 1.3984 1.7256 1.9769
σmax 0.8241 0.7861 0.7894 0.8018 0.8137

post-smoother is followed by the m-stage pre-smoother, which at that point effectively double as a 2m-stage smoother. If
we look closely at the transmittance of an optimal 2m-stage smoother in Tables 4–6 and compared it with the square of
the transmittance of the optimal m-stage smoother from the same tables, we see that they are not identical. The reason is
that the transmittance function of a smoother of order 2m cannot always be split as the product of two real transmittance
functions of orderm. An opportunity therefore exists to improve the performance by choosing different coefficients for pre-
and post-smoothing.

The optimal performance for U1, U2 and K3 was obtained form = 2.
The optimal coefficients for the U1 scheme are (α1, α2) = (0.2805, 1.0000), 1t = 1.0000 for pre-smoothing and

(α1, α2) = (0.6839, 1.0000), 1t = 1.0000 for post-smoothing.
For U2 this is (α1, α2) = (1.4984, 1.000), 1t = 0.3634 for pre-smoothing and (α1, α2) = (0.2976, 1.000), 1t =

0.4551 for post-smoothing.
For K3 this is (α1, α2) = (2.3486, 1.0000), 1t = 0.4710 for pre-smoothing and (α1, α2) = (0.3203, 1.0000), 1t =

0.9763 for post-smoothing.
We need to point out that the sequence of pre- and post-smoothers can be inverted without any change, except for

the first iteration; for that reason preference for the pre-smoother should be given to the scheme with the best damping
properties for the high frequency modes in order to limit aliasing.

Also note that in this study pre- or post-smoother taken separately will not always result in a stable scheme, but the
combination of both will.

The gain for U1, U2 and K3 with this approach with respect to the old values was resp. 14%, 28% and 42%. Again, only a
very limited number of error modes disappeared by propagation first.

The faster convergence when using different pre- and post-smoothing is illustrated for the K3 discretization in Fig. 1.
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Fig. 1. Convergence history of the L2-norm of the relative residual for the solution of the advection equation (1) with K3 discretization and m = 2.
‘‘Old’’ = coefficients from [5]; ‘‘new symmetrical’’ = coefficients for this study with identical pre- and post-smoother; ‘‘new asymmetrical’’ = optimal
coefficients with different pre- and post-smoother.

6. Conclusions

We have included the quantitative effect of the propagation and damping of error modes in amulti-grid setting that uses
an iterativemulti-stage smoother.While the convergence speed of single-grid solvers benefits from higher CFL numbers, we
have found no such effect for multi-grid solvers, although some previous studies did propose higher CFL numbers in order
to speed up convergence.

We have been able to improve convergence speed however by modeling the various components of the multi-grid
cycle and taking their interplay into account. The results obtained in this way showed that a low number of stages was
computationally more efficient.

Even more gains were obtained when in the same optimization environment we allowed for different multi-stage
parameters during pre- and post-smoothing. The best improvement was obtained for the K3 scheme, in the order of 40%.

We have thus shown that the optimal solver cannot be found unless we look at the combined effect of every module of a
multi-grid cycle and quantify its transmittance and that the convergence ofmulti-grid solvers is almost uniquely determined
by damping.
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