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1. Introduction

Asian options are path dependent derivatives whose payoff depends on some form of averaging prices of the underlying
asset. Asian-style derivatives are widely traded in both exchanges and over-the-counter markets and constitute an
important family of contracts with several applications.

From the theoretical point of view, arithmetically-averaged Asian options have attracted an increasing interest in the last
decades due to the awkward nature of the related mathematical problems. Indeed, even in the standard Black and Scholes
(BS) model, when the underlying asset is a geometric Brownian motion, the distribution of the arithmetic average is not
lognormal and it is quite complex to analytically characterize it. An integral representation was obtained in the pioneering
work in [1,2], but with limited practical use in the valuation of Asian options.

Later on, Geman and Yor [3] gave an explicit representation of the Asian option prices in terms of the Laplace transform of
hypergeometric functions. However, several authors (see [4–6]) noticed the greater difficulty of pricing Asian options with
short maturities or small volatilities using the analytical method in [3]. This is also a disadvantage of the Laguerre expansion
proposed in [7]. In [8] Shaw used a contour integral approach based on Mellin transforms to improve the accuracy of the
results in the case of low volatilities, albeit at a higher computational cost. Complex analysis methods were also used in [9]
where series expansions for computing the Black–Scholes values based on theGeman andYor [3] representation are derived.

Several other numerical approaches to price efficiently Asian options in the BS model have been attempted. Monte Carlo
simulation techniqueswere discussed in [10,11,5,12,13]. Takahashi and Yoshida [14] usedMonte Carlo simulation combined
with an asymptotic method based on Malliavin–Watanabe calculus. Linetsky [15] analysed the problem using the spectral
theory of singular Sturm–Liouville operators and obtained an eigenfunction expansion of the Asian option pricing function
in the basis of Whittaker functions: Linetsky’s series formula gives very accurate results, however it may converge slowly
in the case of low volatility becoming computationally expensive.
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Whilemost of the literature focuses on the log-normal dynamics and provides ad hocmethods for pricing Asian options in
the special case of the BSmodel, there are some notable exceptions given by the very recent papers in [16,17] (for Geometric
Asian options), [18,19] wheremodels with jumps are considered. Moreover Dufresne [20], Dassios and Nagaradjasarma [21]
consider the square-root dynamics.

Concerning the PDE approach, the averaging price for an Asian option is usually described by introducing an additional
stochastic process (cf. [22]): state augmentation converts the path-dependent problem into an equivalent path-independent
and Markovian problem. Increasing the dimension causes the resulting pricing PDE to be degenerate and not uniformly
parabolic: theoretical results for a class of hypoelliptic PDEs, which includes Asian equations of European and American style
as particular cases, were proved in [23–26]. We recall that, in the BS model and for special homogeneous payoff functions,
it is possible to reduce the study of Asian options to a PDE with only one state variable: PDE reduction techniques were
initiated in [27] and developed in [28,29]. Similarly, Vecer [30] used a change of numeraire technique to reduce the Asian
pricing problem to a single spatial variable PDE that can be solved numerically by standard schemes; that technique was
also extended in [31] to the case of a mean-reverting stochastic volatility model. Glasgow and Taylor [32], Taylor [33] and
Caister et al. [34] proposed a general study of symmetries for the Asian PDE and found other nontrivial reductions of the
pricing equation.

The reduced PDE formulation was used in [35] to derive accurate approximation formulae for Asian-rate Call options
in the BS model by a matched asymptotic expansion. In general, analytical approaches based on perturbation theory
and asymptotic expansions have several advantages with respect to standard numerical methods: first of all, analytical
approximations give closed-form solutions that exhibit an explicit dependency of the results on the underlying parameters.
Moreover analytical approaches producemuch better andmuch faster sensitivities than numerical methods, although often
accurate error estimates are not trivial to obtain. In the case of geometric Asian options under local volatility (LV) dynamics,
global error bounds have been recently found in [36]. Other asymptoticmethods for Asian optionswith explicit error bounds
were studied in [37–39] by Malliavin calculus techniques. Also Gobet and Miri [40] have recently used Malliavin calculus to
get analytical approximations and explicit error bounds: their approach is similar to ours as it is based on a Taylor expansion
of the coefficients, but on the basis of preliminary numerical comparisons the resulting formulae seem to be different.

In this paper we consider the pricing problem for Asian options under a LV, possibly time-dependent, model. LV models
are widely used in the industry to cope with the well-known limitations of the BS model. In this general framework,
dimension reduction is not possible anymore: then our idea is to use the natural geometric-differential structure of the
pricing operator regarded as a hypoelliptic (not uniformly parabolic) PDE of Kolmogorov type in R3. Our main results are
explicit, BS-type approximation formulae not only for the option price, but also for the terminal distribution of the asset and
the average; further we also get explicit approximation formulae for the Greeks that appear to be new also in the standard
log-normal case. Although we do not address the theoretical problem of the convergence to get explicit error estimates
(see Remark 2.9), experimental results show that under the BS dynamics our formulae are extremely accurate if compared
with other results in the literature. Under a general LV model, in comparison with Monte Carlo simulations the results are
effectively exact under standard parameter regimes.

An interesting feature of our methodology is that, in the case of linear payoff functions of the form

ϕ(S, A) = ϕ1 + ϕ2S + ϕ3A,

with ϕ1, ϕ2, ϕ3 ∈ R, the resulting approximation formula is exact at order zero and all the higher order terms are null (cf.
Remark 2.4): this seems a significant consistency result. Since the approximation formulae for a general LVmodel are rather
long, in this paper we only give the explicit expression in the first order case and provide a general iterative algorithm for
computing the higher order approximations, which can be easily implemented in any symbolic computational software:
the Mathematica notebook containing the general formulae and the experiments reported in Section 3 is available in the
web-site of the authors.

We also mention that our method is very general and can also be applied to other path-dependent models driven by
hypoelliptic degenerate PDEs: for instance, the models proposed in [41,42]. Moreover, as shown in the working paper [43],
the possibility of considering stochastic volatility models or a driving Lévy process instead of a simple Brownian motion
seems at hand. We aim to come back to these and other topics in a forthcoming paper.

The remainder of the paper is organized as follows. Section 2 describes arithmetic and geometric Asian options, sets up
the valuation problem by PDE methods and introduces our notations. Section 2.1 presents the approximation methodology
and Section 2.2 states some preliminary result on linear SDEs. Section 2.3 contains the main results of the paper and in
Section 2.4 the first order approximation formulae are derived in the case of time-independent coefficients. Section 3
presents computational results.

2. Asian options and linear SDEs

We consider a standard market model where there is a risky asset S following the stochastic differential equation

dSt = (r(t) − q(t))Stdt + σ(t, St)StdWt (2.1)

under the risk-neutral measure. In (2.1), r(t) and q(t) denote the risk-free rate and the dividend yield at time t respectively,
σ is the local volatility function andW is a standard real Brownian motion.
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The averaging prices for an Asian option are usually described by the additional state process

dAt = f (t, St)dt. (2.2)

In particular, for the continuously sampled Asian options we typically have

f (t, s) = g(t)s (arithmetic average option),
f (t, s) = g(t) log s (geometric average option),

where g is someweight function. In the sequel, for simplicity, we shall only consider the case g ≡ 1 even if ourmethodology
can include a generic positive weight g . By usual no-arbitrage arguments, the price of a European Asian option with payoff
function ϕ is given by

V (t, St , At) = e−
 T
t r(τ )dτu(t, St , At)

where

u(t, St , At) = E [ϕ (ST , AT ) | St , At ] . (2.3)

Typical payoff functions are given by

ϕ(S, A) =


A
T

− K
+

(fixed strike arithmetic Call),

ϕ(S, A) =


S −

A
T

+

(floating strike arithmetic Call),

ϕ(S, A) =


e

A
T − K

+

(fixed strike geometric Call),

ϕ(S, A) =


S − e

A
T

+

(floating strike geometric Call).

Clearly, Asian Puts can be considered as well: we recall that symmetry results, analogous to the standard Put-Call parity,
between the floating and fixed-strike Asian options were proved in [44].

By the Feynman–Kac representation, the price function u in (2.3) is the solution to the Cauchy problem
Lu(t, s, a) = 0, t < T , s, a ∈ R+,
u(T , s, a) = ϕ(s, a), s, a ∈ R+,

where L is the ultra-parabolic1 pricing operator:

L =
σ 2(t, s)s2

2
∂ss + (r(t) − q(t))s∂s + f (t, s)∂a + ∂t . (2.4)

Under suitable regularity and growth conditions, the existence and the uniqueness of the solution to the Cauchy problem
for Lwere proved in [23].

Remark 2.1. Consider the geometric Asian option under the BS dynamics: by the standard log-change of variable

Xt = (log St , At) .

Eqs. (2.1)–(2.2) are transformed into the system of linear SDEs

dX1
t =


r(t) − q(t) −

σ 2(t)
2


dt + σ(t)dWt ,

dX2
t = X1

t dt.
(2.5)

Thus X is a Gaussian process with 2-dimensional normal transition density Γ that is the fundamental solution of the
differential operator

K :=
σ 2(t)
2


∂x1x1 − ∂x1


+ (r(t) − q(t)) ∂x1 + x1∂x2 + ∂t , x ∈ R2.

The expression of Γ is given in Section 2.2 and explicit formulae for fixed and floating strike geometric Asian options can be
easily found: Kemna and Vorst [10] have derived the first exact valuation formula for the geometric average Asian option.
We also mention Angus [45] who considered more general payoffs.

1 L is defined on R3 but contains only the second order derivative w.r.t. the variable s: thus L is not a uniformly parabolic operator.
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2.1. Approximation methodology

In this subsection we derive a new expansion formula for the fundamental solution of the arithmetic Asian operator (cf.
(2.4) with f (t, s) = s). The coefficients of the expansion will be computed explicitly in Section 2.3. We consider the operator

L =
α(t, s)

2
∂ss + (r(t) − q(t))s∂s + s∂a + ∂t (2.6)

where

α(t, s) = σ 2(t, s)s2. (2.7)

We assume that α is a suitably smooth, positive function and we take the Taylor expansion of α(t, ·) about s0 ∈ R+: then
formally we get

L = L0 +

∞
k=1

(s − s0)kαk(t)∂ss (2.8)

where, setting α0(t) = α(t, s0),

L0 =
α0(t)
2

∂ss + (r(t) − q(t))s∂s + s∂a + ∂t , (2.9)

is the leading term in the approximation of L and

αk(t) =
1
2k!

∂k
s α(t, s0), k ≥ 1.

Notice that L0 in (2.9) is the Kolmogorov operator associated to the system

dSt = (r(t) − q(t)) Stdt +


α0(t)dWt ,

dAt = Stdt.
(2.10)

Remark 2.2. As in the geometric case, (2.10) is a system of linear SDEs whose solution (S, A) has a 2-dimensional normal
transition density Γ 0. Moreover Γ 0 is the Gaussian fundamental solution of L0 in (2.9) and its explicit expression will be
given in Section 2.2.

Following [46], the fundamental solution Γ of the pricing operator L in (2.6) admits an expansion of the form

Γ (t, s, a; T , S, A) =

∞
n=0

Gn(t, s, a; T , S, A) (2.11)

where

G0(t, s, a; T , S; A) = Γ 0(t, s, a; T , S; A), t < T , s, a, S, A ∈ R,

and Gn (·; T , S, A), for any n ≥ 1 and T , S, A, is defined recursively in terms of the following sequence of Cauchy problems
posed on ] − ∞, T [×R2,L0Gn(t, s, a; T , S; A) = −

n
k=1

(s − s0)kαk(t)∂ssGn−k(t, s, a; T , S; A),

Gn(T , s, a; T , S; A) = 0, s, a ∈ R.

(2.12)

For instance, G1 (·; T , S, A) is defined by
L0G1(t, s, a; T , S; A) = −(s − s0)α1(t)∂ssG0(t, s, a; T , S; A),

G1(T , s, a; T , S; A) = 0, s, a ∈ R,
(2.13)

and for n = 2 we have
L0G2(t, s, a; T , S; A) = −(s − s0)α1(t)∂ssG1(t, s, a; T , S; A) − (s − s0)2α2(t)∂ssG0(t, s, a; T , S; A),

G2(T , s, a; T , S; A) = 0, s, a ∈ R.
(2.14)
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Remark 2.3. Under the BS dynamics, the diffusion coefficient in (2.7) is of the form

α(t, s) = σ(t)s2

where t → σ(t) is a deterministic function. Thus

αn ≡ 0, n ≥ 3,

and in this particular case, the sequence of Cauchy problems in (2.12) reduces to
L0Gn(t, s, a; T , S; A) = −(s − s0)α1(t)∂ssGn−1(t, s, a; T , S; A) − (s − s0)2α2(t)∂ssGn−2(t, s, a; T , S; A),
Gn(T , s, a; T , S; A) = 0, s, a ∈ R,

for n ≥ 2. A similar reduction holds for any diffusion coefficient of polynomial type in the variable s.

In general, the sequence (Gn)n≥1 defined by (2.12) can be computed explicitly by an iterative algorithm: this will be detailed
in Section 2.3 by using the results on linear SDEs presented in Section 2.2. In particular, it turns out that

Gn(t, s, a; T , S; A) = Jnt,T ,s,aG
0(t, s, a; T , S; A), n ≥ 0,

where J0t,T ,s,a is the identity operator and, for n ≥ 1, Jnt,T ,s,a is a differential operator, acting in the variables s, a, of the form

Jnt,T ,s,a =

n
k=0

sk
3n
i=2

i
j=0

f ni−j,j,k(t, T )
∂ i

∂si−j∂aj
,

and the coefficients f ni−j,j,k are deterministic functions whose explicit expression can be computed iteratively as in
Theorem 2.7 and Remark 2.8. Thus, by (2.11), the N-th order approximation of Γ is given by

Γ (t, s, a; T , S, A) ≈

N
n=0

Jnt,T ,s,aG
0(t, s, a; T , S, A).

Moreover we have the following N-th order approximation formula for the price of an arithmetic Asian option with payoff
function ϕ,

u(t, St , At) =


Γ (t, s, a; T , S, A)ϕ(S, A)dSdA

≈


Γ N(t, s, a; T , S, A)ϕ(S, A)dSdA

=

N
n=0

Jnt,T ,s,aC0(t, s, a) =: uN(t, St , At) (2.15)

where

C0(t, s, a) =


Γ 0(t, s, a; T , S, A)ϕ(S, A)dSdA. (2.16)

Notice that C0 is the price of a geometric Asian option under the BS dynamics and therefore for typical payoff functions it
has a closed form expression. Similarly we obtain explicit approximation formulae for the Greeks and for any other payoff
which admits an explicit pricing formula in the geometric case.

Remark 2.4. Let us consider an affine payoff function of the form

ϕ(S, A) = ϕ1 + ϕ2S + ϕ3A,

with ϕ1, ϕ2, ϕ3 ∈ R. Then a direct computation shows that

C0(t, s, a) = ϕ1 + ⟨(ϕ2, ϕ3),mt,s,a(T )⟩

with mt,s,a(T ) as in (2.30). Since C0(t, s, a) is again an affine function of (s, a), we have that

Jnt,T ,s,aC0(t, s, a) = 0, ∀ n ≥ 1,

and therefore uN ≡ u0 in (2.15), for any N ∈ N. Moreover, by the uniqueness of the solution of the Cauchy problem for L,
we also have u0 = u, that is when the payoff is an affine function of S and A, then the first approximation is exact and all
the higher order terms are null. Roughly speaking, this property follows from the fact that the differential operators L and
L0 have the same first order part and only differ in the coefficient of their second order derivative.
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2.2. Non-degeneracy conditions for linear SDEs

In this subsection we collect some preliminary results on linear SDEs that will be used in the derivation of the
approximation formulae for the arithmetic density. First notice that equations (2.5) and (2.10) belong to the general class of
linear SDEs

dXt = (B(t)Xt + b(t)) dt + σ(t)dWt , (2.17)

where b, B andσ are L∞

loc-functionswith values in the space of (N×1), (N×N) and (N×d)-dimensionalmatrices respectively
andW is a d-dimensional uncorrelated Brownian motion, with d ≤ N . The solution X = X t,x to (2.17) with initial condition
x ∈ RN at time t , is given explicitly by

XT = Φ(t, T )


x +

 T

t
Φ−1(t, τ )b(τ )dτ +

 T

t
Φ−1(t, τ )σ (τ )dWτ


,

where T → Φ(t, T ) is the matrix-valued solution to the deterministic Cauchy problem d
dT

Φ(t, T ) = B(T )Φ(t, T ),

Φ(t, t) = IN .

Moreover X t,x is a Gaussian process with expectation

mt,x(T ) := E

X t,x
T


= Φ(t, T )R(x, t, T ), (2.18)

where

R(x, t, T ) = x +

 T

t
Φ−1(t, τ )b(τ )dτ (2.19)

and covariance matrix

C(t, T ) = cov

X t,x
T


= Φ(t, T )M(t, T )Φ(t, T )∗, (2.20)

where

M(t, T ) =

 T

t
Φ−1(t, τ )σ (τ )


Φ−1(t, τ )σ (τ )

∗
dτ . (2.21)

The Kolmogorov operator associated with X is

K =
1
2

N
i,j=1

cij(t)∂xixj + ⟨b(t) + B(t)x, ∇⟩ + ∂t

=
1
2

N
i,j=1

cij(t)∂xixj +
N
i=1

bi(t)∂xi +
N

i,j=1

Bij(t)xj∂xi + ∂t , (2.22)

where

cij


= σσ ∗.
Now we assume the following crucial condition:

[H.1] the matrix C(t, T ) (or equivalently, the matrix M(t, T )) is positive definite for any T > t .

Under this condition, X t,x
T has a transition density given by

ΓK (t, x, T , y) =
1

(2π)N det C(t, T )
e−

1
2 ⟨C−1(t,T )(y−mt,x(T )),y−mt,x(T )⟩. (2.23)

ΓK is also the fundamental solution of K in (2.22). Condition [H.1] can be expressed in geometric-differential terms: in fact,
it is known that [H.1] is equivalent to the following condition due to Hörmander [47]

[H.2] rankL(Y1, . . . , Yd, Y )(t, x) = N + 1, (t, x) ∈ RN+1,

where L(Y1, . . . , Yd, Y ) denotes the Lie algebra generated by the vector fields in RN+1

Yi =

N
j=1

σji∂xj , i = 1, . . . , d

and

Y = ⟨B(t)x + b(t), ∇⟩ + ∂t . (2.24)
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In other terms,L(Y1, . . . , Yd, Y )(t, x) is the vector space spanned by the vector fields Y1, . . . , Yd, Y , by their first order com-
mutators [Yk, Y ], k = 1, . . . , d, where [Yk, Y ]u := YkYu − YYku and by their higher order commutators [Yj, . . . , [Yk, Y ] . . .],
evaluated at the point (t, x).

Hörmander’s condition and [H.1] are also equivalent to another condition from control theory: for any T > 0, a curve
x : [0, T ] −→ RN is called K -admissible if it is absolutely continuous and satisfies

x′(t) = B(t)x(t) + b(t) + σ(t)w(t), a.e. in [0, T ], (2.25)

for a suitable functionw with values in Rd (notice the close analogy with the SDE (2.17)). The functionw is called the control
of the path x. A fundamental result in [48] states that [H.1] is equivalent to the following condition:

[H.3] for every x0, x1 ∈ RN and T > 0, there exists a K -admissible path such that x(0) = x0 and x(T ) = x1.

When B and σ are constant matrices, then [H.3] is equivalent to the well known Kalman’s rank condition (we also refer to
LaSalle [49] where this result first appeared)

rank

σ Bσ · · · BN−1σ


= N.

An analogous condition for time-dependent matrices σ(t) and B(t) was given in [50,51].
The following simple result will be crucial in the sequel.

Proposition 2.5. Under assumption [H.1], we have

∇yΓK (t, x, T , y) = −

Φ−1(t, T )

∗
∇xΓK (t, x, T , y), (2.26)

yΓK (t, x, T , y) = Φ(t, T ) (R(x, t, T ) + M(t, T )∇x) ΓK (t, x, T , y), (2.27)

for any x, y ∈ RN and t < T .

Proof. The density ΓK in (2.23) can be rewritten in the equivalent form

ΓK (t, x, T , y) =
e−

1
2 ⟨M−1(t,T )(Φ−1(t,T )y−R(x,t,T )),Φ−1(t,T )y−R(x,t,T )⟩

(2π)N det C(t, T )
.

By differentiating, we get

∇xΓK (t, x, T , y)
ΓK (t, x, T , y)

= M−1(t, T )

Φ−1(t, T )y − R(x, t, T )


(2.28)

and

∇yΓK (t, x, T , y)
ΓK (t, x, T , y)

= −

Φ−1(t, T )

∗
M−1(t, T )(Φ−1(t, T )y − R(x, t, T ))

(by (2.28))

= −

Φ−1(t, T )

∗ ∇xΓK (t, x, T , y)
ΓK (t, x, T , y)

,

and this proves (2.26). Formula (2.27) follows immediately from (2.28). �

2.3. Approximation formulae for the density

We consider the operator

L0 =
α0(t)
2

∂ss + µ(t)s∂s + s∂a + ∂t , (t, s, a) ∈ R3, (2.29)

that is the leading term in the approximation of arithmetic Asian options, as in (2.9) with

µ = r − q.

According to notations of Section 2.2, we have b = 0 and

B(t) =


µ(t) 0
1 0


.
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Hence we have

Φ(t, T ) =

 e
 T
t µ(τ)dτ 0 T

t
e
 τ1
t µ(τ2)dτ2dτ1 1

 ,

mt,s,a(T ) =

 s e
 T
t µ(τ)dτ

a + s
 T

t
e
 τ1
t µ(τ2)dτ2dτ1

 ,

M(t, T ) =

 T

t
α0(τ )e−2

 τ
t µ(τ1)dτ1 ·

 1 −

 τ

t
e
 τ1
t µ(τ2)dτ2dτ1

−

 τ

t
e
 τ1
t µ(τ2)dτ2dτ1

 τ

t
e
 τ1
t µ(τ2)dτ2dτ1

2

 dτ .

(2.30)

It is easy to verify that M(t, T ) (and the covariance matrix C(t, T )) is positive definite by checking Hörmander’s condition
[H.2]: indeed, the commutator of the vector fields

Y1 =


α0(t)∂s, Y = µ(t)s∂s + s∂a + ∂t

is equal to

[Y1, Y ] =


α0(t) (µ(t)∂s + ∂a)

and therefore, assuming that α0 > 0, then the rank of the Lie algebra generated by Y1 and Y is equal to three.
If µ and α0 are constant, all computations can be carried out more explicitly and we have

Φ(t, T ) = e(T−t)B
=

 eµ(T−t) 0
eµ(T−t)

− 1
µ

1


mt,s,a(T ) =

 eµ(T−t)s

a +


eµ(T−t)

− 1

s

µ



M(t, T ) = α0


1 − e−2µ(T−t)

2µ
−


1 − e−µ(T−t)

2
2µ2

−


1 − e−µ(T−t)

2
2µ2

4e−µ(T−t)
− e−2µ(T−t)

+ 2µ(T − t) − 3
2µ3

 .

(2.31)

In particular, for µ = 0 we get

Φ(t, T ) =


1 0

T − t 1


, M(t, T ) = α0

 T − t −
(T − t)2

2

−
(T − t)2

2
(T − t)3

3

 .

Now let us recall the notation Γ 0(t, s, a; T , S, A) for the fundamental solution of L0 in (2.29). In Corollary 2.6 we refor-
mulate more explicitly the properties of Γ0 stated in Proposition 2.5. To this end and to shorten notations, we introduce the
operator

Vt,T ,s,a =


Φ(t, T )


s
a


+ M(t, T )∇s,a


1
, (2.32)

where in general, for a given vector Z , we use the subscript Z1 to denote its first component. Moreover, we define the dif-
ferential operatorW i,j

t,T as the composition

W i,j
t,T ,s,a = W i

1,t,T ,s,aW
j
2,t,T ,s,a (2.33)

of the first order operators

Wk,t,T ,s,a =


Φ−1(t, T )

∗
∇s,a


k

k = 1, 2. (2.34)

As a direct application of Proposition 2.5, we have the following results which shows how the product and the derivatives
with respect to the second set of variables of Γ 0(t, s, a; T , S, A) can be expressed in terms of the operators V in (2.32) and
W and (2.33), acting in the first set of variables (i.e., t, s, a).
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Corollary 2.6. For any t < T , s, a, S, A ∈ R and i, j ∈ N ∪ {0} we have

S iΓ 0(t, s, a; T , S, A) = V i
t,T ,s,a Γ 0(t, s, a; T , S, A), (2.35)

∂ i+j

∂S i∂Aj
Γ 0(t, s, a; T , S, A) = (−1)i+jW i,j

t,T ,s,a Γ 0(t, s, a; T , S, A). (2.36)

Next we prove our main result.

Theorem 2.7. For any n ≥ 0, the solution Gn of problem (2.12) is given by

Gn(t, s, a; T , S, A) = Jnt,T ,s,aΓ
0(t, s, a; T , S, A) (2.37)

where Γ 0 is the fundamental solution of L0 in (2.29), J0t,T ,s,a is the identity operator and, for n ≥ 1, Jnt,T ,s,a is a differential operator
of the form

Jnt,T ,s,a =

n
k=0

sk
3n
i=2

i
j=0

f ni−j,j,k(t, T )
∂ i

∂si−j∂aj
. (2.38)

The coefficients f ni−j,j,k(t, T ) in (2.38) are deterministic functions that can be determined iteratively by using the following
alternative expression of Jn, n ≥ 1, given in terms of the operators V and W in (2.32)–(2.33):

Jnt,T ,s,a =

n
i=1

 T

t
αi(τ )(Vt,τ ,s,a − s0)iW

2,0
t,τ ,s,a Ĵ

n−i
t,τ ,T ,s,adτ (2.39)

where Ĵ0t,τ ,T ,s,a is the identity operator and

Ĵnt,τ ,T ,s,a =

n
k=0

3n
i=2

i
j=0

f ni−j,j,k(t, T )V k
t,τ ,s,aW

i−j,j
t,τ ,s,a. (2.40)

Proof. We first remark that, if we assume Jnt,T ,s,a and Ĵnt,τ ,T ,s,a as in (2.38) and (2.40) respectively, then by Corollary 2.6, for
any τ ∈]t, T [, we have

R2
Γ 0(t, s, a; τ , ξ, η)Jnτ ,T ,ξ ,ηΓ

0(τ , ξ , η; T , S, A)dξdη

=


R2

Ĵnt,τ ,T ,s,aΓ
0(t, s, a; τ , ξ, η)Γ 0(τ , ξ , η; T , S, A)dξdη

(here Ĵnt,τ ,T ,s,a plays the role of the ‘‘adjoint’’ operator of Jnτ ,T ,ξ ,η)

= Ĵnt,τ ,T ,s,a


R2

Γ 0(t, s, a; τ , ξ, η)Γ 0(τ , ξ , η; T , S, A)dξdη

(by the semigroup property of Γ 0)

= Ĵnt,τ ,T ,s,aΓ
0(t, s, a; T , S, A). (2.41)

Next we prove the thesis by induction. For n = 1, by the representation formula for the non-homogeneous parabolic
Cauchy problem (2.13) with null final condition, we have

G1(t, s, a; T , S, A) =

 T

t


R2

Γ 0(t, s, a; τ , ξ, η)α1(τ )(ξ − s0)∂ξξΓ
0(τ , ξ , η; T , S, A)dξdηdτ

(by (2.35))

=

 T

t
α1(τ )(Vt,τ ,s,a − s0)


R2

Γ 0(t, s, a; τ , ξ, η)∂ξξΓ
0(τ , ξ , η; T , S, A)dξdηdτ

(by parts and by (2.36))

=

 T

t
α1(τ )(Vt,τ ,s,a − s0)W

2,0
t,τ ,s,a


R2

Γ 0(t, s, a; τ , ξ, η)Γ 0(τ , ξ , η; T , S, A)dξdηdτ

(by the semigroup property of Γ 0)

=

 T

t
α1(τ )(Vt,τ ,s,a − s0)W

2,0
t,τ ,s,aΓ

0(t, s, a; T , S, A)dτ .
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This proves (2.37)–(2.39) for n = 1, that is

G1(t, s, a; T , S, A) = J1t,T ,s,aΓ
0(t, s, a; T , S, A),

where

J1t,T ,s,a =

 T

t
α1(τ )(Vt,τ ,s,a − s0)W

2,0
t,τ ,s,adτ . (2.42)

Using (2.42) and the explicit expression of the operators V ,W in (2.32)–(2.34) given in terms ofΦ,M in (2.30), we can easily
rewrite J1t,T ,s,a in the form (2.38): we refer to Remark 2.8 for the details and the derivation of the explicit expression of the
coefficients f 1i−j,j,k.

Nowwe assume that (2.37)–(2.39) are valid for a generic but fixed n andweprove them for n+1. Using again the standard
representation formula for non-homogeneous parabolic Cauchy problem (2.12) with null final condition, we have

Gn+1(t, s, a; T , S, A) =

n+1
i=1

 T

t
αi(τ )Ii(t, s, y, τ , T , S, A)dτ , (2.43)

where

Ii(t, s, y, τ , T , S, A) =


R2

Γ 0(t, s, a; τ , ξ, η)(ξ − s0)i∂ξξGn+1−i(τ , ξ , η; T , S, A)dξdη

(by Corollary 2.6)

= (Vt,τ ,s,a − s0)iW
2,0
t,τ ,s,a


R2

Γ 0(t, s, a; τ , ξ, η)Gn+1−i(τ , ξ , η; T , S, A)dξdη

(by the inductive hypothesis)

= (Vt,τ ,s,a − s0)iW
2,0
t,τ ,s,a


R2

Γ 0(t, s, a; τ , ξ, η)Jn+1−i
τ ,T ,ξ ,ηΓ

0(τ , ξ , η; T , S, A)dξdη

(by (2.41))

= (Vt,τ ,s,a − s0)iW
2,0
t,τ ,s,a Ĵ

n+1−i
t,τ ,T ,s,a Γ 0(t, s, a; T , S, A). (2.44)

Plugging (2.44) into (2.43), we obtain formulae (2.37)–(2.39) and this concludes the proof. �

Remark 2.8. Starting from formula (2.42)

J1t,T ,s,a =

 T

t
α1(τ )(Vt,τ ,s,a − s0)W

2,0
t,τ ,s,adτ ,

we find the more explicit representation of J1t,T ,s,a in the form (2.38), that is

J1t,T ,s,a =

1
k=0

sk
3

i=2

i
j=0

f 1i−j,j,k(t, T )
∂ i

∂si−j∂aj
. (2.45)

We first remark that, by the definition (2.32)–(2.34) of the operators V and W , we have

Vt,τ ,s,a = sΦ11(t, τ ) + M11(t, τ )Φ11(t, τ )∂s + M21(t, τ )Φ11(t, τ )∂a

W 2,0
t,τ ,s,a =

1
Φ11(t, τ )2

∂ss −
2Φ21(t, τ )

Φ11(t, τ )2
∂sa +

Φ21(t, τ )2

Φ11(t, τ )2
∂aa,

where Φij and Mij denote the components of the matrices Φ and M in (2.30) respectively. Thus we get
Vt,τ ,s,a − s0


W 2,0

t,τ ,s,a =
sΦ11(t, τ ) − s0

Φ11(t, τ )2
∂ss +

2(s0 − sΦ11(t, τ ))Φ21(t, τ )

Φ11(t, τ )2
∂sa

+
(sΦ11(t, τ ) − s0)Φ21(t, τ )2

Φ11(t, τ )2
∂aa +

M11(t, τ )

Φ11(t, τ )
∂sss

+
M21(t, τ ) − 2M11(t, τ )Φ21(t, τ )

Φ11(t, τ )
∂ssa

+
Φ21(t, τ )(M11(t, τ )Φ21(t, τ ) − 2M21(t, τ ))

Φ11(t, τ )
∂saa +

M21(t, τ )Φ21(t, τ )2

Φ11(t, τ )
∂aaa.
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Reordering all terms, we obtain the following expression for the coefficients f 1i−j,j,k in (2.45):

f 12,0,0(t, T ) = −s0

 T

t

α1(τ )

Φ11(t, τ )2
dτ ,

f 11,1,0(t, T ) = 2s0

 T

t
α1(τ )

Φ21(t, τ )

Φ11(t, τ )2
dτ ,

f 10,2,0(t, T ) = −s0

 T

t
α1(τ )

Φ21(t, τ )2

Φ11(t, τ )2
dτ ,

f 13,0,0(t, T ) =

 T

t
α1(τ )

M11(t, τ )

Φ11(t, τ )
dτ ,

f 12,1,0(t, T ) =

 T

t
α1(τ )

M21(t, τ ) − 2M11(t, τ )Φ21(t, τ )

Φ11(t, τ )
dτ ,

f 11,2,0(t, T ) =

 T

t
α1(τ )

Φ21(t, τ )(M11(t, τ )Φ21(t, τ ) − 2M21(t, τ ))

Φ11(t, τ )
dτ ,

f 10,3,0(t, T ) =

 T

t
α1(τ )

M21(t, τ )Φ21(t, τ )2

Φ11(t, τ )
dτ ,

f 12,0,1(t, T ) =

 T

t

α1(τ )

Φ11(t, τ )
dτ ,

f 11,1,1(t, T ) = −2
 T

t
α1(τ )

Φ21(t, τ )

Φ11(t, τ )
dτ ,

f 10,2,1(t, T ) =

 T

t
α1(τ )

Φ21(t, τ )2

Φ11(t, τ )
dτ ,

f 13,0,1(t, T ) = f 12,1,1(t, T ) = f 11,2,1(t, T ) = f 10,3,1(t, T ) = 0.

Having the explicit representation of J1t,T ,s, from (2.40) we directly get the expression of Ĵ1t,τ ,T ,s,a,

Ĵ1t,τ ,T ,s,a =

1
k=0

3
i=2

i
j=0

f 1i−j,j,k(t, T )V k
t,τ ,s,aW

i−j,j
t,τ ,s,a. (2.46)

Plugging (2.46) into (2.39) with n = 2, we can easily find J2t,T ,s,a and Ĵ2t,τ ,T ,s,a. By an analogous iterative procedure, we can
compute the higher order approximation formulae. In Section 3,we present some experimentwherewe computed explicitly
the operators Jnt,T ,s,a up to the third order for r ≠ q and up to the fifth order for r = q, to get very accurate results.

Remark 2.9. The theoretical problem of the convergence and the error estimates for the expansion will not be addressed
here: Corielli et al. [36] have recently found global error bounds, based on Schauder estimates, for a similar expansion for
degenerate PDEs of Asian type. It turns out that theoretical error estimates are generally very conservative and experimental
results show that the explicit formulae have very good precision even in extreme cases; further, the assumptions needed to
prove the theoretical results rule out models of practical interest such as the CEVmodel. We notice explicitly that the result
in [36] is a very particular case of the more general approach proposed here and essentially corresponds to a first order
expansion while here we derive very accurate approximations up to the fifth order with a completely different technique.

2.4. Time-independent coefficients

As an illustrative example, wework out the approximation formulae for the density and the fixed-strike arithmetic Asian
Call in a local volatility model with time-independent coefficients: the BS and the Constant Elasticity of Variance (CEV)
models are meaningful particular cases. Hence we assume the following risk-neutral dynamics for the asset

dSt = (r − q)Stdt + σ(St)StdWt . (2.47)

We set

α(s) = σ 2(s)s2, µ = r − q,

and consider the pricing operator

L =
α(s)
2

∂ss + µs∂s + s∂a + ∂t .
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We also fix s0 > 0 and put

α0 = α(s0), αk =
1
2k!

∂k
s α(s0), k ≥ 1. (2.48)

Then

L0 =
α0

2
∂ss + µs∂s + s∂a + ∂t (2.49)

is the leading term in the approximation of L. Since the parameters are time independent, it is not restrictive to assume
t = 0: accordingly, we simplify the notations and we write Γ (s, a; T , S, A) and J1T ,s,a instead of Γ (0, s, a; T , S, A) and J10,T ,s,a
respectively. The fundamental solution of L0 is given by

Γ 0(s, a; T , S, A) =
1

2π
√
det C(T )

e−
1
2 ⟨C−1(T )((S,A)−ms,a(T )),(S,A)−ms,a(T )⟩, (2.50)

with ms,a(T ) ≡ m0,s,a(T ) as in (2.31) and C(T ) ≡ C(0, T ) as in (2.20)–(2.31).
For simplicity, we assume µ ≠ 0 and report only the first order formulae: the Mathematica notebook of higher order

approximations is available in the web-site of the authors.
By Theorem 2.7 the 1st order approximation for the density is given by

Γ 1(s, a; T , S, A) = Γ 0(s, a; T , S, A) + J1T ,s,aΓ
0(s, a; T , S, A)

where

J1T ,s,a =

1
k=0

sk
3

i=2

i
j=0

f 1i−j,j,k(T )
∂ i

∂si−j∂aj
,

and f 1i−j,j,k(T ) ≡ f 1i−j,j,k(0, T ) are the deterministic functions defined in Remark 2.8: specifically, in the case of time-
independent coefficients, we have

f 1i−j,j,k(T ) = α1αi−3gi−j,j,k(T )

with α−1 = 1, αi as in (2.48) for i = 0, 1 and where

g2,0,0 =


e−2Tµ

− 1

s0

2µ
, g1,1,0 =

e−2Tµ

eTµ

− 1
2 s0

µ2
, g0,2,0 =

s0

3 + e−2Tµ

− 4e−Tµ
− 2Tµ


2µ3

,

g2,0,1 =


1 − e−Tµ


µ

, g1,1,1 = −
2

−1 + e−Tµ

+ Tµ


µ2
, g0,2,1 = −

2(Tµ − sinh(Tµ))

µ3
,

g3,0,0 =


2 + e−3Tµ

− 3e−Tµ


6µ2
, g2,1,0 =


1 − Tµ + e−2Tµ(−1 − sinh(Tµ))


µ3

,

g1,2,0 =
e−3Tµ


1 − eTµ

4
2µ4

, g0,3,0 = −


−e−3Tµ

+ 6e−2Tµ
− 18e−Tµ

+ 3eTµ
+ 2(5 − 6Tµ)


6µ5

,

(2.51)

and gi−j,j,k = 0 when i+ k = 4. Notice that the functions in (2.51) are model independent: the particular form of the volatility
enters in the approximation formula only through Γ 0 and the coefficients αn of the Taylor expansion of the volatility
function.

Accordingly, the first order approximation for the fixed-strike Asian Call is given by

e−rTu(s, a, T ),

where

u(s, a, T ) = CBS(s, a, T ) +

1
k=0

sk
3

i=2

i
j=0

f 1i−j,j,k(T )
∂ i

∂si−j∂aj
CBS(s, a, T ),

and

CBS(s, a, T ) =


R


R

Γ 0(s, a; T , S, A)


A
T

− K
+

dSdA

=
e−

µβ(s,a,T )2
γ (T )


µ3γ (T )

2Tµ3
√

π
−

µ2β(s, a, T )

Tµ3


1 − N


β(s, a, T )


2µ

γ (T )


with

β(s, a, T ) = s − seTµ
− aµ + KTµ, γ (T ) = α0


3 − 4eµT

+ e2µT
+ 2µT


.
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Table 1
Parameter values for seven test cases.

Case S0 K r σ T

1 2 2 0.02 0.1 1
2 2 2 0.18 0.3 1
3 2 2 0.0125 0.25 2
4 1.9 2 0.05 0.5 1
5 2 2 0.05 0.5 1
6 2.1 2 0.05 0.5 1
7 2 2 0.05 0.5 2

Table 2
Asian Call option prices when q = 0 (parameters as in Table 1).

Case Linetsky FPP3 FPP2 Mellin500 Vecer MAE3

1 0.05598604 0.05598604 0.05598602 0.05603631 0.055986 0.05598596
2 0.21838755 0.21838706 0.21838375 0.21835987 0.218388 0.21836866
3 0.17226874 0.17226694 0.17226600 0.17236881 0.172269 0.17226265
4 0.19317379 0.19316359 0.19320627 0.19297162 0.193174 0.19318824
5 0.24641569 0.24640562 0.24640056 0.24651870 0.246416 0.24638175
6 0.30622036 0.30620974 0.30615763 0.30649701 0.306220 0.30613888
7 0.35009522 0.35003972 0.35001419 0.34892612 0.350095 0.34990862

Table 3
Asian Call option prices when q = r (parameters as in Table 1).

Case FPP5 FPP3 FPP2 MAE3 MAE5

1 0.045143 0.045143 0.045143 0.045143 0.045143
2 0.115188 0.115188 0.115188 0.115188 0.115188
3 0.158380 0.158378 0.158378 0.158378 0.158380
4 0.169201 0.169192 0.169238 0.169238 0.169201
5 0.217815 0.217805 0.217805 0.217805 0.217815
6 0.272924 0.272914 0.272868 0.272869 0.272925
7 0.291316 0.291263 0.291263 0.291264 0.291316

In the above formula, numerical errors due to cancellations for shortmaturities can be corrected by using the resulting series
expansion. We also remark that a suitable choice of s0 may improve the accuracy of the approximation formula: as we shall
see in Section 3, in most cases s0 = s is a convenient choice that allows to get very accurate results.

3. Numerical experiments

In this section our approximation formulae are tested and comparedwithmethod proposed in [15], theMellin transform
based method (Mellin500) of Shaw [8], the PDE method of Vecer [52], the matched asymptotic expansions of Dewynne
and Shaw [35] (MAE3 and MAE5) and the method of Dassios and Nagaradjasarma [21] (DN). Our 2nd, 3rd and 5th order
approximations will be denoted by FPP2, FPP3 and FPP5. In the first part of this section a set of experimental results under
BS dynamics are reported, then in the second part the CEV dynamics is considered.

3.1. Tests under Black and Scholes dynamics

In order to assess the performances of our approximations for pricing arithmetic Call options under a BS model, we used
the family of tests introduced in [53], and later used in [21,35,7,5,15,52] as a standard for this task. Table 1 reports the
interest rate r , the volatility σ , the time to maturity T , the strike K and the initial asset price S0 for the seven cases. In this
set of tests a null dividend rate is assumed: q = 0. Table 2 reports the results of methods Linetsky, FPP3, FPP2, Mellin500,
Vecer and MAE3. The results of Linetsky, Vecer and MAE3 are taken from [15,52,35], respectively.

Following [35] we repeated the same seven tests with a dividend rate equal to the interest rate (see Table 3). The results
of Linetsky and Vecer are not reported: the former because these tests were not considered in his paper; the latter because
Vecer’s code cannot deal with that special case. In that case, the discrepancies between FPP3 and MAE5 can be found only
at the 5th decimal place. Furthermore, FPP5 andMAE5 columns show that the contribution of the 5th order approximations
to the accuracy of the methods is not substantial.

Next, in order to address the issues raised in [4–6], we tested our method with a low-volatility parameter σ = 0.01.
Table 4 shows the performances of the approximations against Monte Carlo 95% confidence intervals. These intervals are
computed using 500000 Monte Carlo replication and an Euler discretization with 300 time-steps for T = 0.25 and T = 1
and 1500 time-steps for T = 5. In these experiments the initial asset level is S0 = 100, the interest rate is r = 0.05 and the
dividend yield is null q = 0.
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Table 5
Tests proposed in [21] for the CEV model.

Case S0 K r σ T DN FPP3 FPP2 MC 95% c.i.

1⋆ 2 2 0.02 0.14 1 0.0197 0.055562 0.055562 0.055321–0.055732
2⋆ 2 2 0.18 0.42 1 0.2189 0.217874 0.217875 0.218319–0.219678
3⋆ 2 2 0.0125 0.35 2 0.1725 0.170926 0.170926 0.171126–0.172555
4⋆ 1.9 2 0.05 0.69 1 0.1902 0.190834 0.190821 0.190303–0.192121
5⋆ 2 2 0.05 0.72 1 NA 0.251121 0.251123 0.250675–0.252807
6⋆ 2.1 2 0.05 0.72 1 0.3098 0.308715 0.308730 0.308791–0.311150
7⋆ 2 2 0.05 0.71 2 0.3339 0.353197 0.353206 0.352269–0.355313

Table 6
Second set of tests proposed in [21]. The remaining parameters are set to S0 = K = 2, r = 0.05, q = 0 and
β =

1
2 .

σ T DN FPP3 FPP2 MC 95% c.i.

0.71 0.1 0.0751 0.075387 0.075387 0.075068–0.075689
0.71 0.5 0.1725 0.173175 0.173175 0.173265–0.174717
0.71 1.0 0.2468 0.248018 0.248019 0.247738–0.249841
0.71 2.0 0.3339 0.353197 0.353206 0.351111–0.354146
0.71 5.0 0.3733 0.545714 0.545800 0.545812–0.550679
0.1 1 0.0484 0.061439 0.061439 0.061329–0.061674
0.3 1 0.1207 0.120680 0.120680 0.120596–0.121494
0.5 1 0.1827 0.182723 0.182724 0.182814–0.184285
0.7 1 0.2446 0.244913 0.244914 0.244959–0.247030

Themethods considered are Vecer,Mellin500, FPP3 andMAE3. Here,we used theMathematica implementations of Vecer
andMellin500 provided by the authors, whereasMAE3 formulawas coded by ourselves.Mellin500 implementation requires
a numerical integration on an unbounded domain which needs to be truncated. We have set the length of the truncated
domain to 109 and fixed the number of recursion in Mathematica NIntegrate function to 100. The execution time of the
Monte Carlo, Vecer and Mellin500 methods is also reported. Also here, FPP3 and MAE3 methods are almost identical and
both always fall very close toMonte Carlo results: theworst case has an error of 5×10−3. Notice that the Euler discretization
may induce a little bias in Monte Carlo results.

We remark that, although the proposed approximations have a performance very similar to the method of Dewynne and
Shaw, our approach is more flexible and capable of dealing with local volatility dynamics; moreover, our method can also
produce explicit approximation formulae for the Greeks and the asset-average density.

3.2. Tests under CEV dynamics

In this section we test the performances of our approximation when the volatility is not constant. More specifically, we
consider the CEV dynamics

dSt = (r − q)dStdt + σ SβdWt , β ∈]0, 1[,

which corresponds to a local volatility model with σ(t, S) = σ Sβ−1. Although this is a ‘‘degenerate’’ case, as σ(t, S) is not
bounded, the following experiments confirm that the approximation is still precise enough.

First, we performed the experiments proposed by Dassios and Nagaradjasarma in [21] for the square-root model, β =
1
2 .

The results on these tests are reported in Tables 5 and 6, where the 2nd and 3rd order approximations are compared with
the results of a Monte Carlo method. The same number of Monte Carlo replications and time-steps of previous experiments
was used. Here again, both FPP2 and FPP3 approximations show good performances.

Figs. 1 and 2 show the cross-sections of absolute (left) and relative (right) errors of the 3rd order approximation when
β =

2
3 and β =

1
3 , respectively. The errors are computed against prices computed bymeans of an EulerMonte Carlomethod

with 300 time-steps and 500 000 replications. The shaded bands show the 95% and 99% Monte Carlo confidence intervals
for each strike. The initial stock price is S0 = 1, the risk-free rate is r = 5%, the dividend yield is q = 0 and the maturity
is T = 1. Two levels for the volatility parameter are considered σ = 10% and σ = 50%. The two figures show that the
approximations have good global performances for both the CEV exponents and both the volatility levels.

Finally, since our technique provides explicit approximating formulae also for the sensitivities of option prices, we show
in Fig. 3 the graphs of the Delta, the Gamma and the Vega of an arithmetic Asian Call, with fixed strike, under the CEVmodel.
Notice that, usual no-arbitrage bounds, like having the Delta in the interval [0, 1] or positive Gamma, are not violated. The
Mathematica notebook containing all the explicit formulae for the prices and the Greeks is available in the web-site of the
authors.
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Fig. 1. FPP3 approximation errors for Asian Call options with maturity T = 1, when the underlying has a CEV dynamics with exponent β =
2
3 and

parameters S0 = 1, r = 5% and q = 0. Two levels of volatility are considered: σ = 10% and σ = 50%.

Fig. 2. FPP3 approximation errors for Asian Call options with maturity T = 1, when the underlying has a CEV dynamics with exponent β =
1
3 and

parameters S0 = 1, r = 5% and q = 0. Two levels of volatility are considered: σ = 10% and σ = 50%.
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Fig. 3. Delta, Gamma and Vega of an arithmetic Average Call with fixed strike K = 1, under a CEV dynamics with parameters r = 5%, q = 0, σ = 40%
and β =

1
2 .

Acknowledgement

We thank an anonymous referee for valuable comments.

References

[1] M. Yor, On some exponential functionals of Brownian motion, Adv. Appl. Probab. 24 (1992) 509–531.
[2] M. Yor, Sur certaines fonctionnelles exponentielles du mouvement brownien réel, J. Appl. Probab. 29 (1992) 202–208.
[3] H. Geman, M. Yor, Quelques relations entre processus de Bessel, options asiatiques et fonctions confluentes hypergéométriques, C. R. Acad. Sci. Paris

Sér. I 314 (1992) 471–474.
[4] W.T. Shaw, Modelling Financial Derivatives with Mathematica: Mathematical Models and Benchmark Algorithms, Cambridge University Press,

Cambridge, 1998, With 1 CD-ROM (Windows, Macintosh and UNIX).
[5] M. Fu, D. Madan, T. Wang, Pricing continuous time Asian options: a comparison of Monte Carlo and Laplace transform inversion methods, J. Comput.

Finance 2 (1998) 49–74.
[6] D. Dufresne, Asian and Basket asymptotics, Research Paper No. 100, University of Montreal, 2002.
[7] D. Dufresne, Laguerre series for Asian and other options, Math. Finance 10 (2000) 407–428.
[8] W.T. Shaw, Pricing Asian options by contour integration, including asymptotic methods for low volatility, Working Paper, 2003.

http://www.mth.kcl.ac.uk/~shaww/web_page/papers/Mathematicafin.htm.
[9] M. Schröder, On constructive complex analysis in finance: explicit formulas for Asian options, Quart. Appl. Math. 66 (2008) 633–658.

[10] A.G.Z. Kemna, A.C.F. Vorst, A pricing method for options based on average asset values, J. Banking Finance 14 (1990) 113–129.
[11] P. Boyle, M. Broadie, P. Glasserman, Monte Carlo methods for security pricing, J. Econom. Dynam. Control 21 (1997) 1267–1321. Computational

financial modelling.
[12] B. Jourdain,M. Sbai, Exact retrospectiveMonte Carlo computation of arithmetic average Asian options,Monte CarloMethods Appl. 13 (2007) 135–171.
[13] P. Guasoni, S. Robertson, Optimal importance sampling with explicit formulas in continuous time, Finance Stoch. 12 (2008) 1–19.
[14] A. Takahashi, N. Yoshida, Monte Carlo simulation with asymptotic method, J. Japan Statist. Soc. 35 (2005) 171–203.
[15] V. Linetsky, Spectral expansions for Asian (average price) options, Oper. Res. 52 (2004) 856–867.
[16] F. Hubalek, C. Sgarra, On the explicit evaluation of the geometric Asian options in stochastic volatility models with jumps, J. Comput. Appl. Math. 235

(2011) 3355–3365.
[17] B. Kim, I.-S. Wee, Pricing of geometric Asian options under Heston’s stochastic volatility model, Quant. Finance 11 (2011) 1–15.

http://www.mth.kcl.ac.uk/~shaww/web_page/papers/Mathematicafin.htm


P. Foschi et al. / Journal of Computational and Applied Mathematics 237 (2013) 442–459 459

[18] E. Bayraktar, H. Xing, Pricing Asian options for jump diffusion, Math. Finance 21 (2011) 117–143.
[19] N. Cai, S.G. Kou, Pricing Asian options under a hyper-exponential jump diffusion model, Oper. Res. 60 (1) (2012) 64–77.
[20] D. Dufresne, The Integrated Square-Root Process, 2001.
[21] A. Dassios, J. Nagaradjasarma, The square-root process and Asian options, Quant. Finance 6 (2006) 337–347.
[22] J.N. Dewynne, P. Wilmott, A note on average rate options with discrete sampling, SIAM J. Appl. Math. 55 (1995) 267–276.
[23] E. Barucci, S. Polidoro, V. Vespri, Some results on partial differential equations and Asian options, Math. Models Methods Appl. Sci. 11 (2001) 475–497.
[24] M. Di Francesco, A. Pascucci, S. Polidoro, The obstacle problem for a class of hypoelliptic ultraparabolic equations, Proc. R. Soc. Lond. Ser. A Math. Phys.

Eng. Sci. 464 (2008) 155–176.
[25] A. Pascucci, Free boundary and optimal stopping problems for American Asian options, Finance Stoch. 12 (2008) 21–41.
[26] V. Bally, A. Kohatsu-Higa, Lower bounds for densities of Asian type stochastic differential equations, J. Funct. Anal. 258 (2010) 3134–3164.
[27] J.E. Ingersoll, Theory of Financial Decision Making, Blackwell, Oxford, 1987.
[28] L. Rogers, Z. Shi, The value of an Asian option, J. Appl. Probab. 32 (1995) 1077–1088.
[29] J.E. Zhang, A semi-analytical method for pricing and hedging continuously sampled arithmetic average rate options, J. Comput. Finance 5 (2001) 1–20.
[30] J. Vecer, A new PDE approach for pricing arithmetic average Asian options, J. Comput. Finance (2001) 105–113.
[31] J.-P. Fouque, C.-H. Han, Pricing Asian options with stochastic volatility, Quant. Finance 3 (2003) 353–362.
[32] S. Glasgow, S. Taylor, A novel reduction of the simple Asian option and Lie-group invariant solutions, Int. J. Theor. Appl. Finance 12 (2009) 1197–1212.
[33] S. Taylor, Perturbation and symmetry techniques applied to finance, Ph.D. Thesis, Frankfurt School of Finance & Management. Bankakademie HfB,

2011.
[34] N.C. Caister, J.G. O’Hara, K.S. Govinder, Solving the Asian option PDE using Lie symmetry methods, Int. J. Theor. Appl. Finance 13 (2010) 1265–1277.
[35] J.N. Dewynne, W.T. Shaw, Differential equations and asymptotic solutions for arithmetic Asian options: ‘Black–Scholes formulae’ for Asian rate calls,

European J. Appl. Math. 19 (2008) 353–391.
[36] F. Corielli, P. Foschi, A. Pascucci, Parametrix approximation of diffusion transition densities, SIAM J. Financial Math. 1 (2010) 833–867.
[37] N. Kunitomo, A. Takahashi, Pricing average options, Japan Financ. Rev. 14 (1992) 1–20 (in Japanese).
[38] K. Shiraya, A. Takahashi, Pricing average options on commodities, J. Futures Markets 31 (5) (2011) 407–439.
[39] K. Shiraya, A. Takahashi, M. Toda, Pricing barrier and average options under stochastic volatility environment, SSRN eLibrary, 2009.
[40] E. Gobet, M. Miri, Weak approximation of averaged diffusion processes, Tech. Report, 2012.
[41] D.G. Hobson, L.C.G. Rogers, Complete models with stochastic volatility, Math. Finance 8 (1998) 27–48.
[42] P. Foschi, A. Pascucci, Path dependent volatility, Decis. Econ. Finance 31 (2008) 13–32.
[43] S. Pagliarani, A. Pascucci, C. Riga, Expansion formulae for local Lévy models, SSRN eLibrary, 2011.
[44] V. Henderson, R. Wojakowski, On the equivalence of floating- and fixed-strike Asian options, J. Appl. Probab. 39 (2002) 391–394.
[45] J.E. Angus, A note on pricing Asian derivatives with continuous geometric averaging, J. Futures Markets 19 (1999) 845–858.
[46] S. Pagliarani, A. Pascucci, Analytical approximation of the transition density in a local volatility model, Cent. Eur. J. Math. 10 (1) (2012) 250–270.
[47] L. Hörmander, Hypoelliptic second order differential equations, Acta Math. 119 (1967) 147–171.
[48] R.E. Kalman, Y.C. Ho, K.S. Narendra, Controllability of linear dynamical systems, Contrib. Differential Equations 1 (1963) 189–213.
[49] J.P. LaSalle, The time optimal control problem, in: Contributions to the Theory of Nonlinear Oscillations, Vol. V, Princeton Univ. Press, Princeton, NJ,

1960, pp. 1–24.
[50] J.-M. Coron, Control and Nonlinearity, in: Mathematical Surveys and Monographs, vol. 136, American Mathematical Society, Providence, RI, 2007.
[51] A.A. Agrachev, Y.L. Sachkov, Control theory from the Geometric viewpoint, in: Control Theory and Optimization, II, in: Encyclopaedia of Mathematical

Sciences, vol. 87, Springer-Verlag, Berlin, 2004.
[52] J. Vecer, M. Xu, Unified Asian pricing, Risk 15 (2002) 113–116.
[53] H. Geman, A. Eydeland, Domino effect, Risk 8 (1995) 65–67.


	Approximations for Asian options in local volatility models
	Introduction
	Asian options and linear SDEs
	Approximation methodology
	Non-degeneracy conditions for linear SDEs
	Approximation formulae for the density
	Time-independent coefficients

	Numerical experiments
	Tests under Black and Scholes dynamics
	Tests under CEV dynamics

	Acknowledgement
	References


