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a b s t r a c t

Galerkin discretizations of a class of parametric and random parabolic partial differential
equations (PDEs) are considered. The parabolic PDEs are assumed to depend on a vector
y = (y1, y2, . . .) of possibly countably many parameters yj which are assumed to take
values in [−1, 1]. Well-posedness of weak formulations of these parametric equations in
suitable Bochner spaces is established. Adaptive Galerkin discretizations of the equation
based on a tensor product of a generalized polynomial chaos in the parameter domain
Γ = [−1, 1]N, and of suitable wavelet bases in the time interval I = [0, T ] and the spatial
domain D ⊂ Rd are proposed and their optimality is established.

© 2013 Elsevier B.V. All rights reserved.

0. Introduction

In recent years, based on the pioneering works [1,2], and the subsequent refinements [3–7], a rigorous theory of optimal
(in the sense that convergence rateswhich are afforded by bestN-termapproximations fromabiorthogonal expansion of the
unknown solution in some a priori given Riesz basis are achieved) adaptive Galerkin approximation methods has emerged.
After initial applications to linear elliptic partial differential equations in [1,2] using isotropically supported multiresolution
bases, extensions to integro-differential operators have been considered in [3,4], first applications to elliptic multiscale
problems using anisotropic tensor product Riesz bases have been considered in [5,6] and, subsequently, to the space–time
compressive discretization of linear parabolic (integro)differential equations have been considered in [7].

∗ Corresponding author.
E-mail addresses: cgittels@purdue.edu (C.J. Gittelson), roman.andreev@oeaw.ac.at (R. Andreev), schwab@sam.math.ethz.ch (C. Schwab).

0377-0427/$ – see front matter© 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.cam.2013.12.031

http://dx.doi.org/10.1016/j.cam.2013.12.031
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2013.12.031&domain=pdf
mailto:cgittels@purdue.edu
mailto:roman.andreev@oeaw.ac.at
mailto:schwab@sam.math.ethz.ch
http://dx.doi.org/10.1016/j.cam.2013.12.031


190 C.J. Gittelson et al. / Journal of Computational and Applied Mathematics 263 (2014) 189–201

In recent years, in particular in connection with the numerical solution of partial differential equations with random
inputs, for example with random coefficients given by Karhunen–Loève expansions, initial boundary value problems of
parametric, deterministic partial differential operators which depend on a sequence of countably many parameters have
been considered. Various discretization approaches, for example collocation and Monte Carlo sampling techniques, have
been considered (see, e.g., [8] and the references therein).

While affording convenient implementation, the analysis of sampling methods currently leaves open the question of
optimality. Here, the situation for the so-called stochastic Galerkin discretizations is quite different: since the discretization
consists in a mean-square projection onto a polynomial chaos, i.e. onto a finite span from a countable ensemble of
tensorized orthogonal polynomials, in principle techniques for establishing optimality of Galerkin projection methods for
the approximate solution of operator equations can be brought to bear. This programme has been implemented in [9] and
the references therein for parametric operator equations.

In the present paper, we adapt these techniques to prove optimality of an adaptive Galerkin scheme for linear, parametric
and parabolic equations. Here, we use a Legendre generalized polynomial chaos in the parameter space, and a space–time
tensor productwavelet basis thatwas shown to lead to an optimal Galerkin approximation for the non-parametric, parabolic
initial boundary problems in [7]. Based on the approach and the tensorized space–time Riesz bases for the Bochner space
in these references, we develop in the present paper a family of adaptive Galerkin discretizations which are based on
tensorizing the generalized polynomial chaos and the space–time tensor product wavelet bases, resulting in discretization
schemes which are simultaneously adaptive in space–time and in the parameter space. We establish here optimality of the
resulting algorithm, which implies that the best N-term approximation rates which are afforded by the exact solution from
the tensorized basis are, indeed, realized by the sequence of finitely supported approximations generated by the proposed
adaptive Galerkin discretization.

The outline of this paper is as follows. In Section 1.1, we present an abstract class of parametric, parabolic problemswhich
may depend on a countable number of parameters. We elaborate on the specific class of affine parameter dependence of the
parametric operator equations.

In Section 2,we introduce a space–timeweak formulationwhich also includes aweak formof the parameter dependence.
Sections 3 and 4 introduce the requirement for polynomial chaos type Riesz bases in the parameter domain, and for the

multiresolution (wavelet) Riesz bases on the space and time domains.
Section 5 introduces an equivalent bi-finite matrix equation which, in particular, allows for suitable compressibility

results.
Section 6presents elements of the general adaptiveGalerkin framework, based on the general Refs. [1,2,4]where adaptive

wavelet methods were developed in the context of wavelet discretizations of elliptic operator equations, to the extent
required by the ensuing developments.

Section 7 recapitulates from [9] general results on the optimality of adaptive Galerkin approximations of deterministic
operator equations. Finally, Section 8 contains statements andproofs of themain result of the present paper, the optimality of
the proposed adaptiveGalerkin approximations in space, time andparameter domains by sparse, tensorized bases consisting
of tensor products of Riesz bases Θ, Σ and of P .

1. Random and parametric parabolic equations

1.1. Abstract setting

Let V and H be real or complex separable Hilbert spaces. We denote by V ∗ the dual space of V , which consists of all
bounded antilinear functionals on V . Assuming a dense embedding V ↩→ H , we obtain a Gelfand triple V ↩→ H ↩→ V ∗,
where H is canonically identified with its dual.

We shall consider equations in V that depend on a temporal variable t ∈ I := [0, T ] and also on a parameter sequence
y ∈ Γ := [−1, 1]N. On Γ , we define a probability measure

π =


m∈N

πm, (1.1)

where each πm is assumed to be a probability measure on [−1, 1] with the Borel σ -algebra. Although the product structure
of the domain Γ and the measure π is irrelevant for the abstract problem formulation, it is pivotal to the subsequent
construction of countable orthonormal (with respect to π) bases on the parameter domain in Section 3.

For a.e. t ∈ I and π-a.e. y ∈ Γ , we denote by A(t, y; ·, ·) a sesquilinear form on V × V such that for any v,w ∈ V , the
map (t, y) → A(t, y; v,w) is Borel-measurable on I × Γ , and such that for a.e. t and y

|A(t, y; v,w)| ≤ cmax∥v∥V∥w∥V ∀v,w ∈ V , (1.2)

ℜA(t, y; v, v)+ c0∥v∥2
H ≥ cmin∥v∥

2
V ∀v ∈ V , (1.3)

with fixed constants cmax > 0, cmin > 0 and c0 ≥ 0. For any v ∈ V , the antilinear functional A(t, y; v, ·) is an element of V ∗.
This allows us to interpret A(t, y) as a bounded linear map from V to V ∗ for a.e. t and for π-a.e. y ∈ Γ .
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We are interested in solving the parametric parabolic equation
∂tu(t, y)+ A(t, y)u(t, y) = g(t, y), t ∈ I,
u(0, y) = h(y) (1.4)

for given g(·, y) ∈ L2(I; V ∗) and h(y) ∈ H , for a.e. y ∈ Γ .

1.2. The heat equation

Let D ⊂ Rd be a bounded Lipschitz domain. In I × D × Γ , we consider the random parabolic initial boundary value
problem

∂tu(t, x, y)− div(a(t, x, y)grad u(t, x, y)) = g(t, x, y), (t, x, y) ∈ I × D × Γ , (1.5)

with boundary condition u|∂D = 0 and initial condition u(0, x, y) = h(x, y). Here, a may be interpreted as a random field
on the space–time cylinder I × D. Due to the frequently used Karhunen–Loève expansion to parameterize random field
coefficients, we are particularly interested in the case that this field is expanded in a series as

a(t, x, y) = ã(t, x)+

∞
m=1

ymam(t, x), (t, x) ∈ I × D, y = (ym)∞m=1 ∈ Γ . (1.6)

Our assumption that the measure π be a product measure (1.1) on Γ is equivalent to the condition that the coefficients ym
in this series expansion correspond to independent random variables.

For this example, the spaces V and H are H = L2(D) and, due to the homogeneous Dirichlet boundary conditions
V = H1

0 (D), with dual V ∗
= H−1(D) (the ensuing analysis will remain valid also for mixed or even Neumann boundary

conditions with the obvious modifications of V ). Furthermore,

A(t, y; v,w) :=


D
a(t, x, y)grad v(x) · gradw(x) dx, v, w ∈ H1

0 (D). (1.7)

When interpreted as an operator V → V ∗, this is A(t, y)v = −div(a(t, ·, y)grad v). Due to (1.6), the corresponding para-
metric operator A can be expanded into a series

A(t, y) = Ã(t)+

∞
m=1

ymAm(t), (1.8)

where Ã(t)v = −div(ã(t, ·)grad v) and Am(t)v = −div(am(t, ·)grad v) for v ∈ V , with unconditional convergence in
L(V , V ∗) under suitable decay assumptions on am. If X and Y are Banach spaces, we write L(X, Y ) for the space of bounded
linear operators X → Y with norm ∥ · ∥X→Y , and set L(X) = L(X, X).

We specialize to operators of the form (1.8) in the following subsection. For this example, the assumptions (1.10) and
(1.11) below are satisfied with c0 = 0 if

0 < c̃min ≤ ℜã(t, x) ≤ |ã(t, x)| ≤ c̃max < ∞ ∀(t, x) ∈ I × D, (1.9)

where ℜ(·) denotes the real part. Furthermore, ∥Am(t)∥V→V∗ = ∥am∥L∞(I×D) in (1.12).

1.3. Affine dependence on the parameter

We consider abstract operators of the form (1.8), with

|Ã(t; v,w)| ≤ c̃max∥v∥V∥w∥V ∀v,w ∈ V , (1.10)

ℜÃ(t; v, v)+ c0∥v∥2
H ≥ c̃min∥v∥

2
V ∀v ∈ V , (1.11)

for a.e. t and constants c̃max > 0, c̃min > 0 and c0 ≥ 0. Under the assumption

∞
m=1

∥Am(t)∥V→V∗ ≤ γ c̃min ∀t ∈ I (1.12)

with γ ∈ [0, 1), since |ym| ≤ 1 for all m, (1.2) and (1.3) hold with constants

cmin = (1 − γ )c̃min and cmax = c̃max + γ c̃min. (1.13)



192 C.J. Gittelson et al. / Journal of Computational and Applied Mathematics 263 (2014) 189–201

2. Weak formulation

2.1. Weak interpretation of the parameter dependence

WeabbreviateV := L2π (Γ ; V ) andH := L2π (Γ ;H). IdentifyingH with its dual, andV∗ with the Bochner space L2π (Γ ; V ∗),
we obtain a Gelfand triple V ↩→ H ↩→ V∗ of separable Hilbert spaces with dense injections. Due to (1.2) and (1.3), the
π-averaged (which coincides with the mathematical expectation w.r.t. π ) sesquilinear form

A(t; v,w) :=


Γ

A(t, y; v(y), w(y)) dπ(y), v, w ∈ V, (2.1)

is bounded and coercive on V with
|A(t; v,w)| ≤ cmax∥v∥V∥w∥V ∀v,w ∈ V, (2.2)

ℜA(t; v, v)+ c0∥v∥2
H ≥ cmin∥v∥

2
V ∀v ∈ V, (2.3)

for a.e. t ∈ I . Omitting the arguments v and w in (2.1), we interpret A(t) also as a bounded linear operator from V to V∗

mapping v ∈ V to A(t; v, ·).
For g ∈ L2(I; V∗) and h ∈ H , we arrive at the parabolic equation

∂tu(t)+ A(t)u(t) = g(t), t ∈ I,
u(0) = h. (2.4)

Here, ∂t denotes the distributional time derivative. It can be shown as in e.g. [8, Theorem 2.18], by testing (2.4) with v ∈ V
multiplied by the indicator function of an arbitrary measurable subset of Γ that the solutions of (2.4) and (1.4) coincide for
π-a.e. y ∈ Γ .

2.2. Variational formulation of the parabolic equation

In the form (2.4), the random parabolic equation fits the abstract setting of [7]. Consequently, the space–time saddle
point variational formulation developed there applies. This formulation is based on the spaces

X := L2(I; V) ∩ H1(I; V∗) = L2(I; L2π (Γ ; V )) ∩ H1(I; L2π (Γ ; V ∗)) (2.5)
and

Y := L2(I; V)× H = L2(I; L2π (Γ ; V ))× L2π (Γ ;H). (2.6)
Due to the tensor product structure of Bochner spaces, X and Y can be identified with the Hilbert tensor product spaces

X = (L2(I)⊗ L2π (Γ )⊗ V ) ∩ (H1(I)⊗ L2π (Γ )⊗ V ∗)

= L2π (Γ )⊗ [(L2(I)⊗ V ) ∩ (H1(I)⊗ V ∗)] (2.7)
and

Y = (L2(I)⊗ L2π (Γ )⊗ V )× (L2π (Γ )⊗ H) = L2π (Γ )⊗ [(L2(I)⊗ V )× H]. (2.8)

In particular,X andY are tensor products of L2π (Γ )with spaces X := L2(I; V )∩H1(I; V ∗) and Y := L2(I; V )×H , respectively,
that do not depend on π and Γ .

By e.g. [10, Chapter 18], X ↩→ C (I;H), the space of continuous H-valued functions on I , and consequently

X = L2π (Γ ; X) ↩→ L2π (Γ ; C (I;H)) ↩→ C (I; H), (2.9)

with H = L2π (Γ ;H). Naturally, the weaker statement X ↩→ C (I; H) follows directly from [10].
Following [7], we define the sesquilinear form B(·, ·) on X × Y as

B(w, (v1, v2)) :=


I
⟨∂tw(t), v1(t)⟩ + A(t;w(t), v1(t)) dt + (w(0), v2)H , (2.10)

and interpret this also as a bounded linear operator B from X to Y∗. In (2.10) and in what follows, ⟨·, ·⟩ denotes the obvious
duality pairing. Then, for the right hand side f ∈ Y∗ given by

f (v1, v2) :=


I
⟨g(t), v1(t)⟩ dt + (h, v2)H , (v1, v2) ∈ Y, (2.11)

we formulate (2.4) as the operator equation
Bu = f . (2.12)

Theorem 2.1. The linear operator B:X → Y∗ is boundedly invertible.

For a proof of Theorem 2.1 with bounds on the norm of B and its inverse, we refer to [7, Theorem 5.1]; see also [10,11].
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3. A polynomial basis on the parameter domain

3.1. Univariate orthonormal polynomials

For all m ∈ N, let (Pm
n )

∞

n=0 be an orthonormal polynomial basis of L2πm([−1, 1]) where Pm
n is a polynomial of degree n.

Such a basis satisfies the three term recursion Pm
−1 := 0, Pm

0 := 1 and

βm
n Pm

n (ξ) := (ξ − αm
n−1)P

m
n−1(ξ)− βm

n−1P
m
n−2(ξ), n ∈ N, (3.1)

with

αm
n :=

 1

−1
ξPm

n (ξ)
2 dπm(ξ) and βm

n :=
cmn−1

cmn
, (3.2)

where cmn is the leading coefficient of Pm
n , β

m
0 := 1, and Pm

n is chosen as normalized to unit norm in L2πm([0, 1]). This basis is
unique e.g. if cmn is chosen to be positive. We refer to e.g. [12,13] for details.

3.2. Countable tensor products of orthonormal polynomials

We define the set of finitely supported sequences in N0 as

Λ := {µ ∈ NN
0 ;# suppµ < ∞}, (3.3)

where the support of a sequence µ in N0 is

suppµ := {m ∈ N ;µm ≠ 0}, µ ∈ NN
0 . (3.4)

Then countably infinite tensor product polynomials are given by

P :=

Pµ

µ∈Λ

, Pµ :=

∞
m=1

Pm
µm
, µ ∈ Λ. (3.5)

Note that each of these functions depends nontrivially on only finitely many variables; for all y = (ym)∞m=1 ∈ Γ ,

Pµ(y) =

∞
m=1

Pm
µm
(ym) =


m∈suppµ

Pm
µm
(ym), µ ∈ Λ, (3.6)

since Pm
0 = 1 for all m ∈ N.

Theorem 3.1. P is an orthonormal basis of L2π (Γ ).

We refer to e.g. [14, Theorem 2.8] for a proof of Theorem 3.1; see also [15].

4. Wavelet bases on the spatial and temporal domains

In this section we construct Riesz bases Φ and Ψ of X = L2(I; V ) ∩ H1(I; V ∗) and Y = L2(I; V )× H , respectively. These
will consist of suitable bases for the spaces L2(I) and V . We remark that in general, Φ and Ψ can be chosen separately. Here
we forego that generality and follow the construction given in [7].

Let Θ = {ϑλ ; λ ∈ ∇t} ⊂ H1(I). We assume that Θ is a (multi-)wavelet basis constructed using dyadic refinements, that
is, to each index λ ∈ ∇t a level |λ| ∈ N0 is associated such that {λ ∈ ∇t ; |λ| = k} ∼ 2k. We assume that

(1) Θ is a normalized Riesz basis in L2(I),
(2) Θ can be rescaled to a Riesz basis in H1(I),
(3) Θ is of order dt > 1 (in the sense of e.g. [6,7]).

Concerning the wavelet nature of the basis Θ we further assume that it is

(1) local, that is supt∈I,k∈N0
#{λ ∈ ∇t ; |λ| = k ∧ t ∈ suppϑλ} < ∞,

(2) piecewise polynomial of order dt , in particular, the singular support of eachϑλ is a subset of the closure of I with uniformly
bounded finite cardinality,

(3) continuous, and ∥ϑλ∥L∞(I) + 2−|λ|
∥ϑ ′

λ∥L∞(I) . 2
1
2 |λ|,

(4) such that ϑλ has d̃t ≥ dt vanishing moments for all |λ| ≥ 1.
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With these assumptions, it was shown in [7] that the matrices

[(∥ϑλ′∥
−1
H1(I)

ϑ ′

λ′ , ϑλ)L2(I)]λ′,λ∈∇t , [(ϑλ′ , ϑλ)L2(I)]λ′,λ∈∇t (4.1)

and their adjoints are s∗-computable for any s∗ > 0, see Section 6.2 for the notion of s∗-computability.
Bases Θ with the properties required above are well-known. Examples include biorthogonal spline wavelets, see

e.g. [16–18] and references therein.
Let Σ = {σν ; ν ∈ ∇x} ⊂ V be a basis for V . We begin by assuming that Σ

(1) is a normalized Riesz basis for H ,
(2) can be rescaled to a Riesz basis for V , and properly rescaled constitutes a Riesz basis for V ∗.

This already greatly restricts the choice of bases Σ. We will moreover need s∗-computability of the matrices

[(∥σν′∥
−1
V∗ σν′ , ∥σν∥

−1
V σν)H ]ν′,ν∈∇x , [(σν′ , σν)H ]ν′,ν∈∇x (4.2)

and their adjoints.
In the situation that A(t, y) is a linear integro-differential operator of order 2m on the spatial domain D, sufficient

conditions for s∗-computability of the matrices (4.2) were discussed in [7]. Here we are primarily interested in the case
that A(t, y) is given by (1.7), i.e. m = 1, which shall be therefore discussed in more detail. We further focus on the case that
D ⊂ Rd is a cube, i.e. D =

d
i=1(ai, bi) with ai < bi. In the case that D ⊂ Rd is, say, a bounded polyhedral domain with

plane sides, spline-wavelet constructions on sequences of nested triangulations with s∗-computable matrices (4.2) are also
available, with more involved constructions. In what follows, a(t, x, y) in (1.7) is not required to be separable as a function
D ∋ x → a(t, x, y). We thus assume that Σ =

d
i=1 Σi with wavelet bases Σi satisfying similar assumptions as for Θ. We

state these first in the case d = 1. For some rx ∈ N0 withm − 1 ≤ rx ≤ dx − 2, and d̃x ∈ N0, we assume that σν

(1) are local and piecewise polynomial of order dx,
(2) are globally C rx , specifically

rx+1
k=0 2−k|ν|

∥σ (k)ν ∥L∞(a1,b1) . 2
1
2 |ν|

(3) for |ν| ≥ 1 have the cancellation property of order d̃x, that is b1

a1
w(x)σν(x) dx

 . 2−|ν|

1
2 +k


∥w∥W k,∞(a1,b1) (4.3)

for all k ∈ {0, d̃x}, w ∈ W k,∞(a1, b1) ∩ H1
0 (a1, b1).

When d ≥ 1, we assume that these properties hold for each Σi, i = 1, . . . , d.
Piecewise polynomial (L2-orthonormal) wavelets on an interval satisfying these assumptions were constructed

in [19–21] (see also [22]), and used in e.g. [5] for the adaptive tensor product wavelet method for an elliptic problem. These
are constructions based on [19], where it was shown that given amultiresolution analysis (MRA) Vℓ ⊂ Vℓ+1 ⊂ L2(R), ℓ ∈ Z,
generated by finitely many compactly supported scaling functions, there exist q ∈ N0, m ∈ N and an orthogonal MRA
V̌ℓ ⊂ V̌ℓ+1 ⊂ L2(R), ℓ ∈ Z, generated by finitely many compactly supported orthogonal scaling functions with Vq ⊂ V̌0 ⊂

Vq+m. Moreover, an orthogonal MRA on a bounded interval can be derived, see [20, Theorem 4.4].
The Riesz bases Φ ⊂ X and Ψ ⊂ Y are then defined analogously to [6] by

Φ =

 ϑλ ⊗ σν
∥ϑλ∥

2
L2(I)∥σν∥

2
V + ∥ϑλ∥

2
H1(I)∥σν∥

2
V∗

; (λ, ν) ∈ ∇t × ∇x

 (4.4)

where we recall the normalization ∥ϑλ∥
2
L2(I) = 1 and

Ψ =


ϑλ ⊗ σν

∥ϑλ∥L2(I)∥σν∥V
, 0


; (λ, ν) ∈ ∇t × ∇x


∪ {(0, σν); ν ∈ ∇x} . (4.5)

5. Equivalent bi-infinite matrix equation

5.1. Derivation

Due to Parseval’s identity, Theorem 3.1 states that the synthesis operator

TP : ℓ2(Λ) → L2π (Γ ), (cµ)µ∈Λ →


µ∈Λ

cµPµ (5.1)
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is unitary. The property that Φ is a Riesz basis of X can be expressed as bounded invertibility of the synthesis operator

TΦ: ℓ2(Ξ) → X, (cι)ι∈Ξ →


ι∈Ξ

cιϕι. (5.2)

In particular, the synthesis operator of P ⊗ Φ = (Pµ ⊗ ϕι)(µ,ι)∈Λ⊗Ξ ,

TP⊗Φ = TP ⊗ TΦ: ℓ2(Λ× Ξ) → X = L2π (Γ ; X) (5.3)

is an isomorphism of Hilbert spaces, i.e. P ⊗ Φ is a Riesz basis of X. Similarly, since Ψ is a Riesz basis of Y indexed by Υ , the
products P ⊗ Ψ = (Pµ ⊗ ψη)(µ,η)∈Λ×Υ form a Riesz basis of Y = L2π (Γ ; Y ).

We reformulate (2.12) equivalently in sequence spaces using the above synthesis operators. Let

u := T−1
P⊗Φu ∈ ℓ2(Λ× Ξ), f := T ∗

P⊗Ψ f ∈ ℓ2(Λ× Υ ) (5.4)

with T ∗

P⊗Ψ denoting the synthesis operator associated with the tensor product Riesz basis P ⊗ Ψ and define the bi-infinite
matrix

B := T ∗

P⊗ΨBTP⊗Φ: ℓ2(Λ× Ξ) → ℓ2(Λ× Υ ), (5.5)

whose entries are indexed by countable index sets. Then (2.12) is equivalent to the bi-infinite scalar linear system

Bu = f . (5.6)

The solution u can be reconstructed from u = (uµι) as

u = TP⊗Φu =


(µ,ι)∈Λ×Ξ

uµιPµ ⊗ ϕι. (5.7)

5.2. Structure of the discrete operator

We separate the spatial and temporal discretization from that in the parameter y ∈ Γ . Here and in the following, we
restrict to the setting of Section 1.3, i.e. A(t, y) has the form (1.8) with affine dependence on y ∈ Γ .

We construct an approximation to the parabolic sesquilinear form B independent of the parameter y ∈ Γ ,

B̃(w, (v1, v2)) :=


I
⟨∂tw(t), v1(t)⟩ + Ã(t;w(t), v1(t)) dt + (w(0), v2)H , (5.8)

forw ∈ X and (v1, v2) ∈ Y , and interpret B̃ also as an operator B̃ ∈ L(X, Y ∗). Similarly, we interpret Am as a bounded linear
map from X to Y ∗. Then due to the series expansion (1.8),

B(w, (v1, v2)) =


Γ

B̃(w, (v1, v2))+

∞
m=1

ymAm(w, v1) dπ(y), (5.9)

forw ∈ X and (v1, v2) ∈ Y.
Let B̃ := T ∗

Ψ B̃TΦ and Am := T ∗
ΨAmTΦ. These are bounded linear maps from ℓ2(Ξ) to ℓ2(Υ ) and, as such, can be interpreted

as bi-infinite matrices.
To capture the dependence on the parameter sequence y ∈ Γ , we consider the representation of

Km: L2π (Γ ) → L2π (Γ ), v(y) → ymv(y) (5.10)

with respect to the polynomial basis P . Solving for the term ξPm
n−1 in (3.1), it follows that for all m ∈ N, Km := T ∗

PKmTP ∈

L(ℓ2(Λ)) has the form

(Kmc)µ = βm
µm+1cµ+ϵm + αm

µm
cµ + βm

µm
cµ−ϵm , µ ∈ Λ, (5.11)

for c = (cµ)µ∈Λ ∈ ℓ2(Λ), where cµ := 0 if µm < 0 for any m ∈ N, and ϵm denotes the Kronecker sequence (ϵm)n = δmn.
Also, let I be the identity on ℓ2(Λ).

Combining the above basis representations leads to

B = I ⊗ B̃ +

∞
m=1

Km ⊗ Am, (5.12)

with convergence in L(ℓ2(Λ× Ξ), ℓ2(Λ× Υ )), see [9, Proposition 2.3].
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As discussed in [7, Section 6], the matrix representation B̃ of the discrete deterministic parabolic operator B̃ has the form∥ϑλσν∥
−1
X ∥σν′1

∥
−1
V


(ϑ ′

λ, ϑλ′)L2(I)(σν, σν′1
)H +


I
Ã(t;ϑλ(t)σν, ϑλ′(t)σν′1) dt


∥ϑλσν∥

−1
X (ϑλ(0)σν, σν′2)H

 (5.13)

with column indices (λ, ν) ∈ ∇t ×∇x and row indices (λ′, ν ′

1, ν
′

2) ∈ ∇t ×∇x ×∇x. The matrix representations Am of Am are∥ϑλσν∥
−1
X ∥σν′1

∥
−1
V


I
Am(t;ϑλ(t)σν, ϑλ′(t)σν′1) dt

0

 , (5.14)

with the same indexation.

5.3. The discrete adjoint operator and the normal equations

Since B is not symmetric, we consider the discrete normal equations

B∗Bu = B∗f , (5.15)

where B∗ is the discrete adjoint operator

B∗
= T ∗

P⊗ΦB∗TP⊗Ψ : ℓ2(Λ× Υ ) → ℓ2(Λ× Ξ). (5.16)

Since B∗ is bijective, (5.15) is equivalent to (5.6).
The operator B∗ has the same tensor product structure as B, with B̃ and Am replaced by their respective adjoints. Since I

and Km are symmetric,

B∗
= I ⊗ B̃∗

+

∞
m=1

Km ⊗ A∗

m. (5.17)

The bi-infinite matrices B̃∗ and A∗
m are given by the transpositions of (5.13) and (5.14), respectively.

6. Adaptive Galerkin methods

6.1. Overview

Adaptive Galerkin discretization methods are set on the abstract level of coefficients with respect to a Riesz basis, where
a linear operator equation is recast as a bi-infinite linear system of the form (5.6). As such, these methods can be applied
in our setting, with the Riesz bases P ⊗ Φ and P ⊗ Ψ , provided that certain subroutines discussed below are available. To
keep the exposition general, we consider an arbitrary linear system Bu = f , and enumerate both index sets such that this
equation is set in ℓ2.

In [1,4], for elliptic problems, the bi-infinite linear system is approximated by a sequence of adaptively generated finite
sections, the solutions of which are Galerkin projections onto finite dimensional spaces. The refinement of the active set of
indices is governed by approximations of the discrete residuals. Sufficient accuracy in the computation of each residual is
shown in [1,4] to ensure a reduction in the error of the Galerkin solution on the refined set of active indices by a fixed factor,
independent of the support size of the ‘‘active’’ components of the operator section.

A different approach is followed in [2]. There, an iterative solver is applied directly to the full bi-infinite linear system.
Operations in each step are replaced by approximate counterparts with sufficient accuracy to ensure convergence of the
method. We note in passing that an a priori selection of stable space–time sparse trial and test spaces for space–time
Petrov–Galerkin formulations of parabolic evolution equations is also possible [23,24],whichwould lead to an a priori known
finite section of the bi-infinite linear system.

Although originally formulated for positive symmetric systems, both approaches extend to nonsymmetric linear
equations by solving the normal equations (5.15), as noted in [2]. This is developed explicitly for parabolic problems in [7].

The adaptive wavelet methods described above can be applied quite generically as black-box solvers, provided that the
application of the bi-infinite matrix B to any finitely supported vector can be approximated to any desired accuracy. This is
achieved by a routine

ApplyB[w, ϵ] → z (6.1)

which, for any ϵ > 0 and any finitely supported vector w, constructs a finitely supported vector z with ∥Bw − z∥ℓ2 ≤ ϵ.
The discrete operator B is called s∗-admissible for a given s∗ ∈ (0,∞] if, for all s ∈ (0, s∗), # supp z . ϵ−1/s

∥w∥
1/s
As

∞(ℓ
2)

and
the number of arithmetic operations and storage locations used by ApplyB[w, ϵ] is bounded by

ϵ−1/s
∥w∥

1/s
As

∞(ℓ
2)

+ # suppw + 1 (6.2)
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up to a fixed constant that is independent ofw. Here As
∞
(ℓ2) denotes the subspace of ℓ2 defined by the quasi-norm

∥v∥As
∞(ℓ

2) := sup
N∈N0

(N + 1)s∥v − PN(v)∥ℓ2 , (6.3)

where PN(v) is any best N-term approximation of v in ℓ2.
In the case of nonsymmetric problems, since we consider the normal equations (5.15), we also require a routine ApplyB∗

for approximating the application of the adjoint operator.
Similarly, we need to approximate the right hand side f to arbitrary precision by finitely supported vectors. We assume

that a routine RHSf [ϵ] is available which, for any ϵ > 0, constructs a finitely supported vector fϵ with ∥f − fϵ∥ℓ2 ≤ ϵ and

# supp fϵ ≤ inf{N ∈ N ; ∥f − PN(f )∥ℓ2 . ϵ} (6.4)
where . indicates an absolute constant which is independent of ϵ.

Theorem 6.1. In the case that B is symmetric positive definite and s∗-admissible, then for any ϵ > 0, the adaptive wavelet
methods from [1,2,4] construct an approximation uϵ of u with ∥u − uϵ∥ℓ2 ≤ ϵ. For u ∈ As

∞
(ℓ2) for any s > 0, # supp uϵ .

ϵ−1/s
∥u∥As

∞(ℓ
2). Provided s < s∗, the number of arithmetic operations and storage locations used to compute uϵ is bounded by

an affine function of ϵ−1/s
∥u∥As

∞(ℓ
2).

We refer to [1,2,4] for proofs of Theorem 6.1 for each of these adaptive solvers.

Remark 6.2. The estimate # supp uϵ . ϵ−1/s
∥u∥As

∞(ℓ
2) can be interpreted as follows: if ∥u − PN(u)∥ℓ2 . N−s, then

∥u∥As
∞(ℓ

2) is finite, and consequently ∥u− uϵ∥ℓ2 ≤ ϵ . (# supp uϵ)−s. Thus adaptive Galerkin methods recover the optimal
convergence rate in terms of the support size, albeit with a larger constant in the error estimate. In the case s < s∗, the same
estimate holds for the computational cost and, in this sense, the solvers have optimal complexity.

Remark 6.3. Replacing B by B∗B and f by B∗f , Theorem 6.1 applies to the normal equations for nonsymmetric systems.
Valid Apply and RHS routines are given by

ApplyB∗B[w, ϵ] := ApplyB∗ [ApplyB[w, ϵ/(2∥B∥)], ϵ/2] (6.5)

and

RHSB∗f [ϵ] := ApplyB∗ [RHSf [ϵ/(2∥B∥)], ϵ/2], (6.6)

where ∥B∥ denotes the operator norm of B. The product B∗B is s∗-admissible if both B and B∗ are s∗-admissible, and a slightly
weaker (but sufficient for the purposes of the present analysis) variant of (6.4) holds for RHSB∗f . We note that, in principle,
(6.4) can be satisfied by reducing the tolerances in (6.6) and appending a thresholding step, but the practical merit of this
procedure is questionable.

6.2. Approximate application of discrete operators

The construction of a routine ApplyB hinges on the ability to approximate B by sparse matrices. We call a bi-infinite
matrix B ∈ L(ℓ2)n-sparse if each column of B contains at most n nonzero entries. It is s∗-compressible for an s∗ ∈ (0,∞] if
there exists a sequence (Bj)j∈N in L(ℓ2) such that Bj is nj-sparse with (nj)j∈N ∈ NN strictly increasing and satisfying

sup
j∈N

nj+1

nj
< ∞ (6.7)

and such that for every s ∈ (0, s∗),

sup
j∈N

ns
j∥B − Bj∥ℓ2→ℓ2 < ∞. (6.8)

This last condition states that the sparse operators Bj converge to Bwith a rate of essentially s∗ with respect to nj.
By (6.7), the sequence (nj)j∈N grows at most geometrically. Consequently, for any r > 0, there is a j(r) such that nj(r) ≤ r

and supr>0 r s∥B − Bj(r)∥ < ∞ for all s ∈ (0, s∗). Here, we extend the sequence of approximations by B0 := 0 with n0 = 0.
In particular, we may assume without loss of generality that nj = j, as is done e.g. in [4,7].

In the definition of s∗-compressibility, nj is proportional to the cost of accessing one column of Bj. In order to capture
also the assembly cost, we introduce, following [3,4], a somewhat stronger notion of s∗-computability: a bi-infinite matrix
B ∈ L(ℓ2) is s∗-computable if it is s∗-compressible and if the number of arithmetic operations and storage locations used to
construct an arbitrary column of Bj is bounded by a multiple of nj for all j ∈ N.

Proposition 6.4. Any s∗-computable B ∈ L(ℓ2) is s∗-admissible.

Proposition 6.4 is proven by constructing a suitable routine ApplyB. This is done in [1]; see also [5,9] for a variant of this
methodwith quantitative improvements. All of these algorithms partition the argumentw in (6.1) according to themodulus
of its entries. Then approximations Bj with large j are used for the most significant entries ofw, and coarser approximations
suffice for smaller entries ofw.
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7. Approximations of deterministic operators

7.1. Compressibility of discrete parabolic operators

The wavelets in Section 4 were chosen to ensure that the deterministic operators appearing in the series expansions
(5.12) and (5.17) of B and B∗ are s∗-computable.

Proposition 7.1. For sufficiently smooth ã and am, m ∈ N, the bi-infinite matrices B̃, B̃∗, Am and A∗
m are s∗-computable with

s∗ = min(d̃t , d̃x).

A proof of Proposition 7.1 is given in [7, Section 8]; see also [6] for time-independent operators. We refer to [7] for
compressibility properties in more general settings, for example if D is not a product domain.

Proposition 7.1 implies that there is a sequence (B̃j)j∈N of bi-infinite matrices such that B̃j is n0,j-sparse with (n0,j)j∈N
increasing and satisfying (6.7), and

∥B̃ − B̃j∥ℓ2(Ξ)→ℓ2(Υ ) . n−s
0,j ∀s ∈ (0, s∗). (7.1)

Furthermore, the number of arithmetic operations and storage locations required to compute any column of B̃j is an affine
function of n0,j. We extend these sequences by B̃0 := 0 and n0,0 := 0.

Analogous properties hold for B̃∗, Am and A∗
m. We denote the sequences of sparse approximations by (B̃∗

j )j∈N0 , (Am,j)j∈N0

and (A∗

m,j)j∈N0 , and the corresponding sparsities by (n∗

0,j)j∈N0 , (nm,j)j∈N0 and (n
∗

m,j)j∈N0 , respectively. Although B̃∗

j may be the
adjoint of B̃j in some situations, as suggested by the notation, this is not assumed; similarly, A∗

m,j need not be the adjoint
of Am,j.

7.2. Numerical approximation of error bounds

In order to construct sparse approximations of B, we require explicit knowledge of the constants in the estimates (7.1)
and similar estimates for Am or, more precisely, we require numerical sequences (ẽm,j)j∈N0 , m ∈ N0, such that

∥B̃ − B̃j∥ℓ2(Ξ)→ℓ2(Υ ) ≤ ẽ0,j and ∥Am − Am,j∥ℓ2(Ξ)→ℓ2(Υ ) ≤ ẽm,j. (7.2)

Optimal values of ẽ0,j are given by the square roots of the spectral radii of the positive symmetric operators (B̃− B̃j)
∗(B̃− B̃j)

since

∥B̃ − B̃j∥
2
ℓ2(Ξ)→ℓ2(Υ )

= sup
∥v∥

ℓ2(Ξ)=1
|vH(B̃ − B̃j)

∗(B̃ − B̃j)v|, (7.3)

and similarly for ẽm,j. Following [9, Section 6],we approximate these bounds by apower iterationwith suitably approximated
matrix–vector multiplies.

The primary component of this power iteration is the repeated approximate application of the operators (B̃ − B̃j)
∗ and

B̃ − B̃j to finitely supported vectors. This is achieved using the sparse approximations B̃j+k − B̃j, k ∈ N, of B̃ − B̃j and
B̃∗

j+k − (B̃j)
∗ of (B̃ − B̃j)

∗ in routines

NApplyB−Bj [v,N] → z and NApply(B−Bj)∗ [w,N] → z (7.4)

similar to ApplyB from (6.1), but with a prescribed maximal support size # supp z ≤ N instead of a target accuracy ϵ. These
routines combine to

NApply(B−Bj)∗(B−Bj)[v,N] := NApply(B−Bj)∗ [NApplyB−Bj [v,N],N]. (7.5)

All vectors appearing within these routines are ensured to have support size not larger than N .
The approximate power iteration for the computation of ẽ0,j consists of a repeated application of NApply(B−Bj)∗(B−Bj) and

normalization of the resulting vector. The approximations of ẽ0,j are given by the scalar products

ẽ0,j ≈ ẽn0,j :=
vH
n vn+1

vH
n vn

, vn+1 := NApply(B−Bj)∗(B−Bj)[vn,N], (7.6)

where v0 is chosen randomly and N is fixed. We use analogous iterations to approximate ẽm,j as well as the bounds in

∥B̃∗
− B̃∗

j ∥ℓ2(Ξ)→ℓ2(Υ ) ≤ ẽ∗

0,j and ∥A∗

m − A∗

m,j∥ℓ2(Ξ)→ℓ2(Υ ) ≤ ẽ∗

m,j (7.7)

used to construct sparse approximations of B∗.
Convergence of a somewhat idealized variant of (7.6) is shown in [9, Theorem 6.3]. The analysis differs substantially from

the standard analysis of the power iteration for matrices since, in the present infinite-dimensional setting, no gap between
the largest and second-largest eigenvalues is assumed. We refer to [9] for further details.
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8. Approximations of discrete random parabolic operators

8.1. Sparse approximation of discrete random operators

In this section, we construct sparse approximations of B by truncating the series (5.12) and by replacing the remaining
bi-infinite matrices B̃ and Am by appropriate sparse approximations B̃j0 and Am,jm , as required in Section 6.

To this end, we assume that sequences (ẽm,j)j∈N0 are available for allm ∈ N0 such that (7.2) holds. These can be computed
numerically as described in Section 7.2 and [9, Section 6] or derived analytically as in [3,25]. By switching to a subsequence,
we assume without loss of generality that (ẽm,j)j∈N0 is nonincreasing for allm ∈ N0 and, if i ≥ j, then

−(ẽm,i+1 − ẽm,i)
nm,i+1 − nm,i

≤
−(ẽm,j+1 − ẽm,j)
nm,j+1 − nm,j

, (8.1)

where B̃j,0 is n0,j-sparse and Am,j is nm,j-sparse.
For all finitely supported sequences j := (jm)m∈N0 in N0, we define

Bj := I ⊗ B̃j0 +

∞
m=1

Km ⊗ Am,jm . (8.2)

Since j is finitely supported and since Am,0 = 0 for all m, the sum in (8.2) is finite, and no convergence issues arise. By the
triangle inequality, and after possibly adjusting the compression error bounds ẽm,j in (7.2) of the block operators

∥B − Bj∥ℓ2(Λ×Ξ)→ℓ2(Λ×Υ ) ≤

∞
m=0

ẽm,jm =: ẽj . (8.3)

By (5.11), Km is σm-sparse (see Section 6.2) with σm = 2 if the distribution πm is symmetric, and σm = 3 in general. Conse-
quently, Km ⊗ Am,j is σmnm,j-sparse. We set σ0 := 1 such that I ⊗ B̃j is σ0n0,j-sparse for all j ∈ N0. Then the total number of
nonzero elements in any column of Bj is at most

Nj :=

∞
m=0

σmnm,jm , (8.4)

and, assuming that entries of B̃j and Am,j can be computed in unit time, Nj is also a bound for the cost of constructing any
column of Bj .

We use a greedy algorithm to select a sequence (jk)k∈N0 , and define Bk := Bjk , which is an approximation of Bwith error
at most ẽk := ẽjk , and containing at most Nk := Njk nonzero elements per column.

As usual, the initial approximation is B0 = 0, with j0 := 0. Going from jk = (jk,m)m∈N0 to jk+1, the entry jk,m for which m
maximizes

−(ẽm,jk,m+1 − ẽm,jk,m)

σm(nm,jk,m+1 − nm,jk,m)
(8.5)

is incremented by one. If thism is not unique, one maximum is selected, e.g. the smallest m that maximizes (8.5).
In order to ensure optimality of this greedy algorithm,we assume that the sequence (ẽm,0)m∈N is in ℓ1 and σ−1

m n−1
m,1(ẽm,1−

ẽm,0) is nonincreasing inm. The following optimality property of the sparse approximations Bk is [9, Corollary 7.2].

Theorem 8.1. For all k ∈ N0, jk minimizes the error bound ẽj among all finitely supported sequences j in N0 with Nj ≤ Nk.
Furthermore, if ẽk ≠ 0, then jk minimizes Nj among all j with ẽj ≤ ẽk.

Remark 8.2. Since the structure of B∗ is identical to that of B, the discussion in this section, including Section 8.2 below,
applies verbatim to the adjoint operator B∗, with B̃ replaced by B̃∗ and Am replaced by A∗

m.

8.2. Compressibility and computability

In order to derive s∗-compressibility of B, we assume that the estimate (6.7) holds uniformly for all (nm,j)j∈N, i.e.

sup
m∈N0

sup
j∈N

nm,j+1

nm,j
< ∞. (8.6)

The following theorem is the first case of [9, Theorem 8.4]. All unspecified norms refer to operator norms between sequence
spaces ℓ2 for the appropriate index sets.
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Theorem 8.3. If (8.6) holds, ã and am, m ∈ N, are sufficiently smooth, and

∞
m=1


sup
j∈N

ns
m,j∥Am − Am,j∥ℓ2(Ξ)→ℓ2(Υ )

 1
s+1 < ∞ (8.7)

for all s ∈ (0, s̄), then B is s∗-compressible for s∗ = min(d̃t , d̃x, s̄) and (Bk)k∈N0 from Section 8.1 is a valid sequence of sparse
approximations, satisfying

N s
k∥B − Bk∥ ≤


sup
j∈N

ns
0,j∥B̃ − B̃j∥ℓ2(Ξ)→ℓ2(Υ )

 1
s+1 (8.8)

+

∞
m=1


sup
j∈N

ns
m,j∥Am − Am,j∥ℓ2(Ξ)→ℓ2(Υ )

 1
s+1

s+1

, (8.9)

for all s ∈ (0, s∗), where Bk is Nk-sparse.

Compressibility of B can also be obtained if (8.7) does not hold, as in the following theorem, which is the second case
of [9, Theorem 8.4].

Theorem 8.4. If (8.6) holds, ã and am, m ∈ N, are sufficiently smooth,

∞
m=1

∥Am∥

1
s+1
ℓ2(Ξ)→ℓ2(Υ )

< ∞ (8.10)

for all s ∈ (0, s̄0), and

sup
M∈N

M−τ
M

m=1


sup
j∈N

ns
m,j∥Am − Am,j∥ℓ2(Ξ)→ℓ2(Υ )

 1
s+1 < ∞ (8.11)

for all s ∈ (0, ŝ), then B is s∗-compressible for

s∗ :=
min(d̃t , d̃x, ŝ)

1 + τ/s̄0
(8.12)

and (Bk)k∈N0 from Section 8.1 is a valid sequence of sparse approximations.

Remark 8.5. A numerical algorithm for constructing an arbitrary column of Bk is provided in [9, Section 7.2]. It assumes that
either (jk) are precomputed, or the operatorsBk are accessed sequentially, such that only one step of the greedy optimization
needs to be performed the first time Bk is accessed. With this small caveat, s∗-computability, and thus s∗-admissibility, of B
follow from Theorems 8.3 and 8.4.

The above discussion carries over to show s∗-computability of B∗, and s∗-admissibility of B∗B follows as in Remark 6.3.
In particular, Theorem 6.1 applies, showing optimality of adaptive Galerkin discretizations based on tensor products of
Legendre polynomial chaos with wavelet bases in D applied to the parametric operator equation (5.15).

9. Conclusions

We have shown the applicability of the adaptive Galerkin method to abstract linear parabolic evolution equations where
the data is allowed to depend affinely on countably many parameters. To that end we reformulated the problem by means
of tensor products of Riesz bases on the parameter-space–time product domain equivalently as a bi-infinite matrix–vector
equation. In the stochastic parameter domain, generalized polynomial chaos bases are used, whereas in space and time
domain tensor products of spline wavelet Riesz bases of the corresponding Bochner spaces are employed. We have shown
that the bi-infinite matrix corresponding to the parametric problem is quasi-sparse if its non-parametric component blocks
are.We proved that this allows us to define a valid adaptivewavelet basedApply routinewhich, in turn, entails optimality of
adaptive Galerkin solvers in a tensorized Riesz basis. Presently, quasi-sparsity and nonlinear, i.e., bestN-term approximation
rates of (deterministic, linear) parabolic evolution equations are not well understood. However, conservative estimates on
asymptotic convergence rates of best N-term approximations can be derived from regularity results and convergence rates
for linear approximation schemes (see, e.g., [23]).
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