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a b s t r a c t

Padé approximants are rational functions, with a denominator which does not vanish at
zero, and whose series expansion match a given series as far as possible. These approxi-
mants are usually written under a rational form. In this paper, we will show how to write
them also under two different barycentric forms, and under a partial fraction form, de-
pending on free parameters. According to the choice of these parameters, Padé-type ap-
proximants can be obtained under a barycentric or a partial fraction form.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

This paper describes newmathematical expressions for Padé approximants, and some of their variants. The Padé approx-
imant [p/q]f of a given formal power series f is a rational function, with a numerator of degree at most p and a denominator
of degree at most q which does not vanish at zero, and whose power series expansion in ascending powers of the variable
matches the series f up to the term of degree p + q inclusively [1,2]. Thus, a Padé approximant can be understood as a
rational Hermite interpolant at zero, and it is usually written under the form of a rational fraction or as the convergent of a
certain continued fraction. On the other hand, a rational interpolant can be given under the form of a rational fraction, or as
the convergent of a continued fraction, or under a barycentric form.

In this paper, wewill show that a Padé approximant can also bewritten under (at least) two different barycentric rational
forms which depend on arbitrary parameters. Such an approximant will be called a barycentric Padé approximant (in short
bpa). According to the choice of these free parameters, Padé-type approximants are also obtained under this form and we
call them barycentric Padé-type approximant (in short bpta). Then, we will show how to write a Padé approximant under a
partial fraction form, called a partial fraction Padé approximant (in short pfpa). The case of partial Padé approximants [3],
where some poles and/or zeros are imposed, could be treated similarly.

2. Rational form

Let f be a formal power series

f (t) = c0 + c1t + c2t2 + · · · . (1)
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We consider the rational function

Rp,q(t) =

p
i=0

ait i

q
i=0

bit i
. (2)

If the bi’s are arbitrarily chosen (with b0 ≠ 0), and if the ai’s are computed by

a0 = c0b0
a1 = c1b0 + c0b1
...
ap = cpb0 + cp−1b1 + · · · + cp−qbq

 (3)

with the convention that ci = 0 for i < 0, then Rp,q is the Padé-type approximant of f [4], it is denoted by (p/q)f , and it holds

(p/q)f (t) − f (t) = O(tp+1).

This accuracy-through-order condition means that the first p + 1 coefficients of the power series expansion of (p/q)f in
ascending powers of the variable t match those of the series f .

Moreover, if the bi’s are taken as the solution of the system

0 = cp+1b0 + cpb1 + · · · + cp−q+1bq
...
0 = cp+qb0 + cp+q−1b1 + · · · + cpbq,

 (4)

with b0 = 1 (a rational function is defined up to a multiplying factor), then Rp,q is the Padé approximant of f [1,2], it is
denoted by [p/q]f , and it holds

[p/q]f (t) − f (t) = O(tp+q+1).

Thus, the first p + q + 1 coefficients of the series expansion of [p/q]f are identical to those of f . Moreover, we have

[p/q]f (t) =


tqfp−q(t) tq−1fp−q+1(t) · · · fp(t)
cp−q+1 cp−q+2 · · · cp+1

...
...

...
cp cp+1 · · · cp+q




tq tq−1
· · · 1

cp−q+1 cp−q+2 · · · cp+1
...

...
...

cp cp+1 · · · cp+q

 ,
with fn(t) = c0 + · · · + cntn, the nth partial sum of the series f (fn is identically zero for n < 0).

In the case of a partial Padé approximant, a part of its numerator and/or its denominator is arbitrarily chosen, and the
remaining part is taken so that its power series expansion matches f as far as possible [3].

3. Barycentric forms (bpa)

In this section, we consider rational functions written under two different barycentric forms.

Form 1: Rp,q(t) =

p
i=0

aipi−t

q
i=0

bizi−t

(5)

or

Form 2: Rp,q(t) =

p
i=0

ai
1−pit

q
i=0

bi
1−zit

, (6)

where thepi’s, thezi’s, thepi’s, and thezi’s are given points in the complex plane. We assume that all thepi’s are distinct,
and also all thezi’s, all thepi’s, and all thezi’s.

Obviously, the forms (5) and (6) can be deduced one from each other by settingai = ai/pi,bi = bi/zi,pi = 1/pi, andzi = 1/zi, for all points different from zero. In the sequel, when it is not necessary to distinguish between the two forms and
when it is possible to treat them simultaneously, any of them will be simply denoted by Rp,q, and the parameters by ai, bi,
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pi, and zi respectively. It must be noticed that, since a rational function is determined apart a common multiplying factor
in its numerator and its denominator, there are only p + q + 1 independent variables among the ai’s and the bi’s, and not
p + q + 2.

In both cases, we want to determine the coefficients ai and bi such that

Rp,q(t) − f (t) = O(tp+q+1). (7)

Due to this property, and although Rp,q is not always identical to the Padé approximant [p/q]f of the series f as we will see
below, such a rational function will be called a barycentric Padé approximant and denoted bpa.

Before explaining how to compute the coefficients of such an approximant, let us begin by some important remarks:

1. It is easy to see that, for (5), thepi’s are poles ofRp,q and thezi’s are zeros of it while, for (6), it is the 1/pi’s and the 1/zi’s
which play these roles. Therefore, if some poles and zeros of f are known, they can be introduced into the construction
of the approximant as in the case of partial Padé approximants [3]. Obviously, when some of these poles and zeros (or
all of them) are fictitious, they must be chosen outside the domain of the complex plane where a good approximation
is wanted. For the form (5), we will assume that ∀i,pi ≠ 0,zi ≠ 0. The reason for this condition will be clearly seen in
Section 3.1.1. If, in (6), somepi’s and/or somezi’s are zero, then the degree of the numerator and/or the degree of the
denominator reduces accordingly.

2. After reducing the sum in the numerator of (5) to its common denominator and also the sum in the denominator,Rp,q
becomes

Rp,q(t) =

Np(t)
q

i=0
(zi − t)

Dq(t)
p

i=0
(pi − t)

,

whereNp is a polynomial of degree p andDq a polynomial of degree q.
If ∀i, pi ≠ zi, thenRp,q has a numerator and a denominator both of degree p + q + 1 at most. Thus, the order of

approximation ofRp,q seems to be one less than the order of approximation of the Padé-type approximant with the same
degrees [4]. However, the ratioNp(t)/Dq(t) is determined apart a commonmultiplying factor inNp andDq and, thus,Rp,q
is, in fact, the partial Padé approximant of f [3] with thepi’s and thezi’s as poles and zeros respectively.

Obviously, some (or all) of thepi’s and thezi’s can be poles and zeros of f if they are known. Otherwise, they are ficti-
tious as explained above, but they can be selected so thatRp,q possesses other interesting properties such as, for example,
the preservation of as many moments of f as possible. However, they cannot be chosen after theai’s and thebi’s have
been computed since, as we will see below, these coefficients depend on them.

If some of thepi’s coincide with some of thezi’s, then a cancellation occurs and it lowers the degrees accordingly. If,
when p < q,pi = zi for i = 0, . . . , p, the product in the denominator disappears and the product in the numerator
reduces to

q
i=p+1(zi − t). Thuszp+1, . . . ,zq are zeros ofRp,q. When q < p andpi =zi for i = 0, . . . , q, it is the product

in the numerator which disappears and the product in the denominator reduces to
p

i=q+1(pi − t). Thuspq+1, . . . ,pp are
poles ofRp,q.

If q = 0,Rp,0 becomes the Padé-type approximant (p/p + 1)f of the series f .
Similar remarks hold for (6).

3. For both forms, ∀i, pi = zi and p = q, then Rp,p has a numerator and a denominator both of degree p at most. Thus, thanks
to the condition (7), Rp,p is the usual Padé approximant [p/p]f of f , and it is such that Rp,p(t) − f (t) = O(t2p+1). Due to
its uniqueness, this approximant is, in theory, independent of the choice of the pi’s. However, in practice, the choice of
the pi’s can influence the stability of the approximant, an important issue yet to be studied.

Barycentric Padé approximants (which, in this case, are true Padé approximants) with arbitrary degrees in the nu-
merator and in the denominator can be constructed as follows. Let us write f as

f (t) = c0 + · · · + cn−1tn−1
+ tnf n(t) with f n(t) = cn + cn+1t + · · · .

Let Rp,p(t) be the barycentric Padé approximant of the series f n constructed as above with ∀i, pi = zi. Thus, it is the
unique Padé approximant [p/p]f n of f n, and the approximant

Rn+p,p(t) = c0 + · · · + cn−1tn−1
+ tnRp,p(t)

satisfies

Rn+p,p(t) − f (t) = O(tn+2p+1).

Thus it is identical to the Padé approximant [n + p/p]f independently of the choice of the pi’s. Similarly, write f as

f (t) = t−nf −n(t) with f −n(t) = 0 + 0t + · · · + 0tn−1
+ c0tn + c1tn+1

+ · · · .
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The approximant

Rp,p+n(t) = t−nRp+n,p+n(t),

where Rp+n,p+n is the barycentric Padé approximant of the series f −n, satisfies

Rp,n+p(t) − f (t) = O(tn+2p+1).

Thus it is identical to the Padé approximant [p/n + p]f independently of the choice of the pi’s.
4. Let us remind that if, in (5), p = q, ∀i, pi = zi andai = wif (pi),bi = wi ≠ 0, thenRp,p(pi) = f (pi) independently of

the choice of the wi [5]. Thus, the wi’s can be chosen so that, in addition,Rp,p matches the series f as far as possible as
proposed in [6].

3.1. Computation of the coefficients

Since the accuracy-through-order condition (7) contains p + q + 1 relations while Rp,q has p + q + 2 coefficients to be
determined, an additional condition needs to be imposed. It is the so-called normalization condition. Because Rp,q approxi-
mates f around zero, its denominator should not vanish at this point. Thus, since a rational function is determined apart a
commonmultiplying factor in its numerator and its denominator, it is convenient to choose the normalization condition for
(5) and (6) as

q
i=0

bizi = 1 for (5), and
q

i=0

bi = 1 for (6). (8)

3.1.1. Form 1
For the form (5), having chosen thepi’s and thezi’s, the accuracy-through-order condition (7) can be written

p
i=0

ai/pi
1 − t/pi = (c0 + c1t + c2t2 + · · ·)

q
i=0

bi/zi
1 − t/zi .

But, we have 1/(1 − t/pi) = 1 + t/pi + t2/p2i + · · ·, and a similar expansion for 1/(1 − t/zi). Thus, after replacement, the
preceding relation becomes

p
i=0

aipi

1 +

tpi +
t2p2i + · · ·


= (c0 + c1t + c2t2 + · · ·)

q
i=0

bizi

1 +

tzi +
t2z2i + · · ·


.

Identifying the coefficients of the identical powers of t in both sides, and taking into account the normalization condition
lead to the system of equations for computing the coefficientsai andbi

q
i=0

bizi = 1

p
i=0

aipk+1
i

−

q
i=0

bi k−1
j=0

cjzk−j+1
i

= ck, k = 0, . . . , p + q.

 (9)

Obviously, the sum on j is empty for k = 0.
Thus, the coefficients of the series expansion ofRp,q(t) =d0 +d1t +d2t2 + · · · are given bydk = ck, k = 0, . . . , p + q,

dk =

p
i=0

aipk+1
i

−

q
i=0

bi k−1
j=0

djzk−j+1
i

, k = p + q + 1, p + q + 2, . . . .

3.1.2. Form 2
For the form (6), the condition (7) gives

p
i=0

ai(1 +pit +p2i t2 + · · ·) = (c0 + c1t + c2t2 + · · ·)

q
i=0

bi(1 +zit +z2i t2 + · · ·).
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Identifying the coefficients of the identical powers of t in both sides, and taking into account the normalization condition
lead to the system of equations for determining the coefficientsai andbi (the sum on j is empty for k = 0)

q
i=0

bi = 1

p
i=0

aipki −

q
i=0

bi k−1
j=0

cjzk−j
i = ck, k = 0, . . . , p + q.

 (10)

The coefficients of the series expansion ofRp,q(t) =d0 +d1t +d2t2 + · · · are given bydk = ck, k = 0, . . . , p + q,

dk =

p
i=0

aipki −

q
i=0

bi k−1
j=0

djzk−j
i , k = p + q + 1, p + q + 2, . . . .

3.2. Barycentric Padé-type approximants (bpta)

Consider again the rational functions (5) and (6) and assume now that the coefficients bi in their respective denominators
are arbitrarily chosen. Then, the coefficients of their numerators can be computed by solving the system (11)

p
i=0

aipk+1
i

=

q
i=0

bi k−1
j=0

cjzk−j+1
i

, k = 0, . . . , p (11)

for (5), or the system (12) for (6)

p
i=0

aipki =

q
i=0

bi k−1
j=0

cjzk−j
i , k = 0, . . . , p. (12)

In both cases, the rational function Rp,q which is obtained satisfies

Rp,q(t) − f (t) = O(tp+1),

and, thanks to this property, it is called a barycentric Padé-type approximant (see [4]) and denoted bpta.
Similarly, a part of the numerator and/or a part of the denominator can be fixed thus leading to a barycentric partial

Padé-type approximant in the style of [3].
The bi’s could be chosen so that Rp,q satisfies some additional properties as explained above.

4. Partial fraction form (pfpa)

Let us consider now the rational function

Rk,k+1(t) =

k
i=0

ai
1 − pit

. (13)

It has a denominator of degree k + 1 and a numerator of degree k. We want to compute the ai’s and the pi’s such that this
rational function be identical to the Padé approximant [k/k+1]f of the series f . Such an approximant will be called a partial
fraction Padé approximant and denoted pfpa. It can be obtained by a slight variation of a method due to the French math-
ematician and hydraulics engineer Gaspard Clair François Marie Riche, Baron de Prony (Chamelet, 22 July 1755—Asnières-
sur-Seine, 29 July 1839) for interpolation by a sum of exponential functions [7]. This method is used in signal analysis and
recovery (see, for example, [8,9]). Applied to our case, this variant is as follows (see, for example, [10, pp. 141–142]).

We want to have
k

i=0

ai
1 − pit

=

k
i=0

ai(1 + pit + p2i t
2
+ · · ·) = c0 + c1t + c2t2 + · · · ,

which leads, by identification of the powers of t on both sides, to

k
i=0

aip
j
i = cj, j = 0, . . . , 2k + 1. (14)
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The denominator of the rational function (13) is
Q (t) = (1 − p0t) · · · (1 − pkt) = b0 + b1t + · · · + bk+1tk+1,

where b0 = 1. Let us first compute its coefficients. Multiply the first equation in (14) (that is the equation for j = 0) by b0, the
second one (that is corresponding to j = 1) by b1, and so on up to the (k+ 2)th equation (that is the equation for j = k+ 1)
by bk+1, and sum them up. Begin again the same process starting from the second equation in (14) (that is for j = 1) which is
multiplied by b0, multiply the third equation by b1, and so on up to the (k+3)th equation (that is the equation for j = k+2)
by bk+1, and sum them up. Continue the process until all equations in (14) have been used. We finally obtain

k+1
j=0

bjcj+n =

k+1
j=0

bj
k

i=0

aip
j+n
i , n = 0, . . . , k,

which can be written as
k+1
j=0

bjcj+n =

k
i=0

aipni
k+1
j=0

bjp
j
i =

k
i=0

aipni Q (pi) = 0, n = 0, . . . , k.

Since b0 = 1, the other coefficients b1, . . . , bk+1 of the polynomial Q are solution of the linear system
k+1
j=1

bjcj+n = −cn, n = 0, . . . , k. (15)

It must be noticed that, for obtaining the system giving the coefficients of the denominator of the Padé approximant, the
numbering of the bi’s has to be reversed in this system. After solving (15), the zeros p0, . . . , pk of Q can be computed (for ex-
ample, by the QR algorithm as the eigenvalues of the companion matrix of the coefficients of the polynomial Q ) and, finally,
a0, . . . , ak are obtained by solving the linear system consisting in the first k + 1 equations in (14). Notice that this system
is singular if the pi’s are not distinct and, in this case, [k/k + 1]f cannot be written under the form (13) but, possibly, under
a partial fraction form involving powers in its denominator. This case arises if the denominator of [k/k + 1]f has multiple
zeros. It is easy to see that the system (15) is identical to the system (4) when p = k and q = k + 1, and after reversing the
numbering of its coefficients. There exist several procedures for improving the numerical stability of Prony’s method [11],
and it is even possible to avoid the computation of the coefficients of Q [12].

Let c be the linear functional on the vector space of polynomials defined by
c(xi) = ci, i = 0, 1, . . . .

Then, the system (15) can be written
c(xnQ (x)) = 0, n = 0, . . . , k.

Thus, Q is the polynomial of degree k + 1 belonging to the family of formal orthogonal polynomials with respect to c. Such
polynomials, introduced by Wynn [13], play an important role in the algebraic and in the analytic theory of Padé approx-
imation [4,2,14]. Via formal orthogonal polynomials, Padé approximants are also related to formal Gaussian quadrature
procedures [15], as first showed by Zinn-Justin in the case of Stieltjes series [16]. An interesting reference on the connection
between these topics is [17].

Obviously, if the pi’s are all distincts, then ai = −piP(1/pi)/Q ′(1/pi) where P is the numerator of [k/k + 1]f .
If the pi’s are arbitrary distinct points and if the ai’s are solutions of the first k + 1 equations in (14), then Rk,k+1 is only a

Padé-type approximant of f . In this case, the pi’s could be chosen so that Rk,k+1 satisfies some additional properties.
Partial fraction Padé approximants can also be written as

k
i=0 ai/(pi − t), and treated similarly. Analogous forms can be

derived for Partial Padé approximants [3].

4.1. Numerical examples

Let us now give some numerical examples showing the interest of the barycentric forms. Both forms give similar results
as expected.

4.1.1. Example 1
We consider the following function, and its series expansion

f (t) =
tan(ωt)

ωt
= 1 +

1
3
ω2t2 +

2
15

ω4t4 +
17
315

ω6t6 +
62

2835
ω8t8 + · · · .

This function has poles at odd multiples of π/(2ω), and zeros at odd multiples of π/ω, except at 0.
With ω = 4, p = q = 4 and taking for thepi’s ±π/(2ω), ±3π/(2ω), 5π/(2ω) and for thezi’s ±π/ω, ±3π/ω, 5π/ω,

which are the five first poles and zeros of f respectively, we obtain the results of Fig. 1.
Adding a uniformly distributed randomperturbation between [−0.0001, +0.0001] to the ci’s leads to the results of Fig. 2.

For t ∈ [−1.5, +1.5], the error of the true Padé approximant is in the interval [3.5528 × 10−5, 2.8663 × 104
], and for the

barycentric Padé approximant computed either by the system (9) (form 1) or by the system (10) (form 2) it belongs to
[4.8921 × 10−8, 1.8136 × 103

].
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Fig. 1. Error of Padé (solid) and barycentric Padé (dashed) approximants for tan(4t)/(4t).

Fig. 2. Error of Padé (solid) and barycentric Padé (dashed) approximants for tan(4t)/(4t) with perturbed coefficients.

Fig. 3. Error of Padé (solid) and barycentric Padé (dashed) approximants for log(1 + t)/t . pi ∈ [−10, −1], zi ∈ [−10, −2].
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Fig. 4. Error of Padé (solid) and barycentric Padé (dashed) approximants for log(1 + t)/t . pi ∈ [2, 5], zi ∈ [−3, −2].

4.1.2. Example 2
We consider the series

f (t) =
log(1 + t)

t
= 1 −

t
2

+
t2

3
−

t3

4
+ · · ·

which converges in the unit disk and on the unit circle except at the point −1 since there is a cut from −1 to −∞. For p =

q = 4, the pi’s equidistant in [−10, −1] and the zi’s equidistant in [−10, −2], we obtain the results of Fig. 3. The numerical
results highly depend on these choices as can be seen by comparing Fig. 3, corresponding to pi ∈ [−10, −1], zi ∈ [−10, −2],
and Fig. 4, for which pi ∈ [2, 5], zi ∈ [−3, −2].

5. Conclusion

This paper is an addition to the vast literature on Padé approximation, and is only an introduction to these barycentric
and partial fraction forms in order to show how to compute their coefficients. Their main features are discussed and some
numerical experiments show the interest of these new representations. However, the main problem which remains to be
studied is the influence of the choice of the free parameters involved in their construction, a choice related to the important
issues of their robustness [18] and their stability [19].
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