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a b s t r a c t

Wepresent an interior pointmethod for nonlinear programming in this paper. Thismethod
follows Byrd and Omojokun’s idea of step decomposition, which splits the trial step into a
normal step and a tangential step. The method employs a new idea of quasi-tangential
subproblem, which is used to generate a tangential step that does not lie strictly on the
tangent space of the constraints. Quasi-tangential subproblem is finally formulated into an
unconstrained quadratic problem by penalizing the constraints. This method is different
and maybe simpler than similar ideas, for example, the relaxed tangential step in trust
funnel methods (Gould and Toint, 2010; Curtis, et al., 2017). Also, our method does not
need to compute a base of the null space. A line search trust-funnel-like strategy is used
to globalize the algorithm. Global convergence theorem is presented and applications to
mathematical programs with equilibrium constraints are given.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

In this paper, we describe and analyze an interior point method for nonlinear constrained optimization problem

min f (x)

s.t. c(x) = 0,

x ≥ 0,

(1)

where f : Rn
→ R, c : Rn

→ Rm are smooth functions. Clearly, problems with general nonlinear inequality constraints can
be equivalently reformulated into this form by using slack variables.

Interior point methods are efficient in treating inequality constraints. They have been intensively studied in the last
three decades; see [1–5]. The classical interior point strategy obtains a solution by approximately solving a series of barrier
problems of the form

min ϕµ(x) def
= f (x) − µ

n∑
i=1

ln x(i)

s.t. c(x) = 0,

(2)
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where µ is a barrier parameter which is decreasing and converges to 0. For this solution, some algorithms use Newton (or
quasi-Newton) methods [6,7] while some involve SQP (or trust-region) mechanisms. The Newton-like methods get search
direction from solving a Newton equation of the perturbed optimality system. Plenty of researches on methods following
this algorithmic philosophy have proven their robustness and efficiency [6–9]. Also, some SQP or trust-region based interior
point methods have been proposed, many of which have provided promising numerical results [2,4,10–12].

Of all the methods, the step-decomposition approaches, which integrate ideas of interior point methods and Byrd–
Omojokun’s trust-region idea [13,14], have got plenty of attentions because of the always consistent subproblems and the
capacity of infeasibility detection [12]. Our approach follows this framework with a major character that it employs a quasi-
tangential subproblemwhich generates a step not strictly lying on the null space of∇cTk . The key point of the quasi-tangential
subproblem is to convert the tangential subproblem into an unconstrained quadratic programming by penalizing the null
space constraints. A quasi-tangential step satisfying some necessary conditions is obtained if choosing sufficiently small
penalty factor. This strategy also circumvents the cost of computing a base for the null space, which is important in solving
tangential subproblem in Byrd–Omojokun-like algorithms.

The idea of quasi-tangential subproblem has some similarity with some methods. Some methods with inexact step
computation, in interior points, trust-region or SQP scheme, adopt similar ideas. Curtis et al. [4] used an inexact Newton
technique in their interior point method where an inexact tangential step is generated from an inexact Newton equation
for the tangential subproblem. Heinkenschloss and Ridzal [15] obtained inexact tangential steps by computing approximate
projections of vectors onto the tangent space of the linearized constraints.

A more similar idea is the relaxed tangential step, which was first introduced by Gould and Toint in [16]. In [16], the
authors specified conditions that a relaxed tangential step should satisfy. Recently, Curtis, Gould, Robinson and Toint [17]
generalized this concept and defined the concepts of relaxed SQP tangential step and very relaxed SQP tangential step in
the context of interior point trust funnel algorithm for nonlinear optimization. To achieve the very relaxed (or very relaxed)
tangential step, a complex trust-region strategy is used to control the size of normal and tangential steps. Themain difference
between ourmethod and the relaxed tangential stepmethod is that ourmethod controls the degree of violation of null space
constraints directly, while relaxed tangential step controls the size of tangential step by a trust-region.

Another character of our algorithm is that we use a trust-funnel-like strategy to balance the improvements on feasibility
and optimality. Trust funnelmethodwas introduced by Gould and Toint in [16] and extended by Curtis et al. [17]. And similar
ideas can be found in [18–22] etc. Our ideas mainly differ from these algorithms in the way of computing trial steps and the
switch conditions between so called f -iteration and h-iteration. And themechanism of ourmethod seems simpler than these
methods.

The balance of this paper is organized as follows. In the next section, we describe the design of the algorithm in detail.
In Section 3, we show that the proposed algorithm is well-defined while the global convergence is shown in Section 4. In
Section 5, we report preliminary numerical results. Finally, some further remark is given in Section 6.

Notations:We use ∥ · ∥ to denote the Euclidean norm ∥ · ∥2. Subscript k refers to iteration indices and superscript (i) is the
ith component of a vector.

2. Algorithm description

We motivate the main algorithm in this section. We first introduce the main framework of primal–dual interior point
methods, then deduce the method with quasi-tangential subproblem from some ideas of trust-region methods.

2.1. The primal–dual barrier method

The Karush–Kuhn–Tucker (KKT) conditions of the barrier problem (2) cause the following nonlinear system⎛⎝∇f (x) + ∇c(x)λ− z
−µX−1e + z

c(x)

⎞⎠ = 0 (3)

where λ ∈ Rm and 0 ≤ z ∈ Rn are Lagrangian multipliers and X = diag(x1, x2, . . . , xn). Multiplying the second row of (3) by
X , we obtain the system(

∇f (x) + ∇c(x)λ− z
Xz − µe

c(x)

)
= 0. (4)

This may be viewed as a perturbed KKT system for the original problem (1). The optimality error for the barrier problem is
defined, based on (4) as [9]

Eµ(x, λ, z); =

{
∥∇f (x) + ∇c(x)λ− z∥

sd
,
∥Xz − µe∥

sc
, ∥c(x)∥

}
with scaling parameters sd, sc ≥ 1 defined as

sd = max
{
smax,

∥λ∥1 + ∥z∥1

m + n

}
/smax, sc = max

{
smax,

∥z∥1

n

}
/smax,
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where smax > 1. Correspondingly, we use E0(x, λ, z) to measure the optimality error for the original problem (1). A typical
algorithmic framework of barrier methods for (1) is as follows.

ALGORITHM 1: OUT LOOP

Step 0 Choose an initial value for the barrier parameter µ0 > 0, and select the parameter κϵ > 0, and the stop
tolerance ϵ. Choose the starting point x0, λ0, z0. Set j := 0.

Step 1 If E0(xj, λj, zj) ≤ ϵ, stop.

Step 2 Apply an SQP method, starting from xj, to find an approximate solution xj+1 for the barrier problem, with
Lagrange multipliers λj+1, zj+1 satisfying Eµj (xj+1, λj+1, zj+1) ≤ κϵµj.

Step 3 Choose µj+1 ∈ (0, µj), set j := j + 1 and go to Step 1.

Remark. To achieve fast local convergence algorithm, the barrier parameter µ needs to be updated carefully [1,6,23]. We
will follow the approach suggested by Byrd, Liu and Nocedal [23] and will specify the details in Section 5.

The primarywork of Algorithm 1 lies clearly in Step 2, where an approximate solution of (2) is found. Primal–dual interior
pointmethods apply Newton’smethod to the perturbed KKT system (4) andmodify step-size so that the inequality (x, z) ≥ 0
is satisfied strictly. A primal–dual linear system is given as⎛⎝ H ∇c(x) −I

Z 0 X
∇c(x)T 0 0

⎞⎠(dx
dλ
dz

)
= −

(
∇f (x) + ∇c(x)λ− z

Xz − µe
c(x)

)
,

where H is the Hessian of the Lagrangian function and Z = diag(z1, . . . , zn). Eliminating dz by

dz = −z + µX−1e − X−1Zdx, (5)

and defining λ+
= λ+ dλ, we have the iteration(

H + X−1Z ∇c(x)
∇c(x)T 0

)(
dx
λ+

)
= −

(
∇ϕµ(x)
c(x)

)
.

It is easy to see that the step generated by this system coincides with the solution of the following primal–dual QP
subproblem

min ∇ϕµ(x)Td +
1
2
dT W̃d

s.t. c(x) + ∇c(x)Td = 0,
(6)

where W̃ = H + X−1Z . Step computation of our algorithm is based on this model.

2.2. Normal subproblem and quasi-tangential subproblem

A trust-region constraint

∥d∥ ≤ ∆ (7)

is always introduced in (6) so as to obtain global convergence and to allow for the case where W̃ is not positive definite
on the null space of ∇c(x)T . It is well known [24] that (6) with (7) can be inconsistent when the trust-region ∆ is so small
that even the shortest step d that satisfies the constraints in (6) is excluded by the trust-region. One of the common used
strategies to make the constraints consistent is the step decomposition method of Byrd [13] and Omojokum [14] in which
the total step of the algorithm is split into normal and tangential steps. The normal step v is a move toward the satisfaction
of the constraints, and is defined as the solution of the normal subproblem

min
1
2
∥c(x) + ∇c(x)Tv∥2

s.t. ∥v∥ ≤ ξ∆,

(8)
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with ξ ∈ (0, 1). The tangential step t aims to reduce ϕµ(x) on the null space of ∇c(x)T , and is generated by solving the
tangential subproblem

min
t

(∇ϕµ(x) + W̃v)T t +
1
2
tT W̃ t

s.t. ∇c(x)T t = 0,

∥v + t∥ ≤ ∆.

Note that (8) is an trust-region model for the nonlinear least square problem

min
1
2
h(x)2,

where

h(x) = ∥c(x)∥.

As a classical but still popular method for this problem, Levenberg–Marquardt methods [25–27] compute a search direction
by solving the following linear system

(∇ck∇cTk + ηkI)v = −∇ckck, (9)

where ηk is a positive parameter. Sometimes it is considered to be the progenitor of the trust-region approach for general
unconstrained optimization [28]. The following lemma from Nocedal and Wright [28] shows connection between the
solutions of (8) and (9).

Lemma 2.1. The vector vLMk is a solution of the trust-region subproblem (8) if and only if vLMk is feasible and there is a scalar
η > 0 such that

(∇ck∇cTk + ηI)vLMk = −∇ckck,
η(∆− ∥vLMk ∥) = 0.

Levenberg–Marquardtmethod is globalized by a line search strategy,which is less costly in computation than trust-region
method. Furthermore, researchers have shown that if ηk = ∥ck∥δ , δ ∈ [1, 2], fast local convergence can be achieved without
nonsingularity assumption, see Yamashita and Fukushima [29], Fan and Yuan [30], Zhang [31], Kimiaei [32] etc. These facts
motivate us to compute the normal step by the following hybrid method:

vk =

{
argmin ∥ck + ∇cTk v∥

2
+ ∥ck∥δ∥v∥2, if ∇ck is rank deficient,

argmin ∥ck + ∇cTk v∥
2, otherwise,

(10)

where δ ∈ (1, 2) is a fixed constant.
In tangential subproblem, the tangential constraint ∇c(x)T t = 0 is used to prevent t from jeopardizing the infeasibility

reduction that normal step vk just obtains. We note that this effect can be achieved by only requiring

∥∇cTk t∥ ≤ ξk (11)

for an appropriate positive scalar ξk. Similar observation was made by Gould and Toint in [16]. On the other hand, it is quite
likely that the concession on linearized feasibility that (11) makes can lead to a considerable improvement in objective value
over a reasonable step. However, replacing ∇cTk t = 0 by (11) will increase the difficulty of solving tangential subproblem.
But this difficulty can be easily circumvented by adding the item 1

2νk
tT∇ck∇cTk t to the quadratic objective function where

νk > 0 acts as a penalty factor. Hereby, we get the quasi-tangential subproblem

min
t

(∇ϕµk + W̃kvk)T t +
1
2
tT
(
W̃k +

1
νk

∇ck∇cTk + ζkI
)
t. (12)

where ζk ≥ 0 is a regularization parameter to make the matrix (W̃k +
1
νk

∇ck∇cTk + ζkI) sufficiently positive definite.

2.3. Trust-funnel-like approach for the barrier problem

Weuse a trust-funnel-like [16,21] line searchmethod for the approximate solution of the barrier problem (2)with a given
barrier parameter µ = µj. Given the iterate xk and the corresponding Lagrange multiplier λk, zk, a trust-funnel-like method
for (2) pursuits the solution iteratively in a progressively stricter trust funnel defined by

h(x) ≤ hmax
k ,

where and hmax
k is a non-increasing limit on infeasibility.

Nowwe specify the choices of νk. First, the parameter νk should be a positive scalar that ensures the positive definiteness
of the symmetric matrix W̃k +

1
νk

∇ck∇cTk . If this positive definiteness is not satisfied, one can regularized it by term ζkI
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such that

dT (W̃k +
1
νk

∇ck∇cTk + ζkI)d ≥ b1∥d∥2 (13)

for any d ∈ Rn with b1 > 0. Second, νk controls how inexactly that the quasi-tangential step tk, which solves (12), lies on the
null space of ∇cTk . If

− (∇ϕµk )
T (vk + tk) ≥ σ1h

σ2
k , (14)

where σ1, σ2 are positive constants, then tk should satisfy

∥∇cTk tk∥ ≤ κ1(hmax
k − ∥ck + ∇cTk vk∥), (15)

where κ1 ∈ (0, 1). Otherwise, tk is required to satisfy

∥∇cTk tk∥ ≤ κ2(hk − ∥ck + ∇cTk vk∥), (16)

where κ2 ∈ (0, 1). As we will show later, such a νk is guaranteed unless an infeasible stationary point, which is a stationary
point of the problem

min
x≥0

1
2
h(x)2 (17)

is found. This situation always implies that the problem is locally infeasible. Then, the algorithm stops and reports infeasible
stationarity.

We describe algorithm for updating νk in Algorithm 2.

ALOGRITHM 2: UPDATING νk

Step 0 Set νk := max{min{νk−1, hk}, ν} and ζk = 0, where ν is a preset positive parameter.

Step 1 If W̃k +
1
νk

∇ck∇cTk + ζkI is not positive definite, then choose ζk > 0 such that (13) holds and
set ν := ν/2.

Step 2 Compute tk.

Step 3 If tk satisfies (14), then stop if (15) is also satisfied. Otherwise, stop if (16) is satisfied.

Step 4 Set νk := νk/2, go to Step 2.

Now we have got the search direction dk = vk + tk. The multiplier vector corresponding to the next iterate is estimated
by

λk+1 =
1
νk

∇cTk tk. (18)

The line search along dk is performed by first determining αmax
k which is the maximal α satisfying the fraction-to-the-

boundary rule

x(i)k + αd(i)k ≥ (1 − τ )x(i)k , i = 1, 2, . . . , n (19)

where τ ∈ (0, 1) is a parameter close to 1 with respect to the iteration j of the out loop.
If (14) holds, then we call the kth iteration an f -iteration and xk an f−iterate because it is quite reasonable to expect

considerable reduction on objective function in this case. Hence, we require the step-size α ∈ (0, αmax
k ] to satisfy

ϕ
µ

k − ϕµ(xk + αdk) ≥ −ρα(∇ϕµk )
Tdk. (20)

The requirement for the feasibility on the new iterate is relatively rough. We require

h(xk + αdk) ≤ hmax
k . (21)

In the casewhere (14) fails, which indicates that the infeasibility is significantwhile sufficient reduction of objective function
is not ensured, we call the kth iteration an h-iteration and xk an h-iterate. We search α ∈ (0, αmax

k ] satisfying

h(xk + αdk) ≤ (1 − ρ)hk + ρ∥ck + α∇cTk dk∥ (22)

in this case.
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From (5), we obtain the estimate of the new dual variables

zk+1 = µX−1
k e − X−1

k Zkdk. (23)

For the convergence proof, we require the ‘‘primal–dual barrier Hessian’’ X−1
k Zk do not deviate arbitrarily much from the

‘‘primal Hessian’’ µX−2
k . To do this, we reset [9]

z(i)k+1 := max

{
min

{
z(i)k+1,

κσµ

x(i)k+1

}
,

µ

κσ x
(i)
k+1

}
, i = 1, 2, . . ., n (24)

for some fixed κσ > 1 after each step. Such safeguards not only benefit the convergence analysis but also work satisfactorily
in practice [9,33,34].

After obtaining a new iterate, the limit on feasibility of the new iterate is set as [16]

hmax
k+1 =

{
hmax
k if xk is an f -iterate,

max{κhhmax
k , κ̄hhk + (1 − κ̄h)hk+1}, if xk is an h-iterate.

(25)

Now, we are ready to summarize all the details of this line search trust-funnel-like approach for the barrier problem.
Suppose that the current outer loop iteration is j and that the parameterµ, τ are available, and that the last iteration finished
with the primal–dual vector (xj, λj, zj), where (xj, zj) > 0. The detailed description is given in Algorithm 3.

ALGORITHM 3: INNER LOOP

Step 0 Choose δ ∈ (1, 2], σ1, σ2 > 0, κ1, κ2 ∈ (0, 1), ρ ∈ (0, 1), κσ > 1, ν > 0 and ν0 ≥ ν. Initialize the
primal–dual entry as (x0, λ0, z0) = (xj, λj, zj). Let

hmax
0 = max{h0,min(10, Eµ(x0, λ0, z0))}.

Set µ = µj and k := 0.

Step 1 If Eµ(xk, λk, zk) ≤ κϵµ, return.

Step 2 Compute the normal step vk by solving (10). If vk = 0 and hk > 0, stop.

Step 3 Use Algorithm 2 to update νk and compute the tangential step tk.

Step 4 Let dk = vk + tk. Determine λk+1 by (18). Compute zk+1 by (23) and reset it by (24).

Step 5 Set α = αmax
k with αmax

k defined by (19).

Step 6 If (14) holds, go to Step 7. Otherwise, go to Step 8.

Step 7 f-iteration

Step 7.1 Set xk(α) = xk + αdk.

Step 7.2 If xk(α) satisfies (20) and (21), go to Step 9.

Step 7.3 Let α = α/2 and go to Step 7.1.

Step 8 h-iteration

Step 8.1 Set xk(α) = xk + αdk.

Step 8.2 If xk(α) satisfies (22), go to Step 9.

Step 8.3 Let α = α/2 and go to Step 8.1.

Step 9 Set αk = α, xk+1 = xk + αkdk. Compute hmax
k defined by (25). Set k := k + 1, go to Step 1.

Remark. Algorithm 3 has chances to stop at Step 2. In this case, the point xk is an stationary point of (17), which always
implies local infeasibility of the problem.
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3. Well-definedness of the algorithms

Note that inner loops are used in the above algorithms. In Algorithm 2, we try to find a proper regularization parameter
νk by repeated reducing it, and in Algorithm 3, we keep having the step-size αk, so as to find an acceptable step. We will
show that, under certain assumptions, both the inner loops will terminate finitely, i.e., the algorithms are well-defined.

We begin by recalling a result concerning a direct consequence of the definition of hmax
k .

Lemma 3.1 ([16]). The sequence {hmax
k } is non-increasing and the inequality

0 ≤ hl ≤ hmax
k

holds for all l ≥ k.

Next we show that the parameter νk will admit the requirements if it becomes small enough.

Lemma 3.2. Suppose that ∇fk and ∇ck are Lipschitz continuous on a bounded open convex set Ω containing all the iterates
generated by Algorithm 3, that {Hk} is bounded, and that the Algorithm 3 does not terminate at xk. Then either a step tk satisfying
(14) and (15), or a step satisfying (16) but does not satisfy (14) will be found if νk becomes small enough.

Proof. First, we give an estimate of the scale of ∥tk∥. By the first order necessary condition of the quasi-tangential subproblem
(12), step tk satisfies

∇ϕ
µ

k + W̃kvk +

(
W̃k +

1
νk

∇ck∇cTk + ζkI
)
tk = 0. (26)

Taking the inner products of this equation with the vector tk and rearranging the resulted equality, we have

tTk

(
W̃k +

1
νk

∇ck∇cTk + ζkI
)
tk = −(∇ϕµk + W̃kvk)T tk. (27)

By Cauchy–Schwarz inequality and (13), we have that

b1∥tk∥2
≤ ∥(∇ϕµk + W̃kvk)T tk∥∥tk∥.

If tk ̸= 0, then it follows that

∥tk∥ ≤
1
b1

∥∇ϕ
µ

k + W̃kvk∥. (28)

If tk = 0, then (28) is trivially true.
Taking the inner products of (26) with the vector νktk, moving terms not involving ∇cTk tk to the right hand side and using

(28) and Cauchy–Schwarz inequality, we obtain

∥∇cTk tk∥
2

≤
νk

b1
∥∇ϕ

µ

k + W̃kvk∥
2
(
1 +

1
b1

∥W̃k + ζkI∥
)
. (29)

Note that if vk = 0 and the algorithm does not terminate, then by Step 2 of Algorithm 3, we have that hk = 0. Since
Algorithm 3 does not stop at xk, the step tk cannot be 0. In fact, if tk = 0, then by (26), we have ∇ϕ

µ

k = 0. Then we have

ck = 0 and ∇ϕ
µ

k + ∇cTk 0 = 0,

which implies that xk is a first order stationary point of the barrier problem. The fact that tk ̸= 0 and (26) imply that

− (∇ϕµk )
T tk = tTk

(
W̃k +

1
νk

∇ck∇cTk + ζkI
)
tk ≥ b1∥tk∥2 > 0,

which yields (14). Then, from (29), condition (15) is satisfied if

0 < νk ≤
b1κ2

1 (h
max
k )2

∥∇ϕ
µ

k ∥2
(
1 +

1
b1

∥W̃k + ζkI∥
) .

If vk ̸= 0, then from (29), both (15) and (16) are satisfied if

0 < νk ≤
b1 min{κ2

1 (h
max
k − ∥ck + ∇cTk vk∥)

2, κ2
2 (hk − ∥ck + ∇cTk vk∥)

2
}

∥∇ϕ
µ

k + W̃kvk∥2
(
1 +

1
b1

∥W̃k + ζkI∥
) .

Thus, the claim is true in this case. □

Next, we state the finite termination of the line search.
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Lemma 3.3. Suppose that hk > 0.

(a) If ∇ck is of full rank, then

∥ck∥ − ∥ck + ∇cTk vk∥ = ∥ck∥.

(b) If ∇ck is rank deficient, then

∥ck∥ − ∥ck + ∇cTk vk∥ ≥
∥ck∥δ−1

2
∥vk∥.

Proof. (a) If ∇ck is of full column rank, then by definition

vk = −∇ck(∇cTk ∇ck)−1ck,

which implies ck + ∇cTk vk = 0. Then we have

∥ck∥ − ∥ck + ∇cTk vk∥ = ∥ck∥.

(b) By the definition of vk for (10), we have

∥ck + ∇cTk vk∥
2

≤ ∥ck + ∇cTk vk∥
2
+ ∥ck∥δ∥vk∥2

≤ ∥ck∥2,

which yields

∥ck∥ − ∥ck + ∇cTk vk∥ ≥
∥ck∥δ∥vk∥2

∥ck∥ + ∥ck + ∇cTk vk∥

≥
∥ck∥δ∥vk∥2

2∥ck∥
=

∥ck∥δ−1

2
∥vk∥. □

Lemma 3.4. Denote by Ldc the Lipschitz constant for ∇c. Then

∥c(xk + αdk)∥ ≤ (1 − α)∥ck∥ + α∥ck + ∇cTk dk∥ +
1
2
α2Ldc∥dk∥2.

Proof. By convexity of ∥ · ∥ and Lipschitz continuity, we have

∥c(xk + αdk)∥ =

ck + α

∫ 1

0
∇c(xk + ατdk)Tdkdτ


=

ck + α

∫ 1

0
(∇c(xk + ατdk)Tdk − ∇cTk dk)dτ + α∇cTk dk


≤∥ck + α∇cTk dk∥ +

α ∫ 1

0
(∇c(xk + ατdk)Tdk − ∇cTk dk)dτ


≤(1 − α)∥ck∥ + α∥ck + ∇cTk dk∥ + α

∫ 1

0
∥∇c(xk + ατd) − ∇ck∥∥dk∥dτ

≤(1 − α)∥ck∥ + α∥ck + ∇cTk dk∥ +
1
2
α2Ldc∥dk∥2. □

Lemma 3.5. Suppose that ∇fk and ∇ck are Lipschitz continuous on a bounded open convex set Ω containing all the iterates
generated by Algorithm 3, that {Hk} is bounded, and that the Algorithm 3 does not terminate at xk. Suppose also that tk satisfies
(14) and (15). Then there exists a positive scalar αf

k such that for any α ∈ (0, αf
k], both (20) and (21) are satisfied.

Proof. First, we show that −(∇ϕµk )
Tdk > 0. If hk > 0, then by (14)

− ∇(ϕµk )
Tdk = −∇(ϕµk )

T (sk + tk) ≥ σ1h
σ2
k > 0.

If hk = 0, then by the proof of Lemma 3.2, we also have −∇(ϕµk )
Tdk > 0.

Using the Lipschitz continuity of ∇f (x), we have, with a Lipschitz constant Ldf , that for any step-size α ∈ (0, αmax
k ]

|f (xk) − f (xk + αdk) − (−α∇f Tk dk)|
≤ α sup

xτk∈[xk,xk+αdk]
∥∇f (xτk ) − ∇fk∥∥dk∥

≤ α2Ldf ∥dk∥2.
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Similarly, for any i = 1, . . . , n,⏐⏐⏐⏐⏐−µ
n∑

i=1

ln x(i)k + µ

n∑
i=1

ln(x(i)k + αd(i)k ) − µα

n∑
i=1

d(i)k
x(i)k

⏐⏐⏐⏐⏐
≤ µ

n∑
i=1

⏐⏐⏐⏐⏐− ln x(i)k +

n∑
i=1

ln(x(i)k + αd(i)k ) − α
d(i)k
x(i)k

⏐⏐⏐⏐⏐
≤

µα2

1 − τ

n∑
i=1

(
d(i)k
x(i)k

)2

≤
µα2

(1 − τ )mini(x
(i)
k )2

∥dk∥2.

Using the above two inequalities, we have

|ϕ
µ

k − ϕµ(xk + αdk) − (−α(∇ϕµk )
Tdk)| ≤ α2

(
Ldf +

µ

(1 − τ )mini(x
(i)
k )2

)
∥dk∥2.

This inequality implies

|ϕ
µ

k − ϕµ(xk + αdk) − (−α(∇ϕµk )
Tdk)|

−α(∇ϕµk )Tdk
≤ α

(
Ldf +

µ

(1−τ )mini(x
(i)
k )2

)
∥dk∥2

−(∇ϕµk )Tdk
.

(30)

Let

0 < α ≤ α
f ,1
k :=

−(1 − ρ)(∇ϕµk )
Tdk(

Ldf +
µ

(1−τ )mini(x
(i)
k )2

)
∥dk∥2

.

Then it follows from (30) that

|ϕ
µ

k − ϕµ(xk + αdk) − (−α(∇ϕµk )
Tdk)|

−α(∇ϕµk )Tdk
≤ 1 − ρ,

which yields (20).
Next, we consider (21). Using Lemma 3.4 and (15), we have

∥c(xk + αdk)∥

≤(1 − α)∥ck∥ + α∥ck + ∇cTk vk∥ + α∥∇cTk tk∥ +
1
2
α2Ldc∥dk∥2

≤(1 − α)hmax
k + α∥ck + ∇cTk vk∥

+ ακ1(hmax
k − ∥ck + ∇cTk vk∥) +

1
2
α2Ldc∥dk∥2

=hmax
k − α(1 − κ1)(hmax

k − ∥ck + ∇cTk vk∥) +
1
2
α2Ldc∥dk∥2.

(31)

Then, from (31), it follows that (21) is satisfied if

0 < α ≤ α
f ,2
k :=

2(1 − κ1)(hmax
k − ∥ck + ∇cTk vk∥)
Ldc∥dk∥2 .

Summarizing all the arguments, both (20) and (21) are satisfied for any α ∈ (0, αf
k], where

α
f
k := min{α

f ,1
k , α

f ,2
k }. □ (32)

Lemma 3.6. Suppose that ∇fk and ∇ck are Lipschitz continuous on a bounded open convex set Ω containing all the iterates
generated by Algorithm 3, that {Hk} is bounded, and that the Algorithm 3 does not terminate at xk. Suppose also that tk satisfies
(16) but does not satisfy (14). Then there exists a positive constant αh

k such that for any α ∈ (0, αh
k ], the condition (22) is satisfied.

Proof. Since (14) does not hold and the algorithm does not terminate at xk, we have vk ̸= 0, which implies hk > 0.
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Using Lemma 3.4, (16) and convexity, we have

∥c(xk + αdk)∥ ≤ ∥ck + α∇cTk dk∥ +
1
2
α2Ldc∥dk∥2

= (1 − ρ)∥ck + α∇cTk dk∥ + ρ∥ck + α∇cTk dk∥ +
1
2
α2Ldc∥dk∥2

≤ (1 − ρ)((1 − α)∥ck∥ + α∥ck + ∇cTk dk∥) + ρ∥ck + α∇cTk dk∥

+
1
2
α2Ldc∥dk∥2

= (1 − ρ)∥ck∥ − (1 − ρ)α(∥ck∥ − ∥ck + ∇cTk dk∥)

+ ρ∥ck + α∇cTk dk∥ +
1
2
α2Ldc∥dk∥2

≤ (1 − ρ)∥ck∥ − (1 − ρ)α(∥ck∥ − ∥ck + ∇cTk vk∥ − ∥∇cTk tk∥)

+ ρ∥ck + α∇cTk dk∥ +
1
2
α2Ldc∥dk∥2

≤ (1 − ρ)∥ck∥ − (1 − ρ)(1 − κ2)α(∥ck∥ − ∥ck + ∇cTk vk∥)

+ ρ∥ck + α∇cTk dk∥ +
1
2
α2Ldc∥dk∥2

≤ (1 − ρ)∥ck∥ + ρ∥ck + α∇cTk dk∥

− (1 − ρ)(1 − κ2)α(∥ck∥ − ∥ck + ∇cTk vk∥) +
1
2
α2Ldc∥dk∥2.

Define

αh
k :=

⎧⎪⎨⎪⎩
(1 − ρ)(1 − κ2)∥ck∥δ−1

∥vk∥
2

Ldc∥dk∥2 , if ∇ck is rank deficient,

(1 − ρ)(1 − κ2)∥ck∥
Ldc∥dk∥2 , if ∇ck is of full rank.

(33)

Then by the above inequalities and Lemma 3.3, (22) is satisfied for all α ∈ (0, αh
k ]. □

Hence, we conclude the well-definedness of the algorithms.

Theorem 3.7. Suppose that ∇fk and ∇ck are Lipschitz continuous on a bounded open convex set Ω containing all the iterates
generated by Algorithm 3, that {Hk} is bounded. Then both Algorithm 2 and Algorithm 3 are well-defined.

4. Global convergence analysis

Let

A(x) = {i | x(i) = 0}

be the set of active inequality constraints and Ā(x) = {1, 2, . . . , n} \ A(x). Denote na = |A(x)|, nl = |Ā(x)|.
To establish the global convergence theories for Algorithm 3, we need the following standard assumptions.

Assumption 1. Let {xk} be the sequence of the iterates generated by algorithm 3.

(A1) There is a bounded open convex setΩ containing {xk}.
(A2) The gradients ∇fk and ∇ck are Lipschitz continuous onΩ .
(A3) The symmetric matrix Hk is uniformly bounded.
(A4) The linear independence constraint qualification is satisfied at any accumulation point x̃ of {xk}.
(A5) At any accumulation point x̃ of {xk}, H̃ is positive definite on the tangent space of active constraints, i.e., there is a

positive scalar b > 0 such that

dT H̃d ≥ b∥d∥2 (34)

for all d ∈ {p | ∇c (̃x)Tp = 0, and p(i) = 0, i ∈ A(̃x)}.

Assume that the algorithm does not terminate finitely. The following lemma shows the convexity of the quasi-
tangential subproblem near a limit point. This result is a modification of [28, Theorem 17.5] in the context of interior point
methods.
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Lemma 4.1. Suppose that Assumption 1 hold, and that x̃ is an accumulated point of the iterate sequence {xk}. Then there exist a
neighborhood Ñ of x̃ and a positive scalar ν̄, such that for all xk ∈ Ñ and ν ∈ (0, ν̄], the symmetric matrix W̃k +

1
ν
∇ck∇cTk is

positive definite.

Proof. For simplicity, we abbreviate A(̃x) to A, and Ā(̃x) to Ā from now on. We denote with xak the vector composed of
{x(i)k | i ∈ A}, and xlk the vector composed of remaining components. If na = 0 then this lemma reduces to [28, Theorem 17.5].
So we assume that na > 0. Without loss of generality, we suppose that

xk = (xak, x
l
k). (35)

Similarly, we define ∇cak , ∇c lk etc. Let

Ak =

(
∇cak Ia

∇c lk 0

)
.

Then, by continuity, there exists a neighbor Ñ of x̃ such that Ak has full column rank at all xk ∈ Ñ . For any d ∈ Rn, we can
partition it into components in Null(AT

k ) and Range(Ak), and write

d = t + Akw (36)

with w ∈ Rm+na . Let us consider the lower bound of

dT
(
Hk +Σk +

1
ν
∇ck∇cTk

)
d. (37)

First, we consider dTHkd. Using the decomposition (36), we have

dTHkd = (t + Akw)THk(t + Akw) ≥ tTHkt + 2wTAT
kHkt + wTAT

kHkAkw.

By Assumption 1, there are positive constants a1, a2 and a3, such that

tTHkt ≥ a1∥t∥2,

wTAT
kHkt ≥ −a2∥w∥∥t∥,

wTAT
kHkAkw ≥ −a3∥w∥

2,

which yield

dTHkd = (t + Akw)THk(t + Akw) ≥ a1∥t∥2
− a2∥w∥∥t∥ − a3∥w∥

2.

Then we consider the harder block

dT
(
Σk +

1
ν
∇ck∇cTk

)
d.

By the safeguard technique (24), we have

dT
(
Σk +

1
ν
∇ck∇cTk

)
d ≥ dT

(
µ

κσ
X−2
k +

1
ν
∇ck∇cTk

)
d.

Define xa,max
k = maxi∈A{x(i)k } and use the partition (35), we have that

dT
(
µ

κσ
X−2
k +

1
ν
∇ck∇cTk

)
d

= dT
(
µ

κσ

(
(Xa

k )
−2

(X l
k)

−2

)
+

1
ν

(
∇cak (∇cak )

T
∇cak (∇c lk)

T

∇c lk(∇cak )
T

∇c lk(∇c lk)
T

))
d

≥ bµν d
T

((
Ia

(xa,max
k )2(X l

k)
−2

)
+

(
∇cak (∇cak )

T
∇cak (∇c lk)

T

∇c lk(∇cak )
T

∇c lk(∇c lk)
T

))
d

= bµν d
T

((
∇cak (∇cak )

T
+ Ia ∇cak (∇c lk)

T

∇c lk(∇cak )
T

∇c lk(∇c lk)
T

)
+

(
0

(xa,max
k )2(X l

k)
−2

))
d

= bµν d
T
(
AkAT

k +

(
0

(xa,max
k )2(X l

k)
−2

))
d

≥ bµν d
TAkAT

kd,
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where bµν = min
{

µ

κσ (x
a,max
k )2

, 1
ν

}
. Using (36) and the continuity, there exists a positive constant a4 > 0 such that

dTAkAT
kd = wTAT

kAkAT
kAkw ≥ a24∥w∥

2.

To sum up these arguments, we get a lower bound of (37)

dT
(
Hk +Σk +

1
ν
∇ck∇cTk

)
d

≥ a1∥t∥2
− 2a2∥w∥∥t∥ − a3∥w∥

2
+ a24b

µ
ν ∥w∥

2

≥ a1

(
∥t∥ −

a2
a1

∥w∥

)2

+

(
a24b

µ
ν − a3 −

a22
a1

)
∥w∥

2.

Hence, the symmetric matrix Hk + Σk +
1
ν
∇ck∇cTk is positive definite provided that we choose ν̄ be a small positive

constant such that(
a24 min

{
µ

κσ (x
a,max
k )2

,
1
ν̄

}
− a3 −

a22
a1

)
> 0

and choose ν ∈ (0, ν̄]. □

A key point for establishing global convergence results of interior point method is to show that, for a given barrier
parameter µ, the sequence of iterate {xk} is componentwise bounded away from 0. In [35, Theorem 3], Wächter and Biegler
pointed out that, under reasonable assumptions, this is true for the primal iterate sequence {xk} generated by Newton–
Lagrange methods for barrier problem. Here, we present the similar result in the context of our algorithm and give a more
detailed proof, which follows the basic ideas of Wächter and Biegler’s proof and uses the classical perturbation theory for
linear system [36].

Lemma 4.2. Under Assumption 1, suppose that x̃ is an accumulation point of {xk}. Then there is a neighborhood Ñ of x̃ such that
d(i)k > 0 for any xk ∈ Ñ and i ∈ A.

Proof. If na = 0, then all the constraints x(i) ≥ 0 are inactive, in other words, are bounded away from 0. Hence, we can
assume without loss of generality that na ≥ 1. Define δ̃ = 0.5min{̃x(i) | i ∈ Ā}. Then there is a neighborhood Ñ such that
x(i)k ≥ δ̃ for all xk ∈ Ñ and i ∈ Ā.

By Assumption 1, there is a (smaller) neighborhood Ñ of x̃ such that Ak has full rank and Hk is positive definite on the null
space of AT

k in the sense of (34) for any xk ∈ Ñ . Then from the definition of vk, we have

ck + ∇cTk vk = 0. (38)

By Lemma 4.1 and Step 1 of Algorithm 2, Hk +
1
νk

∇ck∇cTk will be positive definite with νk = max{min{νk−1, hk}, ν} for
sufficiently large k, which indicates that ζk = 0. It follows from (26) that

(Hk + X−1
k Zk)Tdk + ∇ck

(
1
νk

∇cTk tk

)
= −∇fk + µX−1

k e. (39)

By (15) and (16), the sequence {∇cTk tk} is bounded. From (18), (38) and (39), we obtain the following linear system(
Hk + X−1

k Zk ∇ck
∇cTk 0

)(
dk
λk+1

)
= −

(
∇fk − µX−1

k e
ck − ∇cTk tk

)
. (40)

Partition (40) with respect to (35), we have⎛⎜⎝Haa
k + (Xa

k )
−1Za

k Hal
k ∇cak

H la
k H ll

k + (X l
k)

−1Z l
k ∇c lk

∇(cak )
T

∇(c lk)
T 0

⎞⎟⎠
⎛⎜⎝ dak

dlk
λk+1

⎞⎟⎠

= −

⎛⎜⎝∇f ak − µ(Xa
k )

−1e

∇f lk − µ(X l
k)

−1e

ck − ∇cTk tk

⎞⎟⎠ .
(41)
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The rest of the proof follows the ideas of Wächter and Biegler but with some necessary modifications and more details.
Rewrite the linear system (41) by scaling the first rows and columns by Xa

k :⎛⎜⎝Xa
kH

aa
k Xa

k + Xa
k Z

a
k Xa

kH
al
k Xa

k∇cak
H la

k X
a
k H ll

k + (X l
k)

−1Z l
k ∇c lk

(∇cak )
TXa

k (∇c lk)
T 0

⎞⎟⎠
⎛⎜⎝ d̃ak

dlk
λk+1

⎞⎟⎠

= −

⎛⎜⎝ Xa
k∇f ak − µe

∇f lk − µ(X l
k)

−1e

ck − ∇cTk tk

⎞⎟⎠ ,
(42)

where d̃ak = (Xa
k )

−1dak. For convenience, we write the coefficient matrix of this linear system into(
W11 W12
W21 W22

)
,

where

W11 = Xa
kH

aa
k Xa

k + Xa
k Z

a
k , W12 = (Xa

kH
al
k Xa

k∇ck)

W21 =

(
H la

k X
a
k

(∇cak )
TXa

k

)
, W22 =

(
H ll

k + (X l
k)

−1Z l
k ∇c lk

(∇c lk)
T 0

)
.

By assumption (A4), the matrix(
∇ca (̃x) Ia

∇c l (̃x) 0

)
has full rank, fromwhich it follows that ∇c l (̃x) has full rank. Then there is a (smaller) neighborhoodN of x̃ such that ∇c lk has
full rank. For any dl in Null((∇c lk)

T ), the vector d̄ = (0, dl) lies in Null(∇cTk ). Thus, from assumption (A5), we get

(dlk)
TH ll

kd
l
k = d̄THkd̄ ≥ b∥d̄∥2

= b∥dl∥2,

i.e., H ll
k is positive definite in Null((∇c lk)

T ). Then W22 is nonsingular in Ñ . By Assumption 1 and using xlk ≥ δ̃e and (24), their
is a positive constantMW such that ∥W−1

22 ∥ ≤ MW . By eliminating dlk and λk+1 in (42), we obtain

(W11 − W12W−1
22 W21 )̃dak = −(Xa

k∇f ak − µe − W12W−1
22 gk), (43)

where

gk =

(
∇f lk − µ(X l

k)
−1e

ck − ∇cTk tk

)
.

Using xlk ≥ δ̃e, there isMg > 0 such that ∥gk∥ ≤ Mg for all xk ∈ Ñ . Consider the linear system

Xa
k Z

a
k d̄

a
k = µe. (44)

System (43) can be viewed as a perturbed system for (44) with the coefficient matrix perturbed by

Gk = Xa
kH

aa
k Xa

k − W12W−1
22 W21

and the right hand side by

rk = −(Xa
k∇f ak − W12W−1

22 gk).

By perturbation theory for linear system, see, for instance, [36], we have

∥̃dak − d̄ak∥∞

∥d̄ak∥∞

≤
κ(Xa

k Z
a
k )

1 − κ(Xa
k Z

a
k )

∥Gk∥∞

∥Xa
k Z

a
k ∥∞

(
∥Gk∥∞

∥Xa
k Z

a
k ∥∞

+
∥rk∥∞

µ

)
, (45)

where κ(Xa
k Z

a
k ) refers to the condition number of Xa

k Z
a
k , provided that

∥(Xa
k Z

a
k )

−1
∥∞∥Gk∥∞ < 1.

Using (24), we have that
µ

κΣ
≤ x(i)k z(i)k ≤ κΣµ
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for i ∈ A, which implies that
µ

κΣ
≤ ∥Xa

k Z
a
k ∥∞ ≤ κΣµ, ∥(Xa

k Z
a
k )

−1
∥∞ ≤ κΣ/µ, (46)

and that the solution d̄ak of (44) satisfies

1
κΣ

≤ d̄(i)k ≤ κΣ , ∀i ∈ A. (47)

Denote

δµ = max{x(i)k | i ∈ A}.

From Assumption 1 and using xlk ≥ δ̃e, there are positive constantsMH , M12,M21,Mdf and Mg such that

∥Gk∥∞ ≤ ∥Xa
k ∥∞∥Haa

k ∥∞ + ∥W12∥∞∥W−1
22 ∥∞∥W21∥∞

≤ MHδµ + M12MWM21δ
2
µ

and

∥rk∥∞ ≤ Mdf δµ + M12MWMgδµ.

From (46) and noting that δµ → 0 as xk → x̃, there is a (smaller) neighborhood Ñ of x̃ such that

1 − κ(Xa
k Z

a
k )

∥Gk∥∞

∥Xa
k Z

a
k ∥∞

= 1 − ∥(Xa
k Z

a
k )

−1
∥∥Gk∥∞ ≥

1
2
.

It also follows from (46) that κ(Xa
k Z

a
k ) ≤ κ2

Σ . Having all these facts in mind, the right hand side of the inequality (45) tends
to 0 as xk approaching x̃. It follows that, for any i ∈ A,

d̃(i)k ≥d̄(i)k − |̃d(i)k − d̄(i)k | ≥ d̄(i)k − ∥̃dak − d̄ak∥∞

≥d̄(i)k − ∥̃dak − d̄ak∥∞∥d̄ak∥∞

≥d̄(i)k −
κ(Xa

k Z
a
k )

1 − κ(Xa
k Z

a
k )

∥Gk∥∞

∥Xa
k Z

a
k ∥∞

(
∥Gk∥∞

∥Xa
k Z

a
k ∥∞

+
∥rk∥∞

µ

)
κΣ

≥
1
κΣ

−
κ(Xa

k Z
a
k )

1 − κ(Xa
k Z

a
k )

∥Gk∥∞

∥Xa
k Z

a
k ∥∞

(
∥Gk∥∞

∥Xa
k Z

a
k ∥∞

+
∥rk∥∞

µ

)
κΣ

→
1
κΣ

> 0,

where (45), (47) are used. Therefore, by shrinking Ñ if necessary, we have d̃ak > 0 for all xk ∈ Ñ , which yields dak > 0 because
dak = Xa

k d̃
a
k. □

Theorem 4.3. Under Assumption 1, there is a positive constant ϵ̃ > 0, such that xk ≥ ϵ̃e for any index k.

Proof. By Lemma 4.2, for any accumulation point x̃ of {xk}, there is a neighborhood Ñ of it, such that d(i)k > 0, i ∈ A for all
xk ∈ Ñ . By compactness, there are finite number of such neighborhoods, denoting by N1, . . ., Nq, of different accumulation
points x̃1, . . ., x̃q, whose union covers all the accumulation points. Define δ̃p = 0.5min{̃x(i)p | i ̸∈ A(̃xp)}, p = 1, . . . , q. Then
x(i)k ≥ δ̃p, for any i ̸∈ A(̃xp) and xk ∈ Np. Denote NS =

⋃q
p=1Np. Then there are only finite iterates which are not covered by

NS . Let

ϵ̃ := (1 − τ )min{ min
p=1,...,q

δ̃p, min
xk ̸∈NS ,i=1,...,n

x(i)k }.

Suppose, without loss of generality, that x0 ≥ ϵ̃e. Assume that xk ≥ ϵ̃e. Let us consider xk+1. If xk ̸∈ NS , then the lemma is
trivially true. Now we consider the case where xk ∈ NS . Note that x(i+1)

k < x(i)k occurs only if i is not active constraints. Then,
if i belongs to some A(̃xl), l = 1, 2, . . . , p, then x(i+1)

k ≥ x(i)k ≥ ϵ̃. Otherwise,

x(i+1)
k ≥ (1 − τ )x(i)k ≥ (1 − τ ) min

p=1,...,q
δ̃p ≥ ϵ̃. □

From Assumption 1, Theorem 4.3 and (24), it is easy to conclude the boundedness of search direction {dk}. From now on,
we denote with Md the upper bound of {∥dk∥}. The boundedness of the Lagrange multipliers {λk} follows from (18).



S. Qiu, Z. Chen / Journal of Computational and Applied Mathematics 334 (2018) 77–96 91

The remainder of this section gives global convergence results. We shall use the following two index sets

Kh = {k | hmax
k+1 < hmax

k }, K̄h = {k | hmax
k+1 = κhhmax

k },

which contain h-iterations. First, we consider the case where Kh is infinite.

Lemma 4.4. Suppose that |Kh| = +∞. Then limk→∞hk = 0.

Proof. Without loss of generality, we assume that ∇ck has full rank for all k ≥ 0. Suppose that k ∈ Kh. By the updating rule
of hmax

k (25), we have

hmax
k − hmax

k+1 ≥ min{(1 − κh)hmax
k , (1 − κ̄h)(hk − hk+1)} ≥ min{(1 − κh)hk, (1 − κ̄h)ραkhk},

where Lemma 3.1, (10), (16) and (22) are used. Since αk ≥ 0.5αh
k , where αh

k given by (33), the previous inequalities give

hmax
k − hmax

k+1 ≥ min
{
(1 − κh)hk,

(1 − κ̄h)(1 − κ2)(1 − ρ)ρhk

2LdcM2
d

}
,

where the upper bound of {∥dk∥} is used. From the non-increasing property of the sequence {hmax
k } (see Lemma 3.1) and the

above inequality, it follows that

lim
k∈Kh

hk = 0. (48)

Consider the cardinal number of K̄h. If |K̄h| = ∞, then it is a direct consequence of the definition of K̄h that limk→∞hmax
k =

0. Otherwise, there is an index k1 > 0 such that

hmax
k+1 = κhhk + (1 − κh)hk+1 ≤ hk

for all k ≥ k1 and k ∈ Kh. Then we have by this inequality and (48) that

lim
k∈Kh

hmax
k+1 = 0.

Using non-increasing property of {hmax
k }, we have limk→∞hmax

k = 0, which implies, by Lemma 3.1, that limk→∞hk = 0. □

Lemma 4.5. Suppose that |Kh| = +∞. Then limk∈Kh tk = 0.

Proof. Since, tk solves (12) and does not satisfy (14), we have that for all k ∈ Kh

1
2
b1∥tk∥2

≤
1
2
tTk

(
W̃k +

1
ν
∇ck∇cTk + ζkI

)
tk

≤ −(∇ϕµk )
T tk − (W̃kvk)T tk

= −(∇ϕµk )
Tdk + (∇ϕµk )

Tvk − (W̃kvk)T tk
≤ σ1h

σ2
k + (∇ϕµk )

Tvk − (W̃kvk)T tk.

Note that by Theorem 4.3 and (28), the sets {∇ϕ
µ

k }, {W̃k} and {tk} are bounded. Then it follows from Lemma 4.4 and the above
inequalities that limk∈Kh tk = 0. □

Next, we consider the case where Kh is a finite set.

Lemma 4.6. Suppose that |Kh| < +∞. Then limk→+∞hk = 0.

Proof. Finiteness of the set Kh implies, using the updating rule of hmax
k , that there is an index k2 > 0 such that for all k ≥ k2,

xk is an f -iterate, i.e., the inequality (14) holds. Then following the acceptance rules for f -steps and (14), we have

ϕ
µ

k − ϕ
µ

k+1 ≥ ρσ1αkh
σ2
k . (49)

Without loss of generality, we still assume that ∇ck has full rank for all k ≥ 0. By Lemma 3.5, we have αk ≥ 0.5αf
k , where αf

k
is given in (32). Noting that ck + ∇ckvk = 0 and the algorithm does not update hmax

k for k ≥ k2, (49) yields

ϕ
µ

k − ϕ
µ

k+1 ≥
1
2
ρσ1 min

⎧⎨⎩ (1 − ρ)σ1h
σ2
k(

Ldf +
µ

(1−τ )̃ϵ2

)
M2

d

,
(1 − κ1)(hmax

k0
)

LdcM2
d

⎫⎬⎭ hσ2k (50)

for all k ≥ k2, where Theorem 4.3, (14) and the upper bound of {∥dk∥} are used. Note that Theorem 4.3 ensures the
boundedness of {ϕ

µ

k } and the acceptance criteria for f -steps imply the non-increasing property for {{ϕ
µ

k }}k≥k2 . It follows
from (50) that limk→∞hk = 0. □
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Lemma 4.7. Suppose that |Kh| < +∞. Then limk→+∞tk = 0.

Proof. By similar arguments as the proof of Lemma 4.6, we have

ϕ
µ

k − ϕ
µ

k+1 ≥ −
1
2
ρmin

⎧⎨⎩−(1 − ρ)(∇ϕµk )
Tdk(

Ldf +
µ

(1−τ )̃ϵ2

)
M2

d

,
(1 − κ1)(hmax

k0
)

LdcM2
d

⎫⎬⎭ (∇ϕµk )
Tdk,

for all k ≥ k2. It follows that limk→∞∥(∇ϕµk )
Tdk∥ = 0, where the non-increasing property and lower boundedness of {ϕ

µ

k }

are used. By Lemma 4.6, we have limk→∞∥(∇ϕµk )
T tk∥ = 0. Therefore, by (13) and (27), we have limk→∞tk = 0. □

Lemma 4.8. Suppose that Assumption 1 hold, that there is an index set K ⊂ {0, 1, 2, . . .} such that

lim
k∈K

hk = 0, lim
k∈K

∥tk∥ = 0,

and that x̃ is an accumulation point of {xk | k ∈ K}. Then x̃ is a KKT point for (2).

Proof. Without loss of generality, we assume that limk∈Kxk = x̃. By Theorem 4.3, x̃(i) > 0 for all i ∈ {1, 2, . . . , n}. By the
rule of updating νk, Assumption 1 and Lemma 4.1, the matrix W̃k +

1
ν
∇ck∇cTk is positive definite for sufficiently large k ∈ K,

which implies ζk = 0. From (18) and (26), it follows that, for sufficiently large k ∈ K,

λk+1 = −(∇cTk ∇ck)−1
∇cTk (∇ϕ

µ

k + W̃k(vk + tk)).

Note that the sequence

{λk+1 | k ∈ K and is sufficiently large}

is convergent. Denote by λ̃ its limit. Then by taking limit on (26) with respect to k ∈ K, we get

∇ϕµ (̃x) + ∇c (̃x)̃λ = 0.

This, combined with the fact that

h(̃x) = lim
k∈K

hk = 0,

shows that x̃ is a KKT point for (2). □

To sum up Lemmas 4.4–4.7, we get our global convergence theorem.

Theorem 4.9. Under Assumption 1, suppose that Algorithm 3 does not terminate finitely.

(i) If |Kh| = ∞, then any accumulation point of {xk}k∈Kh is a KKT point for (2).
(ii) If |Kh| < ∞, then any accumulation point of {xk} is a KKT point for (2).

Theorem 4.9 indicates that the inner loop of Algorithm 1, i.e., Step 2 will terminate finitely under Assumption 1. Hence,
by the mechanism of the algorithm, we get the global convergence of the whole algorithm.

Theorem 4.10. Under Assumption 1, if Algorithm 1 does not terminate finitely, then at least one of the accumulation points of
the iterate sequence is a KKT point for problem (1).

5. Applications

In this section, we solve some degenerate problems for test purpose. We choose those problems rather than non-
degenerate ones because we note that the term 1

ν
∇c∇cT can improve the regularity of the subproblem. These problems

do not satisfy MFCQ because of not having strict interior region. Hence, the set of dual variables near the solution set is
unbounded, which may causes serious numerical problems in practice. Our test shows that our method still works on these
problems.

However, we should point out that we aim to show the probable applications of this method to degenerate problems.We
do not modify the algorithmic framework before application. To get better numerical performance, the special structure of
the degenerate problems should be carefully considered, which is beyond the scope that this paper discusses.

The first problem is a bilevel programming problem which goes back to [37]:

min x21 − 2x1 + x22 − 2x2 + y21 + y22
s.t. 0 ≤ x ≤ 2,
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where y = (y1, y2) solves problem

min (x1 − y1)2 + (x2 − y2)2

E(x) s.t. 0.25 − (x1 − 1)2 ≥ 0,

0.25 − (x2 − 1)2 ≥ 0.

Problem E(x) has a point of nondifferentiability at the optimal solution (x∗

1, x
∗

2) = (0.5, 0.5). This problem was used
in [38,39] for test purpose. In the MacMPEC test suite [40], this problem is formulated into a mathematical programming
with equilibrium constraints (MPEC):

min x21 − 2x1 + x22 − 2x2 + y21 + y22
s.t. 2y1 − 2x1 + 2(y1 − 1)l1 = 0,

2y2 − 2x2 + 2(y2 − 1)l2 = 0,

0 ≤ 0.25 − (y1 − 1)2⊥l1 ≥ 0,

0 ≤ 0.25 − (y2 − 1)2⊥l2 ≥ 0,

0 ≤ x ≤ 2.

(51)

To apply our method, we write (51) into the form (2) by introduce slack variables, which reads

min x21 − 2x1 + x22 − 2x2 + y21 + y22
s.t. 2y1 − 2x1 + 2(y1 − 1)l1 = 0,

2y2 − 2x2 + 2(y2 − 1)l2 = 0,

0.25 − (y1 − 1)2 − z1 = 0,

0.25 − (y2 − 1)2 − z2 = 0,

zT l = 0,

0 ≤ x ≤ 2, l, z ≥ 0.

The second problem is a Stackelberg leader follower game studied by Henderson and Quandt [41] and was tested by
[38,39,42]. It is stated as

max
x1≥0

π1 = x1F (x1 + x2) − C1(x1)

s.t. max
x2≥0

π2 = x2F (x1 + x2) − C2(x2),

where π1 denotes the profit of the leader, π2 denotes the profit of the follower,

F (x1 + x2) = 100 − 0.5(x1 + x2)

is the invested demand function and

C1(x1) = 5x1, C2(x2) = 0.5x22

give the total costs of the leader and the follower, respectively. This problem can be written into a MPEC by using the KKT
conditions of the lower-level programming:

min − x1F (x1 + x2) + C1(x1)

s.t. 0.5x1 + 2x2 − 100 − y = 0,

0 ≤ x1 ≤ 200,

0 ≤ x2⊥y ≥ 0.

We reformulated this MPEC into the standard form of nonlinear programming

min − x1F (x1 + x2) + C1(x1)

s.t. 0.5x1 + 2x2 − 100 − y = 0,

x2y = 0,

0 ≤ x1 ≤ 200, x2, y ≥ 0.
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Table 1
The results for the tested problems.

Prob. Init nf ngf nc ngc f ∗

1 x0 = 0, y0 = e 21 14 9 14 −1.0000
2 x0 = 0, y0 = 5e 21 21 18 21 −3.2677
3 x0 = 5e, y0 = 10 18 17 10 17 3.2077
4 x0 = 5e, y0 = 10 29 23 15 23 3.4494
5 x0 = 5e, y0 = 10 25 21 15 21 4.6034
6 x0 = 5e, y0 = 10 24 21 11 21 6.5927

The following four problems are taken from [43]. The original problems are bilevel programming which share a same
lower level programming. Since the lower programming is convex, they are reformulated into optimizationswith variational
inequality constraints [42,43] and into MPECs by Leyffer [40] in MacMPEC suite. In MacMPEC the constraints of these four
problems are

0 ≤ (1 + 0.2y)x1 − (3 + 1.333y) − 0.333x3 + 2x1x4 ⊥ x1 ≥ 0,
0 ≤ (1 + 0.1y)x2 − y + x3 + 2x2x4 ⊥ x2 ≥ 0,
0 ≤ 0.333x1 − x2 + 1 − 0.1y ⊥ x3 ≥ 0,
0 ≤ 9 + 0.1y − x21 − x22 ⊥ x4 ≥ 0.

The objective functions are different, which are, in turn,

f1 =
1
2
((x1 − 3)2 + (x2 − 4)2);

f2 =
1
2
((x1 − 3)2 + (x2 − 4)2 + (x3 − 1)2);

f3 =
1
2
((x1 − 3)2 + (x2 − 4)2 + 10x24);

and

f4 =
1
2
((x1 − 3)2 + (x2 − 4)2 + (x3 − 1)2 + (x4 − 1)2 + y2).

We also reformulate these problems into the standard form (2) in which the constraints read

(1 + 0.2y)x1 − (3 + 1.333y) − 0.333x3 + 2x1x4 − y1 = 0,
(1 + 0.1y)x2 − y + x3 + 2x2x4 ⊥ x2 − y2 = 0,
0.333x1 − x2 + 1 − 0.1y ⊥ x3 − y3 = 0,
9 + 0.1y − x21 − x22 ⊥ x4 − y4 = 0,
xTy = 0, x ≥ 0, y ≥ 0.

Our algorithmwas implemented in Matlab and run on a Dell Inspiron 14-7437 personal computer with Intel Core i5 CPU,
1.60 GHz and a 6 G RAM. For all the tests, the algorithm is terminated if

E0(x, λ, µ) ≤ 10−5.

The following parameter setting is used:

µ0 = 2, τmin = 10−5, κµ = 0.25, θµ = 2, κσ = 102,

κϵ = 10, ψ = 10−3, κv = 0.25, Mv = 100, vmin = 10−18,

κ1 = 0.01, κ2 = 0.01, αmin = 10−5, τmin = 0.95, κα = 0.5,
θα = 2, σ1 = 0.01, σ2 = 2; ρ = 10−8, κh = 0.5, κ̄h = 0.25.

We use exact Hessian during this test. When an inner loop is finished with an approximate solution, the barrier parameter
is updated via the following rule

µj+1 = min{κµµ,µ
θµ},

and τ is updated as τj+1 = max{τmin, 1 − µj+1}.
The results are listed in Table 1. In this table, nf , nc , ngf and ngc refer to the times of evaluating objective function,

constraints and their gradients, respectively. The optimal value of objective function are reported in column f ∗. The column
Init. gives the starting point. The symbol e denotes a vector of all ones with proper dimension.
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6. Discussion

In this paper, we present a new interior point algorithm for nonlinear programming. This method uses Byrd–Omojokun’s
step decomposition idea, and are characterized by employing quasi-tangential subproblem. The idea of the quasi-tangential
subproblem is to penalized the null space constraint to the objective function. Global convergence of this algorithm has been
studied and test on a set of small test problems were done.

As we have shown in the paper, under reasonable assumptions, this algorithm compute trial steps by solving two
unconstrained optimizations, which are easy to solve. However, penalizing null space constraints results a quadratic item as

dT (H +
1
ν
∇c∇cT )d.

The symmetric matrix H +
1
ν
∇c∇cT is more regular than H , but is always denser, which may lead to more expensive

computation when dealing with large scale problems. In order to maintain the sparsity of the large scale problems, the
quasi-tangential subproblem (12) can be formulated to an augmented sparse linear system. Using the first order necessary
condition of (12), we get

W̄kt +
1
νk

∇ck∇cTk t = −∇ϕ
µ

k − W̄kvk,

where W̄k = W̃k + ζkI . Let η =
1
νk

∇cTk t and by simple induction, we have the following linear system(
W̄k ∇ck
∇cTk −νkI

)(
t
η

)
= −

(
∇ϕ

µ

k + W̄kvk
0

)
. (52)

By selecting proper parameter ζk, the coefficient matrix of (52) is quasi-definite [44], hence it can be effectively factorized.
System (52) is symmetric and sparse, and hence can be efficiently solved by large scale sparse linear system solver. The
augmented formulation (52) also indicate the connection of our algorithm with the regularized interior point methods
(RIPM) (see, for instance, [45,46] etc.) and stabilized SQP (sSQP)methods (see [47–49] etc.). Given the considerable researches
on RIPM and sSQP, there are lots of furtherwork left to do, such as algorithm for large scale problems, convergence properties
under degenerate assumptions, etc.
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