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The generalized double steps scale-SOR iteration method for solving complex
symmetric linear systemsI

Zheng-Ge Huang, Li-Gong Wang∗, Zhong Xu, Jing-Jing Cui

Department of Applied Mathematics, School of Science, Northwestern Polytechnical University, Xi’an, Shaanxi 710072, PR China

Abstract

By utilizing the successive-overrelaxation (SOR) acceleration technique for the generalized version of the double-step
scale (DSS) iteration method, we construct the generalized DSS-SOR (GDSSOR) iteration method for solving a
class of complex symmetric linear systems. The convergence theory of the GDSSOR iteration method is established
and its optimal parameters are investigated. Meanwhile, a practical way to choose iteration parameters for the
GDSSOR iteration method is developed. Inexact version of the GDSSOR iteration (IGDSSOR) method and its
convergence properties are also presented. Numerical experiments illustrate that both GDSSOR and IGDSSOR
iteration methods are feasible and effective for solving the complex symmetric linear systems, and perform better
than some other commonly used iteration methods.

Keywords: Complex symmetric linear systems, SOR acceleration technique, Convergence properties, Optimal
parameters, Inexact implementation
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1. Introduction

We consider the iterative solution of systems of linear equations of the form:

Ax ≡ (W + iT )x = b, (1)

where W,T ∈ Rn×n are symmetric matrices, with W being positive definite and T positive semi-definite. Through-
out this paper, the right-hand side vector b ∈ Rn is given and i =

√
−1 denotes the imaginary unit. Here we assume

T 6= 0, which implies that the matrix A in (1) is non-Hermitian.
The complex symmetric linear systems of this kind are important and widely arise in a variety of scientific

computing and engineering applications such as eddy current problem [4], diffuse optical tomography [1], FFT-
based solution of certain time-dependent PDEs [14], molecular scattering [25], and electrical power modeling [19].
For more examples and additional references, we refer to [7, 8, 31].

The Hermitian and skew-Hermitian parts of the complex symmetric matrix A can be shown by

H =
1

2
(A+A∗) = W and S =

1

2
(A−A∗) = iT,

respectively, hence, the matrix A ∈ Cn×n in (1) is a non-Hermitian, but positive definite matrix. Here, A∗ denotes
the conjugate transpose of the matrix A. To compute the approximate solution of (1) effectively, based on the
Hermitian and skew-Hermitian splitting (HSS) of the matrix A in (1): A = H + S, Bai et al. [10] first constructed
the HSS iteration method with the scheme:

The HSS iteration method: Let α > 0 be a positive constant. Given an initial guess x(0). For k = 0, 1, 2, . . .,
until x(k) converges, compute {

(αI +W )x(k+
1
2 ) = (αI − iT )x(k) + b,

(αI + iT )x(k+1) = (αI −W )x(k+
1
2 ) + b.

(2)

However, it follows from (2) that at each iteration step of the HSS iteration method, a shift skew-Hermitian
linear system needs to be solved, which necessitates the use of complex arithmetic. To avoid this problem, Bai
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et al. [7] skillfully designed a modified HSS (MHSS) method which is much more efficient than the HSS one for
solving the complex symmetric linear system (1). To further generalize the MHSS iteration method and accelerate
its convergence rate, a preconditioned variant of the MHSS method named as the PMHSS iteration method was
proposed by Bai et al. [8]. The form of the PMHSS iteration method is as follows.

The PMHSS iteration method: Let α > 0 be a positive constant and V ∈ Rn×n be a symmetric positive
definite matrix. Given an initial guess x(0). For k = 0, 1, 2, . . ., until x(k) converges, compute

{
(αV +W )x(k+

1
2 ) = (αV − iT )x(k) + b,

(αV + T )x(k+1) = (αV − iW )x(k+
1
2 ) − ib.

(3)

The MHSS and the PMHSS iteration methods have attracted many researchers’ attentions due to their good
properties, for example, both of them are unconditionally convergent. In order to improve the efficiency of the
PMHSS iteration method, many kinds of iteration methods for the complex symmetric linear system (1) have been
derived recently. By introducing two different parameters α and β in the PMHSS scheme, Dehghan et al. [16]
presented the generalized PMHSS (GPMHSS) method, which has the PMHSS one as its special case. Based on the
HSS iteration method, Li et al. [23] established the lopsided HSS (LHSS) iteration method for (1). By combining
the PMHSS iteration method with the LHSS iteration method, Li et al. [24] put forward the lopsided PMHSS
(LPMHSS) iteration method which outperforms the PMHSS one when the real part of A is dominant. Further,
to avoid the complex arithmetic in the LHSS iteration method, Pour and Goughery [26] proposed the new HSS
(NHSS) iteration method for solving the non-Hermitian positive definite linear systems. Recently, Hezari et al.
[18] designed a scale-splitting (SCSP) iteration method by multiplying a complex number (α − i) through both
sides of the complex system (1) and proved that it is convergent to the unique solution of the linear system (1)
for a loose restriction on the iteration parameter α. Inspired by the ideas of the NHSS and the SCSP iteration
methods, a parameterized variant of NHSS (PNHSS) iteration method was developed by Xiao and Yin [36], and
they newly further generalized the PNHSS iteration method and designed the preconditioned PNHSS (PPNHSS)
iteration method [35] as follows:

The PPNHSS iteration method: Let α, ω > 0 be positive constants and V ∈ Rn×n be a symmetric positive
definite matrix. Given an initial guess x(0). For k = 0, 1, 2, . . ., until x(k) converges, compute

{
(ωW + T )x(k+

1
2 ) = −i(ωT −W )x(k) + (ω − i)b,

(αV + ωW + T )x(k+1) = [αV − i(ωT −W )]x(k+
1
2 ) + (ω − i)b.

(4)

Alternatively, by combining real and imaginary parts of A in (1), Wang et al. [30] derived the combination
method of real part and imaginary part which is simply called the CRI iteration method, and proved that the upper
bound of the spectral radius of the CRI iteration matrix is smaller than that of the PMHSS one. Subsequently,
motivated by the ideas of symmetry of the PMHSS method and the technique of scaling to reconstruct complex
linear system (1), Zheng et al. [40] presented a double-step scale splitting (DSS) iteration method, and deduced its
convergence theory and optimal parameter. The iterative scheme of the DSS iteration method is as follows.

The DSS method: Let α > 0 be a positive constant. Given an initial guess x(0). For k = 0, 1, 2, . . ., until x(k)

converges, compute {
(αW + T )x(k+

1
2 ) = i(W − αT )x(k) + (α− i)b,

(αT +W )x(k+1) = i(αW − T )x(k+
1
2 ) + (1− αi)b.

(5)

In [3], Bai designed the skew-normal splitting (SNS) to solve the non-Hermitian positive definite systems. The
SNS method for solving (1) can be described as following.

The SNS method: Let α > 0 be a positive constant. Given an initial guess x(0). For k = 0, 1, 2, . . ., until x(k)

converges, compute {
(αI − iT )x(k+

1
2 ) = (αW − T 2)x(k) − iT b,

(αW + T 2)x(k+1) = i(αI + iT )x(k+
1
2 ) − iT b.

(6)

After that, Wu [31] multiplied W on (1) from the left and considered the Hermitian normal splitting (HNS)
method. Similar to the SNS iteration method, Pourbagher and Salkuyeh [27] multiplied both sides of (1) by iT to
obtain a modification of the SNS (MSNS) iteration method:

The MSNS method: Let α > 0 be a positive constant. Given an initial guess x(0). For k = 0, 1, 2, . . ., until
x(k) converges, compute {

(αI + T )x(k+
1
2 ) = (iαW + T 2)x(k) + iT b,

(iαW − T 2)x(k+1) = (αI − T )x(k+
1
2 ) + iT b.

(7)

The aforementioned iteration methods are two-step methods except for the SCSP one. Now we review some
single-step methods for the complex symmetric linear systems. Recently, by applying the scale technique to the
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single-step HSS (SHSS) iteration method put forward by Li and Wu [22], Zeng and Ma [39] derived the parameterized
SHSS (PSHSS) iteration method. Then Xiao et al. [34] established a generalized version of the PSHSS iteration
method, called as the parameterized single-step preconditioned variant of HSS (PSPHSS) iteration method. Very
recently, Xiao and Wang [33] introduced a new single-step iteration method referred to as the parameterized
variant of the fixed-point iteration adding the asymmetric error (PFPAE) iteration method for solving (1). They
theoretically studied the convergence properties of the PFPAE iteration method and derived its quasi-optimal
parameters.

The PFPAE iteration method: Let α > 0 and ω > 0 be two positive constants. Given an initial guess x(0).
For k = 0, 1, 2, . . ., until x(k) converges, compute

(ωW + T )x(k+
1
2 ) = [(1− α)(ωW + T )− iα(ωT −W )]x(k) + α(ω − i)b. (8)

In order to construct a fast and stably convergent iteration method for solving the linear system (1), in this
work, we first combine the two-parameter acceleration technique used in [9, 13] with the general two-step strategy
and theory applied in [2, 5], and establish the generalized DSS (GDSS) iteration method which reduces to the DSS
one as α = β. On the basis of the GDSS iteration method and motivated by the idea of successive-overrelaxation
(SOR) acceleration proposed in [11], we then design the generalized double steps scale-SOR (GDSSOR) iteration
method by adopting the SOR acceleration technique for the GDSS one, and its inexact version is also discussed. It
is proved that the GDSSOR and the inexact GDSSOR (IGDSSOR) iteration methods are convergent to the unique
solution of the linear system (1) under proper conditions. In addition, we give a practical way for the choice of
parameters of the GDSSOR iteration method by making use of the approximate solution strategy.

The outline of this paper is organized as follows. In Section 2, the GDSSOR iteration method is introduced and
established. In Section 3, the convergence properties of the GDSSOR iteration method are discussed together with
its parameter regions. In Section 4, we propose the choice for parameters of the GDSSOR iteration method which
includes the optimal parameter and the practical way of choosing iteration parameters. The inexact GDSSOR
iteration method is studied in Section 5 and its convergence properties are also investigated. Section 6 is devoted to
some numerical experiments to examine the feasibility and effectiveness of the GDSSOR and IGDSSOR iteration
methods for solving the linear system (1). Finally, brief conclusions are made in Section 7.

We end this section with an introduction of some notations that will be used in the subsequent analysis. For
a square matrix H, we indicate its trace by tr(H), its spectrum and the spectral radius by σ(H) and ρ(H),
respectively. ‖G‖2, ‖G‖F and κ(G) = ‖G−1‖2‖G‖2 stand for the Euclidean norm, the Frobenius norm and the
spectral condition number of the matrix G, respectively. Moreover, diag(a1, a2, . . . , an) denotes a diagonal matrix
with diagonal elements a1, a2, . . ., an, and J = tridiag(a, b, c) represents a tridiagonal matrix with Ji+1,i = a,
Ji,i = b and Ji,i+1 = c.

2. The generalized double steps scale-SOR (GDSSOR) iteration method

In this section, we first establish a new two-step iteration method called the generalized double steps scale
(GDSS) iteration method. Moreover, enlightened by the idea of [11], we further present a successive-overrelaxation
(SOR) acceleration scheme for the GDSS iteration, which yields the generalized double steps scale-SOR (GDSSOR)
iteration method.

We first equivalently rewrite the linear system (1) as

(α− i)A = (αW + T ) + i(αT −W )x = (α− i)b (9)

by multiplying the complex number (α − i) with α > 0 through both sides of (1). Similarly, premultiplying the
complex system (1) with another complex number (1− βi) with β > 0 yields that

(1− βi)A = [(βT +W ) + i(T − βW )]x = (1− βi)b. (10)

Equations (9) and (10) come essentially from [7, 8] where Bai et al. introduced the scale technique for the complex
symmetric linear system (1). Now, by alternately iterating between the two systems of fixed-point equations (9)
and (10), we can establish the following generalized double steps scale iteration method or, in brief, the GDSS
iteration method for solving the complex symmetric linear system (1).

The generalized double steps scale (GDSS) iteration method: Let α and β be two positive constants.
Given an initial guess x(0). For k = 0, 1, 2, . . ., until x(k) converges, compute

{
(αW + T )x(k+

1
2 ) = i(W − αT )x(k) + (α− i)b,

(βT +W )x(k+1) = i(βW − T )x(k+
1
2 ) + (1− βi)b.

(11)

3



The iteration matrix of the GDSS iteration method is M(α, β) = (βT +W )−1(T − βW )(αW + T )−1(W − αT ).
The GDSS iteration method reduces to the DSS one as α = β. In the subsequence, we establish the SOR

acceleration scheme and the associated theory mainly for the GDSS iteration. To this end, we first investigate the
following sufficient conditions for guaranteeing the convergence of the GDSS iteration method.

Theorem 2.1. Let W,T ∈ Rn×n be symmetric positive definite and symmetric positive semi-definite, respectively.

When µmin > 0, if the parameters α and β satisfy α ≤ β ≤ α + 2µmin or β < α ≤ 2(β2+1)
µmax

+ β, then the GDSS
iteration method is convergent; when µmin = 0, the GDSS iteration method is convergent if the parameters α and

β satisfy β < α ≤ 2(β2+1)
µmax

+ β. Here, µmax and µmin are the maximum and minimum eigenvalues of the matrix

W−1T , respectively.

Proof. We will study the conditions of α and β such that ρ(M(α, β)) < 1. By the similarity invariance of the
matrix spectrum, we have

ρ(M(α, β)) = ρ((βT +W )−1(βW − T )(αW + T )−1(W − αT ))

= ρ((βS + I)−1(βI − S)(αI + S)−1(I − αS))

= max
i

∣∣∣∣
(β − µi)(1− αµi)
(1 + βµi)(α+ µi)

∣∣∣∣ ,

where S = W−
1
2TW−

1
2 and µi is an eigenvalue of the matrix S. To get ρ(M(α, β)) < 1, it is enough to have

∣∣∣∣
(β − µi)(1− αµi)
(1 + βµi)(α+ µi)

∣∣∣∣ < 1, for 1 ≤ i ≤ n,

which is equivalent to

(α+ β)(1 + µ2
i ) > 0 and (β − α)µ2

i + 2(αβ + 1)µi + (α− β) > 0. (12)

If µmin > 0, then the convergence region of the GDSS iteration method follows in two different cases:

• β ≥ α. If α = β, then (12) is valid for α, β > 0. If β > α, then from the second inequality of (12) we obtain

µi >
−(αβ + 1) +

√
(α2 + 1)(β2 + 1)

β − α . (13)

Since

−(αβ + 1) +
√

(α2 + 1)(β2 + 1)

β − α <
−2(αβ + 1) + α2 + β2 + 2

2(β − α)

under the condition β > α, it follows that (13) holds if

µi ≥
−2(αβ + 1) + α2 + β2 + 2

2(β − α)
.

This shows that β ≤ α+ 2µmin, which together with β ≥ α gives α ≤ β ≤ α+ 2µmin.

• β < α. Solving the second inequality of (12) yields that

µi <
αβ + 1 +

√
(α2 + 1)(β2 + 1)

α− β . (14)

Note that

αβ + 1 +
√

(α2 + 1)(β2 + 1)

α− β >
β2 + 1 + β2 + 1

α− β =
2(β2 + 1)

α− β

under the condition β < α, thereby, (14) holds if

µmax(α− β) ≤ 2(β2 + 1),

from which we can deduce that β < α ≤ 2(β2+1)
µmax

+ β in terms of the condition β < α.
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If µmin = 0, then (β − α)µ2
min + 2(αβ + 1)µmin + (α− β) > 0 is invalid as β ≥ α. Thus we only consider β < α for

this case. Similar to the above discussions, it can be seen that if β < α ≤ 2(β2+1)
µmax

+ β, the GDSS iteration method
is convergent. �

Remark 2.1. Due to the fact that we are not easy to determine whether µmin is equal to 0 or not, the parameters

α and β can be chosen to satisfy β < α ≤ 2(β2+1)
µmax

+ β in practical calculations.

From the iteration scheme (11) of the GDSS iteration method we can obtain the fixed-point equations
{

(αW + T )x = i(W − αT )y + (α− i)b,
(βT +W )y = i(βW − T )x+ (1− βi)b. (15)

These two fixed-point equations have the following equivalence relationships with the original system of linear
equations (1).

Theorem 2.2. If x∗ is the exact solution of equation (1), then it is also the exact solution of equations (15), and
vice versa.

Proof. (15) directly leads to





1

α− i (αW + T )x =
i

α− i (W − αT )y + b,

1

1− βi (βT +W )y =
i

1− βi (βW − T )x+ b.
(16)

Subtracting the first equation of (16) from the second equation of (16) results in

[(1− βi)α+ i(α− i)β]Wx+ [(1− βi)− i(α− i)]Tx = [i(1− βi) + (α− i)]Wy + [(α− i)β − αi(1− βi)]Ty,
which can be simplified as

(α+ β)(W − iT )(x− y) = 0.

Taking into account α, β > 0 and the matrix W − iT is nonsingular, it has x = y. Thus
{

(W + iT )x = b,

(W + iT )x = b,

could be derived from (16) directly, which implies that (1) and (15) have the same exact solutions. �
(15) can be rewritten in the form

Āu =

(
αW + T −i(W − αT )
−i(βW − T ) βT +W

)(
x
y

)
=

(
(α− i)b
(1− βi)b

)
= b̄. (17)

Theorem 2.1 immediately implies the following fact.

Theorem 2.3. Let W,T ∈ Rn×n be symmetric positive definite and symmetric positive semi-definite, respectively,
and the parameters α and β satisfy the conditions of Theorem 2.1. Then the matrix Ā defined as in (17) is
nonsingular.

Proof. According to the conditions of this theorem, we infer that αW + T is symmetric positive definite, then

Ā =

(
αW + T −i(W − αT )
−i(βW − T ) βT +W

)

=

(
I 0

−i(βW − T )(αW + T )−1 I

)(
αW + T −i(W − αT )

0 G(α, β)

)
,

where

G(α, β) = (βT +W ) + (βW − T )(αW + T )−1(W − αT ),

= (βT +W )[I + (βT +W )−1(βW − T )(αW + T )−1(W − αT )]

= (βT +W )[I −M(α, β)].

Since α and β satisfy the conditions of Theorem 2.1, we have ρ(M(α, β)) < 1 by Theorem 2.1. Having in mind that
βT +W is symmetric positive definite, thus the conclusion of this theorem follows. �

By combining the proof of Theorems 2.2 and 2.3, the following theorem is obtained immediately.
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Theorem 2.4. Assume that the conditions of Theorem 2.3 are satisfied. If x∗ is the exact solution of (1), then
u∗ = (x∗;x∗) is the exact solution of the linear system (17). Conversely, if u∗ = (x∗; y∗) is the exact solution of
the linear system (17), then it must hold x∗ = y∗ and x∗ is the exact solution of (1).

Applying the block Jacobi iteration for (15), or for the block 2× 2 linear system (17), we have

(
αW + T 0

0 βT +W

)(
x(k+1)

y(k+1)

)
=

(
0 i(W − αT )

i(βW − T ) 0

)(
x(k)

y(k)

)
+

(
(α− i)b
(1− βi)b

)
,

or equivalently,

(
x(k+1)

y(k+1)

)
= J(α, β)

(
x(k)

y(k)

)
+

(
αW + T 0

0 βT +W

)−1(
(α− i)b
(1− βi)b

)
,

where

J(α, β) =

(
0 i(αW + T )−1(W − αT )

i(βT +W )−1(βW − T ) 0

)
. (18)

Now, we consider the block SOR iteration for (15) in the following:

(
αW + T 0

−ωi(βW − T ) βT +W

)(
x(k+1)

y(k+1)

)
=

(
(1− ω)(αW + T ) ωi(W − αT )

0 (1− ω)(βT +W )

)(
x(k)

y(k)

)
+ ωb̄, (19)

which can be regarded as the SOR acceleration of the GDSS iteration method. More precisely, we have the following
algorithmic description of the GDS-SOR (GDSSOR) iteration method.

The GDS-SOR (GDSSOR) iteration method: Let α, β and ω be three positive constants. Given an initial
vectors x(0) and y(0). For k = 0, 1, 2, . . ., until the iteration sequence {((x(k))∗, (y(k))∗)∗} converges, compute

{
(αW + T )x(k+1) = (1− ω)(αW + T )x(k) + ω[i(W − αT )y(k) + (α− i)b],
(βT +W )y(k+1) = (1− ω)(βT +W )y(k) + ω[i(βW − T )x(k+1) + (1− βi)b].

(20)

The GDSSOR iteration method can be reformulated as

x(k+1) = T (α, β, ω)x(k) + ω

(
αW + T 0

−ωi(βW − T ) βT +W

)−1
b̄,

where

T (α, β, ω) =

(
(1− ω)I ωi(αW + T )−1(W − αT )

iω(1− ω)(βT +W )−1(βW − T ) (1− ω)I + ω2M(α, β)

)
(21)

is the iteration matrix of the GDSSOR iteration method.
When ω = 1, it has

T (α, β, 1) =

(
0 i(αW + T )−1(W − αT )
0 M(α, β)

)
, (22)

which can be viewed as the iteration matrix of the block Gauss-Seidel method for (15). It follows from the form of
T (α, β, 1) in (22) that the spectral radius of T (α, β, 1) is the same as that of M(α, β).

The iteration scheme (20) indicates that at each step of the GDSSOR iteration, we need to solve two linear
systems with αW + T and βT +W as the coefficient matrices. Since the symmetric matrices W and T are positive
definite and positive semi-definite matrices, respectively, both αW +T and βT +W are symmetric positive definite.
Thus we can solve them exactly by the Cholesky factorization or inexactly by the conjugate gradient (CG) method.

3. Convergence analysis of the GDSSOR iteration method for complex symmetric linear systems

The GDSSOR iteration method is convergent if and only if ρ(T (α, β, ω)) < 1. This section discusses the
convergence of the GDSSOR iteration method, i.e., providing conditions to guarantee ρ(T (α, β, ω)) < 1. Before
presenting our theorem, we start with four lemmas which are useful in our proof.

Lemma 3.1. Let W,T ∈ Rn×n be symmetric positive definite and symmetric positive semi-definite, respectively.
Then λM = µ2, where λM and µ are the eigenvalues of the matrices M(α, β) and J(α, β), respectively.
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Proof. Assume that µ is an eigenvalue of the matrix J(α, β). If µ = 0, then |M(α, β)| = |J(α, β)| = 0, which
shows that µ2 = 0 is an eigenvalue of the matrix M(α, β). Otherwise, µ 6= 0, in this case we have

|µI − J(α, β)| =
∣∣∣∣

µI −i(αW + T )−1(W − αT )
−i(βT +W )−1(βW − T ) µI

∣∣∣∣ = |µ2I −M(α, β)| = 0,

which means that µ2 is an eigenvalue of the matrix M(α, β). Conversely, if λM = t2 is an eigenvalue of the matrix
M(α, β), then it holds that |λMI −M(α, β)| = 0. If λM = 0, then

|M(α, β)| = 0 =

∣∣∣∣
0 −i(αW + T )−1(W − αT )

−i(βT +W )−1(βW − T ) 0

∣∣∣∣ .

Hence 0 is an eigenvalue of the matrix J(α, β). If λM = t2 6= 0, then

|λMI −M(α, β)| =
∣∣∣∣
tI −i(αW + T )−1(W − αT )
0 tI − 1

tM(α, β)

∣∣∣∣ = |tI − J(α, β)| = 0.

Therefore, t is an eigenvalue of the matrix J(α, β) and the conclusion of this theorem is obtained. �

Lemma 3.2. [11, 29] If ω 6= 0, if λ is a non-zero eigenvalue of the matrix T (α, β, ω) of (21) and if µ satisfies

(λ+ ω − 1)2 = λω2µ2, (23)

then µ is an eigenvalue of the block Jacobi matrix J(α, β) of (18). Conversely, if µ is an eigenvalue of J(α, β) and
λ satisfies (23), then λ is an eigenvalue of T (α, β, ω).

Lemma 3.3. Let W,T ∈ Rn×n be symmetric positive definite and symmetric positive semi-definite, respectively,
and M(α, β) be the iteration matrix of the GDSS iteration method defined as in Theorem 2.1. Then λM is an
eigenvalue of M(α, β) if

λM =
(µ̄− β)(1− αµ̄)

(1 + βµ̄)(α+ µ̄)
,

where µ̄ is an eigenvalue of the matrix W−1T .

Proof. Let x be the eigenvector associated with the eigenvalue µ̄ of the matrix W−1T . Then Tx = µ̄Wx, which
leads to (αW + T )x = (α+ µ̄)Wx and (βT +W )x = (βµ̄+ 1)Wx. Thus, we can write

(αW + T )−1Wx =
1

α+ µ̄
x, (βT +W )−1Wx =

1

βµ̄+ 1
x,

which gives the following equation

M(α, β)x = (βT +W )−1(T − βW )(αW + T )−1(W − αT )x

= (1− αµ̄)(βT +W )−1(T − βW )(αW + T )−1Wx

=
1− αµ̄
α+ µ̄

(βT +W )−1(T − βW )x

=
(1− αµ̄)(µ̄− β)

α+ µ̄
(βT +W )−1Wx =

(µ̄− β)(1− αµ̄)

(1 + βµ̄)(α+ µ̄)
x.

This concludes the proof. �

Lemma 3.4. [38] Both roots of the real quadratic equation x2− bx+ c = 0 are less than one in modulus if and only
if |c| < 1 and |b| < 1 + c.

Theorem 3.1. Let W,T ∈ Rn×n be symmetric positive definite and symmetric positive semi-definite, respectively,
and the parameters α and β satisfy the conditions of Theorem 2.1. When µ is real, the GDSSOR iteration method
is convergent if and only if 0 < ω < 2; besides, when µ is a pure imaginary number, if 0 < ω < 2

1+
√
ρ(M(α,β))

, then

the GDSSOR iteration method is convergent. Here, µ is the eigenvalue of the matrix J(α, β).
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Proof. Let λ be the eigenvalue of the matrix T (α, β, ω). After rearranging Equation (23), we immediately obtain

λ2 + (2ω − 2− ω2µ2)λ+ (ω − 1)2 = 0. (24)

According to Lemma 3.3, it is readily seen that all eigenvalues of the matrix M(α, β) are real. Then the eigenvalue
µ of the matrix J(α, β) is a real or pure imaginary number in light of Lemma 3.1, which implies that µ2 ∈ R, and
therefore Equation (24) is a real quadratic equation. By Lemma 3.4, |λ| < 1 if and only if

|(ω − 1)2| < 1, |2ω − 2− ω2µ2| < 1 + (ω − 1)2. (25)

By straightforwardly solving the first inequality of (25) we immediately obtain 0 < ω < 2. However, the solution of
the second inequality of (25) is more involved and is demonstrated in the following. Easily, the second inequality
of (25) can be simplified to

ω2(1− µ2) > 0 and ω2(1 + µ2)− 4ω + 4 > 0. (26)

The combination of Theorem 2.1 and Lemma 3.1 leads to |µ| < 1. If µ2 ≥ 0, i.e., µ ∈ R, then it is obvious that
(26) holds for 0 < ω < 2. It remains to consider the case µ2 < 0, or in other words µ is a pure imaginary number,
then it follows from (26) that

0 < ω <
2− 2

√
−µ2

1 + µ2
=

2− 2|µ|
1− |µ|2 =

2

1 + |µ| or ω >
2 + 2

√
−µ2

1 + µ2
=

2 + 2|µ|
1− |µ|2 > 2,

which along with 0 < ω < 2 gives the convergence condition of the GDSSOR iteration method, namely

0 < ω <
2

1 + ρ(J(α, β))
=

2

1 +
√
ρ(M(α, β))

.

�

4. The choices for parameters of the GDSSOR iteration method

The main aim of this section is to determine the optimal iteration parameter ω and the corresponding optimal
asymptotic convergence factor of the GDSSOR iteration method and provide a practical way for the choice of
parameters of the GDSSOR iteration method.

Theorem 4.1. Let the conditions of Theorem 3.1 be satisfied.

• If all eigenvalues µ of J(α, β) are pure imaginary numbers, then the optimal value of the parameter ω for the
GDSSOR iteration method and the corresponding optimal convergence factor are

ω∗ =
2

1 +
√

1 + ρ(J(α, β))2
, ρ(T (α, β, ω∗)) = 1− 2

1 +
√

1 + ρ(J(α, β))2
. (27)

• If all eigenvalues of J(α, β) are real numbers, then the optimal value of the parameter ω for the GDSSOR
iteration method and the corresponding optimal convergence factor are

ω∗ =
2

1 +
√

1− ρ(J(α, β))2
, ρ(T (α, β, ω∗)) =

2

1 +
√

1− ρ(J(α, β))2
− 1. (28)

Proof. By simplifying Equation (23), we obtain

λ2 + [2(ω − 1)− ω2µ2]λ+ (ω − 1)2 = 0. (29)

Now, we proceed the proof by investigating the two cases:

• µ is a pure imaginary number, i.e., µ2 < 0. We rewrite Equation (29) as fω(λ) = g(λ), where we define

fω(λ) =
λ+ ω − 1

ω
and g(λ) = ±|µ|

√
−λ.

Clearly, fω(λ) passes through the point (1, 1) for all ω > 0. The straight line fω(λ) crosses the parabolas g(λ).
fω(λ) = g(λ) can be geometrically interpreted as the intersection of the curves fω(λ) and g(λ), as illustrated
in Figure 1. The discriminant of (29) is

∆(ω, µ) = ω2µ2(ω2µ2 − 4ω + 4). (30)
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When ∆(ω, µ) ≥ 0, the quadratic Equation (29) has two real roots λ1 and λ2. The largest abscissa of the
intersection point decreases when the slope of fω(λ) increases until it becomes tangent to g(λ). Under this
condition, we have λ1 = λ2, and as a result ∆(ω, µ) = 0, or equivalently,

−ω2µ2 + 4ω − 4 = 0 or µ = 0. (31)

If µ = 0, then |λ1| = |λ2| = |ω − 1|. In this case, ω = 1 is the best choice because of λ1 = λ2 = 0.

If µ 6= 0, then −ω2µ2 + 4ω − 4 = 0. It can be seen from Theorem 3.1 that 0 < ω < 2

1+
√
ρ(M(α,β))

, thus

0 < ω̂ =
2

1 +
√

1− µ2
=

2

1 +
√

1 + |µ|2
≤ 1

and |λ1| = |λ2| = 1 − ω̂. Note that ±ρ(J(α, β))
√
λ is an envelope for all the curves g(λ). So the minimum

value of |λ| is attained at 1− ω∗ with

ω∗ =
2

1 +
√

1 + ρ(J(α, β))2
.

When ∆(ω, µ) < 0, the quadratic Equation (29) has two conjugate complex roots λ1 and λ2. By some
calculations, we deduce that |λ1| = |λ2| = 1− ω with 0 < ω < ω∗ < 1. This investigation shows that |λ1| and
|λ2| satisfy

|λ1| = |λ2| = 1− ω > 1− ω∗ = 1− 2

1 +
√

1 + ρ(J(α, β))2
.

• µ is real, then µ2 ≥ 0 and it follows from (29) that the eigenvalues λ of the matrix T (α, β, ω) satisfy

λ+ ω − 1

ω
= ±|µ|

√
λ.

It can be viewed as the intersection points of the straight line

fω(λ) =
λ+ ω − 1

ω
,

which passes through the point (1, 1), and the parabolas h(λ) = ±|µ|
√
λ. Recalling that (30) is the discrimi-

nant of (29). When ∆(ω, µ) ≥ 0, the quadratic Equation (29) has two real roots λ1 and λ2. For each µ, these
roots are abscissas of the intersections of fω(λ) and h(λ), as illustrated in Figure 2.

Similar to the analysis in the case that µ is a pure imaginary number, the optimal value of the parameter ω is
the choice that guarantees that fω(λ) is a tangent line of h(λ). This shows that λ1 = λ2. Then ∆(ω, µ) = 0
and (31) holds true.

If µ = 0, then |λ1| = |λ2| = |ω − 1|. In this case, ω = 1 is the best choice because of λ1 = λ2 = 0 in this case.

If µ 6= 0, then ω2µ2 − 4ω + 4 = 0. The convergent domain 0 < ω < 2 implies that

1 ≤ ω̂ =
2

1 +
√

1− µ2
< 2

as 0 ≤ µ2 = |µ|2 < 1, and we have λ1 = λ2 = ω̂ − 1. Since ±ρ(J(α, β))
√
λ is an envelope for all the curves

h(λ), the minimum value of |λ| is attained at ω∗ − 1 with

ω∗ =
2

1 +
√

1− ρ(J(α, β))2
.

Now, we turn to consider the case that ∆(ω, µ) < 0, which implies that the quadratic Equation (29) has two
conjugate complex roots λ1 and λ2. By straightforwardly solving (29), we obtain |λ1| = |λ2| = ω − 1 with
1 ≤ ω∗ < ω < 2. Thereby,

|λ1| = |λ2| = ω − 1 > ω∗ − 1 =
2

1 +
√

1− ρ(J(α, β))2
− 1.
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Figure 1: Plot of the curves of fω(λ) and g(λ).
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Figure 2: Plot of the curves of fω(λ) and h(λ).

By combining the two cases above, we obtain the optimal value of ω and the corresponding optimal convergence
factor ρ(T (α, β, ω∗)) in (27) and (28). �

Note that the parameter ω∗ derived in Theorem 4.1 is related to ρ(J(α, β)). However, computing ρ(J(α, β)) is
very difficult and almost impossible when the problem size of J(α, β) are large enough. Here, a practical method
for determining the parameter ω is to find ω to minimize

Γ(ω) =

∥∥∥∥
(

(1− ω)(αW + T ) ωi(W − αT )
0 (1− ω)(βT +W )

)∥∥∥∥
2

F

= (1− ω)2tr((αW + T )2) + (1− ω)2tr((βT +W )2) + ω2tr((W − αT )2)

= ω2tr((αW + T )2 + (βT +W )2 + (W − αT )2)

−2ωtr((αW + T )2 + (βT +W )2) + tr((αW + T )2 + (βT +W )2).

This method comes essentially from [20]. Let a = tr((αW + T )2 + (βT + W )2 + (W − αT )2) and b = tr((αW +
T )2 + (βT +W )2). By direct computations, we get

dΓ(ω)

dω
= 2aω − 2b.

It is not difficult to see that

dΓ(ω)

dω
≤ 0, for 0 < ω ≤ b

a
, and

dΓ(ω)

dω
≥ 0, for ω ≥ b

a
.

Hence, ωpre = b
a is the optimal iteration parameter that minimizes Γ(ω), where

ωpre =
tr((αW + T )2 + (βT +W )2)

tr((αW + T )2 + (βT +W )2 + (W − αT )2)
=

(α2 + 1)tr(W 2) + (β2 + 1)tr(T 2) + 2(α+ β)tr(WT )

(α2 + 2)tr(W 2) + (α2 + β2 + 1)tr(T 2) + 2βtr(WT )
. (32)

Moreover, the convergence behavior of the GDSSOR iteration method also depends on the choice of the param-
eters α and β. Next, a practical way for the choice of parameters α and β of the GDSSOR iteration method is
given by adopting the idea of [15].

Two sub-systems of linear equations in the GDSSOR iteration method need to be solved, which have coefficient
matrices αW + T and βT + W , respectively. If either of them are solved inefficiently, then the convergence speed
of the GDSSOR method will be deteriorated. We can rewrite the GDSSOR iteration method in (20) into the
equivalent form

{
(αI +W−

1
2TW−

1
2 )x̃(k+1) = (1− ω)(αI +W−

1
2TW−

1
2 )x̃(k) + ω[i(I − αW− 1

2TW−
1
2 )ỹ(k) + (α− i)b̃],

(βW−
1
2TW−

1
2 + I)ỹ(k+1) = (1− ω)(βW−

1
2TW−

1
2 + I)ỹ(k) + ω[i(βI −W− 1

2TW−
1
2 )x̃(k+1) + (1− βi)b̃],

where x̃(k) = W
1
2x(k), ỹ(k) = W

1
2 y(k) and b̃ = W−

1
2 b. Then the GDSSOR iteration method may have fast

convergence rate if α and β minimize the function τ(α, β) := |(κ(αI+W−
1
2TW−

1
2 )−κ(βW−

1
2TW−

1
2 +I))|. It holds
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that there exists an unitary matrix such that U∗W−
1
2TW−

1
2U = diag(λ̃1, λ̃2, . . . , λ̃n) with λ̃i ≥ 0 (i = 1, 2, . . . , n)

due to the fact that W−
1
2TW−

1
2 is symmetric positive semi-definite. By direct calculations, we have

τ(α, β) = |‖(αI + S̄)−1‖2 · ‖αI + S̄‖2 − ‖(βS̄ + I)−1‖2 · ‖βS̄ + I‖2| =
∣∣∣∣∣
α+ λ̃max

α+ λ̃min

− βλ̃max + 1

βλ̃min + 1

∣∣∣∣∣ ,

where S̄ = W−
1
2TW−

1
2 , and λ̃max and λ̃min are the maximal and the minimal eigenvalues of the matrix S̄,

respectively. If

‖(αI +W−
1
2TW−

1
2 )−1‖2 · ‖αI +W−

1
2TW−

1
2 ‖2 = ‖(βW− 1

2TW−
1
2 + I)−1‖2 · ‖βW−

1
2TW−

1
2 + I‖2,

then τ(α, β) = 0. As a result, we have

α+ λ̃max

α+ λ̃min

=
βλ̃max + 1

βλ̃min + 1
,

which results in (αβ−1)(λ̃max− λ̃min) = 0. λ̃max 6= λ̃min may be supposed as it holds in many cases. Thus, αβ = 1,
and for a broad class of problems we can choose proper parameters α ≥ 1 and β ≤ 1 satisfying αβ = 1 for the
GDSSOR iteration method according to Remark 2.1.

The above analyses show that we can adopt proper α and β satisfying αβ = 1, and ω obtained in (32) for the
GDSSOR iteration method in the practical implements, whereas it may be very time consuming to find the proper
α and β satisfying αβ = 1 to make the GDSSOR iteration method effective.

Theorem 4.1 shows that the optimal convergence factor of the GDSSOR iteration method is strictly monotonic
increasing about ρ(J(α, β))2 or ρ(M(α, β)), so it makes sense to chose the parameters α and β to minimize it.
However, it is difficult to find the optimal values of α and β in general. Instead, we can consider to minimize the
upper bound of ρ(M(α, β)) to get the quasi-optimal parameters α∗ and β∗.

Theorem 4.2. Let W,T ∈ Rn×n be symmetric positive definite and symmetric positive semi-definite, respectively.
Then, the parameters β∗ and α∗ that minimize the upper bound

γ(α, β) = max
i

∣∣∣∣
β − µi
1 + βµi

∣∣∣∣ ·max
i

∣∣∣∣
1− αµi
α+ µi

∣∣∣∣

of ρ(M(α, β)) are:

β∗ =
µminµmax − 1 +

√
(1 + µ2

min)(1 + µ2
max)

µmin + µmax
, α∗ =

1− µminµmax +
√

(1 + µ2
min)(1 + µ2

max)

µmin + µmax
, (33)

where µmin and µmax denote the minimum and maximum eigenvalues of the matrix S = W−1T , respectively.

Proof. From Theorem 2.1, we have

ρ(M(α, β)) = ρ((βT +W )−1(βW − T )(αW + T )−1(W − αT ))

= ρ((βS + I)−1(βI − S)(αI + S)−1(I − αS))

≤ ‖(βS + I)−1(βI − S)‖2‖(αI + S)−1(I − αS)‖2

= max
i

∣∣∣∣
β − µi
1 + βµi

∣∣∣∣ ·max
i

∣∣∣∣
1− αµi
α+ µi

∣∣∣∣ =: γ(α, β),

where S = W−
1
2TW−

1
2 and µi is an eigenvalue of the matrix S. We now compute the quasi-optimal parameters

α∗ and β∗ which minimize the upper bound γ(α, β) of ρ(M(α, β)).
Note that g(µ) = µ−β

βµ+1 is an increasing function with respect to the variable µ, we have

max
i
|g(µi)| = max

i

∣∣∣∣
β − µi
1 + βµi

∣∣∣∣ = max
µ∈σ(W−1T )

∣∣∣∣
µ− β
βµ+ 1

∣∣∣∣ = max

{
µmax − β
βµmax + 1

,
β − µmin

βµmin + 1

}
.

If µmax ≤ β, then for any µ ∈ σ(W−1T ), it holds that µ− β ≤ 0 and

max
i

∣∣∣∣
β − µi
1 + βµi

∣∣∣∣ = max
µ∈σ(W−1T )

β − µ
βµ+ 1

=
β − µmin

βµmin + 1
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as β−µ
βµ+1 is monotonic decreasing about µ. If µmax ≥ β, then µmax − β ≥ 0. First, we assume that µmin 6= 0. Below

we distinguish two cases to discuss.
(i) µmin ≤ β, it holds that µmin − β ≤ 0 and therefore

max
i

∣∣∣∣
β − µi
1 + βµi

∣∣∣∣ = max

{
µmax − β
βµmax + 1

,
β − µmin

βµmin + 1

}
.

(ii) β ≤ µmin, then µmin − β ≥ 0. By considering the monotone property of the function µ−β
βµ+1 with respect to

µ again, we obtain

max
i

∣∣∣∣
β − µi
1 + βµi

∣∣∣∣ = max
µ∈σ(W−1T )

µ− β
βµ+ 1

=
µmax − β
βµmax + 1

.

Now, summarizing the above discussions, we have the following results

max
i

∣∣∣∣
β − µi
1 + βµi

∣∣∣∣ =





β − µmin

βµmin + 1
, for β ≥ µmax,

max

{
µmax − β
βµmax + 1

,
β − µmin

βµmin + 1

}
, for µmin ≤ β ≤ µmax,

µmax − β
βµmax + 1

, for β ≤ µmin.

With concrete computations, we obtain

∂

∂β
max
i

∣∣∣∣
β − µi
1 + βµi

∣∣∣∣ =





1 + µ2
min

(βµmin + 1)2
> 0, for β ∈ [β∗, µmax] ∪ [µmax,+∞) = [β∗,+∞),

− 1 + µ2
max

(βµmax + 1)2
< 0, for β ∈ (0, µmin] ∪ [µmin, β

∗] = (0, β∗].

From the monotonicity of max
i
|g(µi)| with respect to β, we can assert that if β∗ is the minimum point of max

i
|g(µi)|,

then it is located in the interval [µmin, µmax] and must satisfy µmax−β∗

β∗µmax+1 = β∗−µmin

β∗µmin+1 , which can be transformed into

(β∗)2(µmax + µmin)− 2β∗(µmaxµmin − 1)− (µmax + µmin) = 0.

In view of β > 0, we solve the above equation and derive

β∗ =
µminµmax − 1 +

√
(1 + µ2

min)(1 + µ2
max)

µmin + µmax
. (34)

For the case that µmin = 0, similarly to the above demonstration, we have

max
i

∣∣∣∣
β − µi
1 + βµi

∣∣∣∣ =





β, for β ≥ µmax,

max

{
µmax − β
βµmax + 1

, β

}
, for 0 < β ≤ µmax.

Then max
i
|g(µi)| attains its minimum if µmax−β

βµmax+1 = β, that is β∗ =

√
1+µ2

max−1
µmax

, which is exactly the value of (34)

with µmin = 0.
With a quite similar strategy utilized in the above proof, the optimal parameter α∗ defined as in (33) can also

be derived. The proof of this theorem is completed. �
A direct calculation verifies that the parameters α∗ and β∗ developed in (33) exactly satisfy the condition

α∗β∗ = 1. The numerical results in Section 6 illustrate the effectiveness of the GDSSOR iteration method by using
the parameters α∗, β∗ and ωpre.

Remark 4.1. Some remarks on the computations of the parameters α∗, β∗ and ωpre are as follows.

• When we compute the parameters α∗, β∗ of the GDSSOR iteration method according to (33), the maximum
and minimum eigenvalues of the matrix W−1T are estimated by a few iterations of the power and the inverse
power methods, respectively. Besides, when we compute the parameter ωpre of the GDSSOR iteration method
in terms of (32), the traces of the matrices W 2, T 2 and WT need to be computed. To reduce workload, they
are calculated according to the formula

tr(AB) =
n∑

i,j=1

(A ◦BT )ij , A,B ∈ Cn×n, (35)

where ◦ denotes the Hadamard product. In this way, the calculation of the matrix AB is avoid [37].
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• Suppose that the matrices W and T are dense. Then computing W−1T requires O(n3) flops, and estimating
the maximum and minimum eigenvalues of the matrix W−1T by the power and the inverse power methods
needs O(n2) and O(n3) flops, respectively. Therefore, the overall overheads for computing α∗ and β∗ in (33)
are O(n3) flops. Besides, computing the traces of the matrices W 2, T 2 and WT according to (35) requires
O(n2) flops, which means that the overall overheads for computing ωpre in (32) are O(n2) flops. In practice,
since the matrices W and T are generally sparse, the total cost can be reduced.

5. The inexact GDSSOR iteration method

As mentioned in [10], at each step of the HSS method, we should solve two subsystems with the coefficient
matrices αI +H and αI + S, which is very costly and impractical in actual implementations. To further improve
the efficiency of the HSS iteration method, Bai et al. [10, 12] employed the iterative methods for solving the two
subproblems, e.g., solving the linear systems with coefficient matrix αI + H by the CG and those with coefficient
matrix αI+S by the Lanczos or the CG for normal equations (CGNE) method, to some prescribed accuracies, and
obtained two special but quite practical inexact HSS (IHSS) iterations, briefly called as IHSS(CG, Lanczos) and
IHSS(CG, CGNE). Recent years, lots of work on inexact iteration methods has been contributed to solve the linear
systems, including the inexact LHSS (ILHSS) iteration method [23], the inexact non-alternating preconditioned HSS
(INPHSS) method [32], the inexact quasi-HSS (IQHSS) iteration method [6], the inexact two-step parameterized
(ITSP) iteration method [21] and so forth.

At each step of the GDSSOR iteration two linear systems with coefficient matrix αW + T and βT +W need to
be solved, which is very costly and impractical in actual implementations. To overcome this disadvantage, we can
solve these two linear systems by employing the CG method owing to the fact that they are symmetric positive
definite. With this approach the linear subsystems are solved inexactly, leading to the inexact GDSSOR iteration
method as follows.

The inexact GDSSOR (IGDSSOR) iteration method
Given an initial guess (x̄(0); ȳ(0)), for k = 0, 1, 2, . . ., until (x̄(k); ȳ(k)) converges, solve x̄(k+1) approximately from

(αW + T )x̄(k+1) ≈ (1− ω)(αW + T )x̄(k) + ω[i(W − αT )ȳ(k) + (α− i)b]
by employing the CG method with x̄(k) and ȳ(k) as the initial guesses; then solve ȳ(k+1) approximately from

(βT +W )ȳ(k+1) ≈ (1− ω)(βT +W )ȳ(k) + ω[i(βW − T )x̄(k+1) + (1− βi)b]
by employing the CG method with ȳ(k) and x̄(k+1) as the initial guesses, where α, β and ω are positive constants.

To simplify numerical implementation and convergence analysis, we may rewrite the above IGDSSOR iteration
method as the following equivalent scheme:

Given an initial guess (x̄(0); ȳ(0)), for k = 0, 1, 2, . . ., until (x̄(k); ȳ(k)) converges,

1. Compute r̄(k) = ω[(α− i)b− (αW + T )x̄(k) + i(W − αT )ȳ(k)];

2. Approximate the solution of (αW + T )z̄(k) = r̄(k) by the CG method until z̄(k) is such that the residual
p̄(k) = r̄(k) − (αW + T )z̄(k) satisfies ‖p̄(k)‖ ≤ ηk‖r̄(k)‖;

3. Compute x̄(k+1) = x̄(k) + z̄(k);

4. Compute t̄(k) = ω[(1− βi)b− (βT +W )ȳ(k) + i(βW − T )x̄(k+1)];

5. Approximate the solution of (βT + W )h̄(k) = t̄(k) by the CG method until h̄(k) is such that the residual
q̄(k) = t̄(k) − (βT +W )h̄(k) satisfies ‖q̄(k)‖ ≤ ηk‖t̄(k)‖;

6. Compute ȳ(k+1) = ȳ(k) + h̄(k).

Here, ‖.‖ is a norm of a vector, and {ηk} is a prescribed tolerance.
We can find that the IGDSSOR iteration scheme is induced by the matrix splitting ωĀ = Mα,β −Nα,β , where

Mα,β =

(
αW + T 0

−iω(βW − T ) βT +W

)
, Nα,β =

(
(1− ω)(αW + T ) ωi(W − αT )

0 (1− ω)(βT +W )

)
.

Then, the IGDSSOR iteration method computes the approximate solution ū(k+1) = ū(k) + s̄(k) at (k+1)th iteration
such that s̄(k) = (z̄(k); h̄(k)) is the solution of the system

Mα,β s̄
(k) = ḡ(k),

in which ḡ(k) = (r̄(k); t̄(k)) = ω(b̄ − Āū(k)) with ū(k) = (x̄(k); ȳ(k)) and b̄ = ((α − i)b; (1 − βi)b). In addition, the
stopping criterion is ‖v̄(k)‖ ≤ ηk‖ḡ(k)‖, where v̄(k) = ḡ(k) −Mα,β s̄

(k).
In what follows, we analyze the convergence of the IGDSSOR method. For this propose, we first quote the

following useful result.
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Lemma 5.1. [28] For every matrix B ∈ Cn×n and ε > 0, there exists a norm ‖ · ‖ on Cn such that for the
corresponding induced norm, ‖B‖ ≤ ρ(B) + ε.

Theorem 5.1. Let W,T ∈ Rn×n be symmetric positive definite and symmetric positive semi-definite, respectively,
and let Ā be defined as in (17) and ωĀ = Mα,β−Nα,β, where α, β and ω satisfy the conditions of Theorems 2.1 and
2.4, respectively. There exists a norm ‖ · ‖ on C2n such that for the corresponding induced norm, ‖M−1α,βNα,β‖ < 1.

Also, if {ū(k)} is a sequence defined as

ū(k+1) = ū(k) + s̄(k), with Mα,β s̄
(k) = v̄(k) + ḡ(k), (36)

satisfying ‖v̄(k)‖ ≤ ηk‖ḡ(k)‖, where ḡ(k) = ω(b̄ − Āū(k)), and u∗ is the exact solution of the system (17), then it
holds that

‖ū(k+1) − u∗‖ ≤ (‖M−1α,βNα,β‖+ ηkω‖M−1α,β‖‖Ā‖)‖ū(k) − u∗‖.

In particular, if

ηmax <
1− ‖M−1α,βNα,β‖
ω‖M−1α,β‖‖Ā‖

, (37)

then the sequence {ū(k)} converges to u∗, where ηmax = max
k
{ηk}.

Proof. Since Ā = 1
ωMα,β − 1

ωNα,β is the GDSSOR splitting of Ā and α, β and ω are located in their convergence

domains, we have ρ(M−1α,βNα,β) = ρ(T (α, β, ω)) < 1. According to Lemma 5.1, for γ = 1−ρ(T (α,β,ω))
2 , there exists a

norm ‖ · ‖ on C2n such that for the corresponding induced norm it has

‖M−1α,βNα,β‖ ≤ ρ(M−1α,βNα,β) + ε < 1,

It follows from (36) that

ū(k+1) = ū(k) +M−1α,β(v̄(k) + ḡ(k))

= ū(k) +M−1α,β(v̄(k) + ω(b̄− Āū(k)))
= (I − ωM−1α,βĀ)ū(k) +M−1α,β v̄

(k) + ωM−1α,β b̄

= M−1α,βNα,β ū
(k) +M−1α,β v̄

(k) + ωM−1α,β b̄. (38)

Since u∗ is the exact solution of the system (17), it holds that

u∗ = M−1α,βNα,βu
∗ + ωM−1α,β b̄. (39)

Subtracting Equation (39) from Equation (38) leads to

ū(k+1) − u∗ = M−1α,βNα,β(ū(k) − u∗) +M−1α,β v̄
(k),

which results in

‖ū(k+1) − u∗‖ ≤ ‖M−1α,βNα,β‖‖ū(k) − u∗‖+ ‖M−1α,β‖‖v̄(k)‖. (40)

Moreover, we can derive

‖v̄(k)‖ ≤ ηk‖ḡ(k)‖ = ηk‖ω(b̄− Āū(k))‖ = ηkω‖Ā(u∗ − ū(k))‖ ≤ ηkω‖Ā‖‖u∗ − ū(k)‖. (41)

The combination of Inequalities (40) and (41) yields the following result

‖ū(k+1) − u∗‖ ≤ ‖M−1α,βNα,β‖‖ū(k) − u∗‖+ ηkω‖M−1α,β‖‖Ā‖‖u∗ − ū(k)‖
= (‖M−1α,βNα,β‖+ ηkω‖M−1α,β‖‖Ā‖)‖u∗ − ū(k)‖.

Then a sufficient condition for guaranteeing the above inequality is

‖M−1α,βNα,β‖+ ηmaxω‖M−1α,β‖‖Ā‖ < 1,

which is valid if (37) holds true. Up to now, the proof has been completed. �

14



6. Numerical experiments

In this section, we carry out four examples to examine the feasibility and effectiveness of the GDSSOR and
the IGDSSOR iteration methods, and show the advantages of the GDSSOR iteration method over the PMHSS,
PPNHSS, MSNS, DSS and PFPAE ones, in terms of both the number of iteration steps (denoted as “IT”) and the
elapsed CPU time in seconds (denoted as “CPU”). In the meanwhile, we compare the performance of the IGDSSOR
iteration method with those of the inexact versions of the PMHSS, PPNHSS, CRI, DSS and PFPAE ones. Here,
the preconditioned matrix V in the PMHSS and the PPNHSS iteration methods is taken as W . The experimentally
found optimal parameters of the tested iteration methods used in actual computations are obtained experimentally
by minimizing the corresponding iteration steps. In all tables, the parameters αpre and βpre are the ones that
satisfy αβ = 1 and minimize the IT of the GDSSOR iteration method, and the parameters α∗ and β∗ are the ones
obtained in (33). In addition, the parameter ωpre is the one computed by (32).

We performe all experiments using MATLAB (version R2016a) on a personal computer with Intel (R) Pentium
(R) CPU G3240T 2.70 GHz, 4.0 GB memory and XP operating system. In our computations, all iteration methods

are started from the zero vector, and terminated once the stopping criterion RES =
√
‖b−Ax(k)‖2
‖b‖2 < 10−6 is satisfied.

Example 6.1. We consider the following complex symmetric linear system [7, 8]:

[(−$2M +K) + i($CV + CH)]x = b,

where M and K are the inertia and the stiffness matrices, CV and CH are the viscous and the hysteretic damping
matrices, respectively, and $ is the driving circular frequency. We take CH = µK with µ a damping coefficient,
M = I, CV = 10I, and K the five-point centered difference matrix approximating the negative Laplacian operator
with homogeneous Dirichlet boundary conditions, on a uniform mesh in the unit square [0, 1]× [0, 1] with the mesh-
size h = 1/(m + 1). The matrix K ∈ Rn×n possesses the tensor-product form K = I ⊗ Vm + Vm ⊗ I, with
Vm = h−2tridiag(−1, 2,−1) ∈ Rm×m. Hence, K is an n × n block-tridiagonal matrix, with n = m2. In addition,
we set the right-hand side vector b to be b = (1 + i)A1, with 1 being the vector of all entries equal to 1. As before,
we normalize the system by multiplying both sides through by h2.

Example 6.2. Consider the complex Helmholtz equation [17, 33, 39]:

−4u+ σ1u+ iσ2u = f,

with σ1 and σ2 being real coefficient functions. Here, u satisfies Dirichlet boundary conditions in the square D =
[0, 1]× [0, 1]. By discretizing this equation with finite differences on an m×m grid with mesh size h = 1/(m+ 1),
we obtain a complex linear system

[(K + σ1I) + iσ2I]x = b,

where the matrix K ∈ Rn×n possesses the tensor-product form

K = I ⊗Bm +Bm ⊗ I with Bm =
1

h2
· tridiag(−1, 2,−1) ∈ Rm×m.

Actually, K is the five-point centered difference matrix approximating the negative Laplacian operator L = −∆.
In our tests, let the right-hand side vector b = (1 + i)A1 with 1 being the vector of all entries are equal to 1. In
addition, we normalize the complex linear system by multiplying both sides by h2.

Example 6.3. [7, 8, 17, 30] Consider the linear system of equations (W + iT )x = b, with

T = I ⊗ V + V ⊗ I and W = 10(I ⊗ Vc + Vc ⊗ I) + 9(e1e
T
m + eme

T
1 )⊗ I,

where V = tridiag(−1, 2,−1) ∈ Rm×m, Vc = V − e1eTm − emeT1 ∈ Rm×m and e1 and em are the first and last unit
vectors in Rm, respectively. We take the right-hand side vector b to be b = (1 + i)A1, with 1 being the vector of all
entries equal to 1.

Here T and W correspond to the five-point centered difference matrices approximating the negative Laplacian op-
erator with homogeneous Dirichlet boundary conditions and periodic boundary conditions, respectively, on a uniform
mesh in the unit square [0, 1]× [0, 1] with the mesh-size h = 1

m+1 .
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Table 1: Numerical results of Example 6.1 for the six iteration methods when ($,µ) = (π, 0.02).

Method m 16 32 48 64

αexp 0.8 0.9 0.9 0.9
PMHSS IT 69 74 75 76

CPU 0.0421 1.0196 4.7032 14.5300
RES 9.27e-07 9.11e-07 9.63e-07 8.87e-07
αexp 1.1 1.1 1.1 1.1
ωexp 1.3 1.35 1.35 1.35

PPNHSS IT 32 33 33 33
CPU 0.0193 0.4656 2.0347 6.6392
RES 8.73e-07 9.65e-07 8.44e-07 8.64e-07
αexp 0.17 0.07 0.04 0.03

MSNS IT 18 30 47 60
CPU 0.0198 0.5002 3.7481 14.9883
RES 8.88e-07 7.42e-07 7.79e-07 8.31e-07
αexp 0.12 0.09 0.09 0.08

DSS IT 40 47 51 51
CPU 0.0251 0.6716 3.2774 10.6399
RES 9.18e-07 9.31e-07 9.28e-07 8.62e-07
αexp 0.65 0.65 0.65 0.65
ωexp 1.3 1.4 1.4 1.4

PFPAE IT 50 51 50 50
CPU 0.0182 0.5474 2.4550 7.3635
RES 8.44e-07 9.61e-07 9.75e-07 8.87e-07
αexp 1.25 1.32 1.32 1.32
βexp 0.72 0.72 0.72 0.72
ωexp 0.89 0.89 0.89 0.89

GDSSOR IT 14 14 14 14
CPU 0.0087 0.1891 0.8675 2.8197
RES 7.49e-07 8.23e-07 6.79e-07 6.78e-07
αpre 1.7 1.8 1.8 1.8
βpre 0.5882 0.5556 0.5556 0.5556
ωpre 0.8258 0.8275 0.8253 0.8245

GDSSOR IT 17 17 17 17
CPU 0.0102 0.2176 1.0021 3.4041
RES 7.98e-07 6.76e-07 7.69e-07 8.14e-07
α∗ 1.3055 1.3210 1.3248 1.3263
β∗ 0.7660 0.7570 0.7549 0.7540
ωpre 0.7635 0.7536 0.7518 0.7512

GDSSOR IT 21 21 21 21
CPU 0.0144 0.2995 1.3718 4.3808
RES 5.11e-07 6.96e-07 6.96e-07 6.81e-07
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Table 2: When (σ1, σ2) = (10, 100), numerical results of Example 6.2 for different iteration methods.

Method m 16 32 48 64

αexp 0.74 0.9 0.9 1
PMHSS IT 63 74 77 79

CPU 0.0415 0.9304 4.8985 16.3990
RES 9.12e-07 8.77e-07 9.52e-07 8.62e-07
αexp 1 1 1 1
ωexp 1.25 1.3 1.3 1.32

PPNHSS IT 32 34 36 36
CPU 0.0191 0.4823 2.2656 7.4313
RES 8.75e-07 9.80e-07 7.99e-07 7.52e-07
αexp 0.35 0.09 0.04 0.022

MSNS IT 7 8 9 10
CPU 0.0057 0.1303 0.6378 2.2171
RES 1.87e-07 1.02e-07 1.67e-07 3.41e-07
αexp 0.17 0.08 0.055 0.042

DSS IT 42 81 116 151
CPU 0.0275 1.1052 7.8307 33.9649
RES 7.92e-07 9.71e-07 9.25e-07 9.79e-07
αexp 0.68 0.66 0.66 0.66
ωexp 1.22 1.35 1.35 1.35

PFPAE IT 49 53 53 53
CPU 0.0186 0.5452 2.8217 9.4808
RES 9.18e-07 8.37e-07 8.00e-07 9.35e-07
αexp 1.37 1.37 1.37 1.37
βexp 0.72 0.72 0.72 0.72
ωexp 0.88 0.88 0.88 0.88

GDSSOR IT 15 15 15 15
CPU 0.0094 0.2013 0.8945 2.9131
RES 3.23e-07 4.02e-07 4.61e-07 4.10e-07
αpre 1.6 1.8 1.85 1.85
βpre 0.6250 0.5556 0.5405 0.5405
ωpre 0.8304 0.8223 0.8215 0.8190

GDSSOR IT 17 17 17 17
CPU 0.0103 0.2196 1.0047 3.2237
RES 6.19e-07 8.86e-07 9.51e-07 9.41e-07
α∗ 1.2779 1.3236 1.3323 1.3359
β∗ 0.7825 0.7555 0.7506 0.7485
ωpre 0.7789 0.7483 0.7418 0.7396

GDSSOR IT 20 21 22 22
CPU 0.0135 0.2878 1.6043 4.5364
RES 6.08e-07 9.76e-07 6.05e-07 6.64e-07
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Table 3: Numerical results of Example 6.3 for different iteration methods.

Method m 16 32 48 64

αexp 0.5 0.5 0.5 0.5
PMHSS IT 61 60 60 60

CPU 0.0373 0.8555 3.8803 15.0931
RES 8.09e-07 9.92e-07 9.78e-07 9.78e-07
αexp 0.6 0.6 0.6 0.6
ωexp 2.8 1.8 1.5 1.4

PPNHSS IT 11 17 21 24
CPU 0.0096 0.2734 1.4115 4.8246
RES 9.68e-07 6.30e-07 6.71e-07 8.93e-07
αexp 0.7 0.35 0.25 0.2

MSNS IT 132 263 368 488
CPU 0.1219 4.0745 28.3546 124.5053
RES 9.65e-07 9.97e-07 9.71e-07 9.89e-07
αexp 0.23 0.23 0.22 0.23

DSS IT 28 28 26 27
CPU 0.0179 0.3826 1.6330 5.6305
RES 6.63e-07 9.46e-07 8.21e-07 8.84e-07
αexp 0.95 0.85 0.78 0.8
ωexp 3 1.9 1.6 1.4

PFPAE IT 21 29 36 41
CPU 0.0081 0.3024 1.7502 6.7512
RES 7.72e-07 8.85e-07 8.86e-07 9.05e-07
αexp 1.85 1.75 1.4 1.4
βexp 0.27 0.5 0.5 0.5
ωexp 0.982 0.96 0.93 0.89

GDSSOR IT 8 10 12 14
CPU 0.0048 0.1336 0.7375 2.6482
RES 9.52e-07 9.26e-07 5.88e-07 5.29e-07
αpre 3.5 2.5 2 1.8
βpre 0.2857 0.4 0.5 0.5556
ωpre 0.9705 0.9329 0.8958 0.8753

GDSSOR IT 9 12 14 15
CPU 0.0055 0.1627 0.9019 2.9402
RES 7.78e-07 3.63e-07 3.37e-07 5.17e-07
α∗ 3.0022 1.9786 1.6153 1.4368
β∗ 0.3331 0.5054 0.6191 0.6960
ωpre 0.9559 0.8938 0.8526 0.8269

GDSSOR IT 10 14 16 17
CPU 0.0068 0.1946 1.0950 3.5471
RES 8.50e-07 3.96e-07 4.10e-07 8.93e-07
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Table 4: Numerical results of Example 6.4 for different iteration methods.

Method m 16 32 48 64

αexp 1.3 1.3 1.3 1.3
PMHSS IT 43 43 43 43

CPU 0.0326 0.6504 2.9208 8.8443
RES 8.29e-07 9.16e-07 9.33e-07 9.25e-07
αexp 0.25 0.25 0.25 0.25
ωexp 0.65 0.65 0.65 0.65

PPNHSS IT 10 11 11 11
CPU 0.0064 0.1483 0.6920 2.0652
RES 2.74e-07 2.51e-07 4.91e-07 6.69e-07
αexp 1.5 1.05 0.85 0.75

MSNS IT 60 85 105 122
CPU 0.0571 1.4068 8.9291 30.6964
RES 8.89e-07 9.97e-07 9.36e-07 9.70e-07
αexp 0.5 0.5 0.5 0.48

DSS IT 14 14 15 15
CPU 0.0092 0.2060 0.9632 2.8916
RES 4.86e-07 6.23e-07 5.84e-07 6.42e-07
αexp 0.95 0.95 0.95 0.95
ωexp 0.6 0.65 0.62 0.62

PFPAE IT 19 19 19 20
CPU 0.0086 0.2291 1.0020 2.9518
RES 6.92e-07 9.06e-07 9.88e-07 5.84e-07
αexp 0.72 0.7 0.65 0.65
βexp 1.36 1.5 1.7 1.7
ωexp 0.985 0.982 0.983 0.983

GDSSOR IT 8 8 8 8
CPU 0.0049 0.1056 0.4953 1.4284
RES 3.45e-07 7.67e-07 6.62e-07 7.27e-07
αpre 0.6579 0.6250 0.6061 0.5882
βpre 1.52 1.6 1.65 1.7
ωpre 0.9897 0.9866 0.9850 0.9837

GDSSOR IT 8 8 8 8
CPU 0.0049 0.1090 0.4701 1.4612
RES 1.27e-07 3.17e-07 5.47e-07 8.23e-07
α∗ 0.6448 0.6150 0.6030 0.5966
β∗ 1.5510 1.6260 1.6583 1.6761
ωpre 0.9889 0.9860 0.9848 0.9842

GDSSOR IT 8 8 8 8
CPU 0.0062 0.1089 0.5159 1.5663
RES 1.56e-07 3.71e-07 5.85e-07 7.43e-07
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Example 6.4. [7, 8, 17] Consider the linear system of equations

[(
K +

3−
√

3

τ
I

)
+ i

(
K +

3 +
√

3

τ
I

)]
x = b,

where τ is the time step-size and K is the five-point centered difference matrix approximating the negative Laplacian
operator L = −δ with homogeneous Dirichlet boundary conditions, on a uniform mesh in the unit square [0, 1]×[0, 1]
with the mesh-size h = 1

m+1 . The matrix K ∈ Rn×n possesses the tensor-product form K = I ⊗ Vm + Vm ⊗ I, with

Vm = h−2tridiag(−1, 2,−1) ∈ Rm×m. Hence, K is an n× n block-tridiagonal matrix, with n = m2. We take

W = K +
3−
√

3

τ
I and T = K +

3 +
√

3

τ
I,

and the right-hand side vector b with its jth entry bj being given by

bj =
(1− i)j
τ(j + 1)2

, j = 1, 2, . . . , n.

In our tests, we take τ = h. Besides, we normalize coefficient matrix and right-hand side by multiplying both by h2.

6.1. The experimental results of exact implementations

For all the tested exact iteration methods, we apply the Cholesky factorization or the LU factorization of the
coefficient matrices for solving the sub-systems.

Tables 1–4 list the experimentally found optimal parameters, IT, CPU times and RES of the tested exact
iteration methods for Examples 6.1–6.4 with the varying of problems size, respectively. Furthermore, the numerical
results of the GDSSOR iteration method with the parameters αpre, βpre, ωpre and α∗, β∗, ωpre are also reported. To
further validate the superiority of the GDSSOR iteration method to the other tested iteration methods, we depict
the spectral radii of the six different tested iteration matrices with the experimentally found optimal parameters in
Figure 3. In addition, we compare the spectral radius of the GDSSOR iteration method in conjunction with the
experimentally found optimal parameters (denoted by ‘GDSSOR-exp’), with αpre, βpre, ωpre (denoted by ‘GDSSOR-
pre’) and with α∗, β∗, ωpre (denoted by ‘GDSSOR-*’) for Examples 6.1-6.4 in Figure 4.

Some observations on Tables 1-4 and Figures 3-4 are given below.

• Through numerical experiments in Tables 1-4, it can be observed that the GDSSOR iteration method perform
much better than the other ones, especially when problem size increases. The exception is in Table 2 where the
MSNS iteration method leads to better performance than the GDSSOR one. However, the MSNS iteration
method converges slowly for Examples 6.1, 6.3 and 6.4, and its IT grows rapidly with the problem size
increases.

• Compared with other tested iteration methods, the GDSSOR iteration method is not sensitive to m, in the
sense the iterations barely change.

• The performances of the GDSSOR iteration method with the parameters αpre, βpre, ωpre, α
∗, β∗, ωpre and

the experimentally found optimal parameters are comparable. Thus, the parameters αpre, βpre, ωpre and
α∗, β∗, ωpre can be considered as reasonable approximations of the optimal parameters of the GDSSOR itera-
tion method. In addition, with these parameters, the GDSSOR iteration method outperforms the other ones
in terms of IT and CPU times except for the MSNS one in Table 2.

• As observed in Figure 3, the spectral radius of the GDSSOR iteration method is always smaller than those of
the other ones, except for the case that the spectral radius of the GDSSOR iteration method is larger than
that of the MSNS one for Example 6.2, which is in accordance with the numerical results of Tables 1-4.

• Figure 4 shows that the parameters αpre, βpre, ωpre and α∗, β∗, ωpre can be considered as reasonable approx-
imations of the optimal parameters of the GDSSOR iteration method, and we can choose them in practical
computation as substitutions for the GDSSOR one.
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Figure 3: The spectral radii of the iteration matrices of the tested iteration methods.

Table 5: Numerical results of Example 6.1 for the tested inexact iteration methods when ($,µ) = (π, 0.02).

Method m 16 32 48 64

αexp 0.8 0.9 0.9 0.9
IPMHSS IT 69 74 75 76

CPU 0.1785 2.0047 12.0925 40.5837
RES 9.33e-07 9.52e-07 9.88e-07 9.27e-07
αexp 1.1 1.1 1.1 1.1
ωexp 1.3 1.35 1.35 1.35

IPPNHSS IT 32 33 33 33
CPU 0.1019 1.2557 8.0738 30.0332
RES 9.11e-07 9.63e-07 8.42e-07 8.65e-07
αexp 1 1 1 1

ICRI IT 30 29 28 28
CPU 0.0813 1.0511 7.1880 26.4427
RES 8.79e-07 7.72e-07 8.92e-07 7.12e-07
αexp 0.11 0.09 0.08 0.08

IDSS IT 41 48 51 51
CPU 0.1019 1.3790 8.7841 35.0523
RES 7.28e-07 9.60e-07 8.79e-07 8.50e-07
αexp 0.65 0.65 0.65 0.65
ωexp 1.3 1.4 1.4 1.4

IPFPAE IT 50 51 50 50
CPU 0.0828 0.9541 6.2611 24.6392
RES 8.47e-07 9.61e-07 9.75e-07 8.88e-07
αexp 1.4 1.4 1.4 1.4
βexp 0.76 0.7 0.7 0.7
ωexp 0.88 0.87 0.87 0.87

IGDSSOR IT 15 15 15 15
CPU 0.0589 0.8091 5.1041 20.2407
RES 4.72e-07 6.46e-07 7.18e-07 7.67e-07
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Figure 4: The spectral radii of the GDSSOR iteration matrix with different parameters.

Table 6: When (σ1, σ2) = (10, 100), numerical results of Example 6.2 for different inexact iteration methods.

Method m 16 32 48 64

αexp 0.74 0.9 0.9 1
IPMHSS IT 63 74 77 79

CPU 0.1725 1.8744 11.0587 41.8175
RES 9.91e-07 8.83e-07 9.56e-07 8.65e-07
αexp 1 1 1 1
ωexp 1.25 1.3 1.32 1.32

IPPNHSS IT 32 34 35 36
CPU 0.0689 0.8711 5.2270 19.3306
RES 8.78e-07 9.85e-07 8.95e-07 7.54e-07
αexp 1 1 1 1

ICRI IT 40 38 38 37
CPU 0.1014 0.9979 5.9074 22.2308
RES 7.34e-07 9.80e-07 7.40e-07 8.51e-07
αexp 0.17 0.08 0.041 0.027

IDSS IT 43 84 106 129
CPU 0.1050 2.0926 12.0974 64.5551
RES 9.07e-07 9.95e-07 9.20e-07 9.12e-07
αexp 0.68 0.68 0.68 0.66
ωexp 1.22 1.32 1.37 1.35

IPFPAE IT 49 53 53 53
CPU 0.0667 0.7491 4.3588 15.7308
RES 9.44e-07 9.17e-07 9.10e-07 9.37e-07
αexp 1.37 1.37 1.37 1.37
βexp 0.72 0.72 0.72 0.72
ωexp 0.88 0.88 0.88 0.88

IGDSSOR IT 15 15 15 15
CPU 0.0422 0.5326 3.2859 11.6236
RES 3.68e-07 4.35e-07 5.24e-07 4.84e-07
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Table 7: Numerical results of Example 6.3 for different inexact iteration methods.

Method m 16 32 48 64

αexp 0.5 0.5 0.5 0.5
IPMHSS IT 61 61 61 61

CPU 0.2769 3.9190 31.6788 120.1593
RES 8.25e-07 8.16e-07 7.96e-07 8.66e-07
αexp 0.6 0.6 0.6 0.6
ωexp 2.8 1.9 1.55 1.4

IPPNHSS IT 11 16 20 24
CPU 0.0439 0.9653 8.9415 36.4089
RES 7.48e-07 7.24e-07 8.34e-07 9.40e-07
αexp 1 1 1 1

ICRI IT 37 38 35 36
CPU 0.1388 2.0345 17.7485 58.3309
RES 8.60e-07 8.55e-07 7.66e-07 9.49e-07
αexp 0.22 0.23 0.21 0.22

IDSS IT 28 29 27 28
CPU 0.1190 2.0178 12.7516 51.6989
RES 9.97e-07 8.22e-07 7.76e-07 9.22e-07
αexp 0.95 0.85 0.78 0.8
ωexp 3 1.9 1.65 1.4

IPFPAE IT 21 29 37 41
CPU 0.0451 1.0410 8.6678 38.2567
RES 7.75e-07 9.03e-07 9.40e-07 9.30e-07
αexp 1.84 1.83 1.4 1.4
βexp 0.23 0.52 0.5 0.5
ωexp 0.982 0.952 0.93 0.89

IGDSSOR IT 9 11 12 14
CPU 0.0336 0.6666 5.7557 24.3263
RES 3.67e-07 5.34e-07 5.62e-07 4.86e-07

Table 8: Numerical results of Example 6.4 for different inexact iteration methods.

Method m 16 32 48 64

αexp 1.3 1.3 1.3 1.3
IPMHSS IT 43 43 43 43

CPU 0.1417 1.7934 11.2244 38.3304
RES 8.31e-07 9.20e-07 9.34e-07 9.27e-07
αexp 0.1 0.12 0.13 0.13
ωexp 0.65 0.63 0.62 0.62

IPPNHSS IT 9 10 11 11
CPU 0.0231 0.2538 1.5360 5.3587
RES 9.85e-07 7.06e-07 2.61e-07 3.34e-07
αexp 1 1 1 1

ICRI IT 41 41 41 41
CPU 0.1128 1.2175 6.4714 21.1218
RES 8.22e-07 8.94e-07 9.18e-07 9.30e-07
αexp 0.55 0.5 0.5 0.22

IDSS IT 13 14 15 15
CPU 0.0369 0.4380 2.4748 7.6301
RES 3.36e-07 6.20e-07 5.70e-07 9.95e-07
αexp 0.95 0.95 0.95 0.95
ωexp 0.65 0.65 0.62 0.62

IPFPAE IT 17 19 19 20
CPU 0.0241 0.2616 1.4866 4.9158
RES 9.34e-07 9.06e-07 9.95e-07 5.85e-07
αexp 0.72 0.7 0.65 0.65
βexp 1.36 1.5 1.7 1.7
ωexp 0.985 0.982 0.983 0.983

IGDSSOR IT 8 9 9 9
CPU 0.0226 0.2477 1.4822 4.8207
RES 8.70e-07 5.34e-07 3.00e-07 4.16e-07
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6.2. The experimental results of inexact implementations

We adopt the CG method as the inner solver for the tested inexact iteration methods. For the inexact iteration
methods, the stopping criterion for the CG iteration method is 10−2.

We report the experimentally found optimal parameters as well as the numerical results of the inexact iteration
methods for Examples 6.1–6.4 in Tables 5–8, respectively.

By comparing the results in Tables 5–8, it can be clearly seen that although all tested inexact iteration methods
can successfully compute approximate solutions satisfying the prescribed stopping criterion. The IGDSSOR iteration
method always outperforms the other five ones in terms of IT and CPU times, and the advantage of the IGDSSOR
iteration method becomes more pronounced as the system size increases. Besides, with problem size increases, the
IT of the IGDSSOR iteration method keeps constant or grows very slowly.

7. Conclusions

For the large sparse complex symmetric linear systems, we first generalize the double-step scale splitting (DSS)
iteration method to obtain the generalized DSS (GDSS) one and, based on it, we further establish the generalized
double steps scale-successive-overrelaxation (GDSSOR) iteration method by applying the SOR acceleration scheme
for the GDSS iteration. The convergence properties, optimal parameters and a practical way for the choice of
iteration parameters of the GDSSOR iteration method are studied in details. The inexact version of the GDSSOR
iteration method and its convergent condition are also derived. Moreover, the presented numerical experiments
show that the GDSSOR method is superior to some existing ones in terms of the iterations and CPU times.

Lastly, what we want to point out here is that although the practical choice of the parameters α and β satisfy
αβ = 1 has been obtained, they depend on the extreme eigenvalues of the matrix W−1T , which are difficult to
be obtained when the size of W−1T is large enough. Hence we should investigate the more practical choice of the
parameters α and β in our further work.
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