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Abstract

We have very few literature on fixed point iterative methods for . ~lIvi 4 nonl 1ear equations. We
consider the Stirling method given by Rall [2]. Based on stirling i. *hod, I * . paper, we propose a
third order stirling-like method for finding fixed point for nonlinear equ. ‘ons in Banach spaces. We
study the local and semilocal convergence of this method for fi. "¢ the fixe ( points of nonlinear equa-
tions in Banach spaces. The convergence established under v. assun., . that the first order Fréchet
derivative satisfies the Lipschitz continuity condition. The existenc ~nd uniqueness theorem that es-
tablishes the convergence balls of these methods is obta.. 1. We consider the numerical examples for
local and semilocal convergence case and calculate the existenc. “nd uniqueness region of convergence
balls even we fail to apply the results in [6,11-13] a ~to v . s not contraction on €.

Keywords:Local convergence, Semilocal convergence, . - chet derivative, Fixed points, Banach spaces

1 Introduction

One of the most important problems in computatio.. ! mathematics is to solve nonlinear equations. The
problem of solving these systems of non'" .. ~quations arises in diverse areas of engineering, mathematics,
physics, chemistry and biology for < /stems wi ch model various phenomena. In many situations, the
nonlinear problems naturally appear in v. ~ for 1 of nonlinear equations or systems of nonlinear equations
in Banach spaces. Finding the sc atior of nonlinear equations is actually enough motivation for researchers
to develop new computationally 7 ient .erative methods. A main reason is of course that analytical
solutions are often not av: lable for 1.8t types of nonlinear equations and hence numerical iterative
methods are best suited .or tu. nurpose. We discuss the development of iterative schemes for scalar
nonlinear equations, fo . mputing the generalized inverse of a matrix, for general classes of systems of
nonlinear equations .nd fo specific systems of nonlinear equations associated with ordinary and partial
differential equatic ns. W “ave experience with many higher order iterative methods for solving nonlinear
equations. The conve gence analysis of iterative methods in Banach spaces is usually divided into two

categories, name..  emile al and local convergence analysis. The local convergence analysis is based on
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the information in the vicinity of the solution, and the semilocal convergence is based a ass mptions
at initial approximations and on the domain. There are two different types of approaches ~ iscuss the
convergence analysis of iterative methods. The majorizing sequence approach and the rec. “ence 1 iations
approach. Using these approaches, we assume different types of Kantorovich assu .pu. ns to a.scuss the
convergence analysis.

The development of higher order one point and multi point iterative methods witu. + involving higher
order derivative have important role to solve nonlinear equations. Many rese: chers dc =loped higher order
iterative methods for solving nonlinear equations (see [7,9]). The local and sc nilocal co vergence of higher
order iterative methods developed by [8,10]

The purpose of this study is computation of a fixed point of nonl wear pera >r equation of the form
z = F(x) (1.1)

where, F': Q C X — Y be a nonlinear Fréchet differentiable -~ a convex subset Q2 of X with values in
Y. We motivated from this approximating a fixed point z* " nonhu.  operator equation (1.1). This is
important and challenging problems extensively studied in numerica. ~nalysis and many applied scientific
areas. Bartle [1] studied the following quadratically conver, nce iterative method for finding fixed points

of nonlinear equation
Tng1 = 20— (I = F'(yn)) - — F(zn)) (1.2)

where, F' has a Fréchet derivative F’ at least at th re., ired point. From this, for y, = x, it is reduced
to Newton’s method and for y, = zp modif ' Newto. ’s method. The special case for y, = F(xp),n =
0,1,2... we obtained the stirling’s method (see h. ™ 2]). Consider the Stirling method defined in [3]. The
semilocal convergence of a Stirling method under the assumption that the first order Fréchet derivative
satisfies the Lipschitz continuity cond .ion est. hlished by [4]. The local and semilocal convergence of the
stirling method given in [5,6,11-13] ~der the restrictive assumption that ||F’(z)| is strictly bounded
above by 1.The local and semilor .l converge. _e provided without making use of ||F’(z)| < 1 established

in [6]. Inspired by this, we prc ase ¢ wling .ike method

Yn F(zn)7
Zn = Tp — (I - F,(%L))71($n - F(In)) (13)
l Tntl = Zn — (I - F/(yn))il(zn - F(Zn))’

The main focus « " +his paper is that the the local and semilocal convergence of Stirlings method(1.3)
is established, ev a if [[F*\. "l < 1 is not satisfied. The convergence established under the assumption
that the first o» 1er F* :chet ‘erivative of the involved operator satisfies the Lipschitz continuity condition.
The existence ana . “iqu- .ess region of the solution for the method established. We have considered the
number of numeric 1 examples and computed radii of the convergence balls even we fail to apply the

results in %, 11-13] ¢ 1e to the F is not contraction on €.




2 Local convergence analysis

In this section, we discuss the local convergence analysis based on some Lipschitz ¢ ~stants —~d some
contraction consideration. For prove the local convergence study of (1.3), Let T'» — (I — (yg))~! €
BL(X, X), exists at some point zg, yo € 2, where, BL(X, X) is bounded linear ¢ ,eratc . “red from X

to X and the following assumptions hold on the operator F' such that
A, =1—F'(F(z*)) (2.1)

is invertible, and for a > 0, 8 € (0,1) and v > 0 and for all z,y € Q2 such tha.

A F (F(2) = F'(F())]l| < of F(z*) - F(z)]| (2.2)
[F(") = F@)l]l < Blla” =" (2.3)
AT (2) = F' Il < Al — il (2.4)
Now, define function g1 (t) on the interval [0, a%) by
a(t) = Z((L ;@f, (2.5)
() = @ Tt pai(t)gr @)t (2.6)

—. A8t)
Throughout this study, we denote B(z*,p) an. R(z*,p) as closed and open ball at centered at z*

and radius p respectively. Now, we pres * *he local convergence theorem of (1.3) followed by the above

defined functions.

Theorem 1 Let FF: Q C X — Y be a r, "t t differentiable operator. Suppose that there exist x* € )
such that (2.1), (2.2),2.3 and (* 4) @ . saticfied and B(z*,r) C Q, where, the radius r is to be determined.
The sequence {x,} generated "y (1.. * for -y € B(x*,r) is well defined forn = 0,1,2... remains in B(x*,7)

for alln >0, and converg: *o x*. Moreover, the following hold forn =0,1,2,...,

Yn = 2| < Bllen — 27| < |lzn — 27 (2.7)
2 — 21l € gu(lan — &* ) l2n — "] < llzn — 2°] (2.8)
and
@it = 27| < ga(llen — 2Dz — 27| < llzn — 27, (2.9)
where g;, = 1,2 ar defined above.




Proof We shall prove (2.7)-(2.9) using Mathematical induction. Using (2.1), (2.2), we g .

AT (A = (I = FI(F@))|| < AT = FI(F(a*) = 1 + F'/(F(2)))|
< ATHE (F(2) = F'(F(@)]|
= allF@) - F@")| = aflle—a*| apr <1 (210)
and,
[F(z) — 2"l = |[F(z) = F@")|| < Blle — 2™ < Br* <~ (2.11)

Using Banach Lemma on invertible functions, (I — F'(F(z)))~! exist and

I-F(F(x) 'A< —F—  —. 2.12
I( (F'(2))) ‘_1—(1ﬁ\10—m" (2.12)
Thus, yo is well defined and using (1.3) for n = 0, we get
lyo —=* = [IF(z0) — F(2),
= Blleo—a <z — 2"
(2.13)

this shows that (2.7) holds for n = 0 and yo € B(z*,t). .~ w to proceed further, From the second step of
the method, we get

-2t < (I— F'(F(zo)) @y — Flxo)), (2.14)
< (= FI(F @) (I = F'(F(xo))(xo - 2") = (w0 = F(x0))
< (= F/(Pa0) " A [ B+ (1= 0)a”) = FUOF (o) + (1= 0)F (x0) ) (a0 — )0
Vo

Apply the norm on both side, we get

] /
-2 < —— —— v o+ (1 — 0)a* — (OF (x0) — (1 — O)F(x xo — x*||df
leo ="l < om0 (10" = (0F (o) = (1= 0)F (zo)) o — o]
< — — o — F(zo)| + [|F(z0) — F(z* z0— 2" 2.15
2= e~y 7o = FG@ol +1P@0) = F@)) o = o) (2.15)
Since,
10— 1 )| < llzo = & + [ F(w0) = Fla®)| < (1+ B)llao - | (2.16)
We get,
" 1+ B)||xo — z*|| + Bllxo — =™ N
ost) s WEDl b Blen =)y, ey
< gulllzo = ")z — o7 (2.17)




Consider the function hi(t) = ¢1(t) — 1. Since, h1(0) = —1 < 0 and hi(1/af) — o The fore, by
intermediate value theorem, hi(t) has at least one root in (0,1/af). let 71 be the smalles. = ot of hy(t)

in (0,1/af). then we get 0 < r; < 1/af and

0<qi(t) <1 (2.18)

Therefore, by using (2.17) and (2.18), we get

llz0 = 2*[| < g1(llwo — =*|)llwo — ™[] < [lwo — #! (2.19)
Since
20 = Flzo)ll < llzo = 2*[ + [1F(20) = £~ M| (2.20)
< lzo =2+ Bllzo 7l
< (4Bl — 27|
< gilllwo —« e pylimo — 2|
From the third step of the iterative method,
oy =" < T = F(Fo)™ (T - F'(F (0~ ) = (20— Fz0)) | (221)

< - FE@) AT [ et 0)) - FOFGo) + (1 )F o)l — o d6

1
Fy * *
—_— Oz0+ (1 —v, ™ —0F(z0) — (1 — 0)F(20)||||z0 — z™||df
17(16”%7%*”/0 020 + (1 —v (20) = ( )E'(20) 1|20 Il

7 -/ * *
< m(\\? o)l IF ") = F(zo)Dllzo — ]|

Using (2.20), we get

Y
-z < —
lor ==l < Az =2y

+Bg1(Ilo — 2" Dllwo — 2" [Nga([lwo — ir*H) llzo — ™| (2.22)

< g2l — =) lwo — 2|

(91(llao =211 + B) 2o — 2

Consider the func "7, = ga(t)—1, Since, ho(0) = —1 < 0 and ha(r1) > 0. Therefore, by intermediate
value theorem, h- t) has av " ~ast one root in (0,71). let 7 be the smallest root of ha(t) in (0,71). then we

get r <ry <1/ B ar

0 < go(t) < 1Vt € [0,7) (2.23)




By using (2.22) and (2.23) we have

lzr = 2" < ga(llwo — 2" [Dllwo — =™ < flzo — 27| <7 (2.24)

Thus 1 € B(z*,r) and (2.9) holds for n = 0. Now, interchange zo, yo, 7. and ¢1 by Zpn, Yn, 2n
and 2,41 in the similar way. We arrive to the estimate (2.7)-(2.9) for n = 0,1,-,  and y,, 2, and

ZTnt+1 € B(a*, 7). Now,
lzns1 = a*|l < gollen — 2*Dllzn — 2| < g2(llzn = 2*[g2(lwn-1 — 2D lzn—. =21 ... < g2(t)"(llzo — z*|))

This shows that z, — 2* as n — oco.

3 Semilocal convergence analysis

In this section, semilocal convergence analysis of (1.3) is dev “lopea. ot ;> 0,a9 > 0,b> 0,1 > 0 and [y

are some positive constants. We say that F belongs to the class ¢, ao,b,l, 1) if
1. Do = (I — F'(y0))~! € BL(X, X).
2. |To(zo — F(zo))l <n
3. |F(x) = F(zo)|| < aollz — o

4 F'(F)ll <b

ot

- ITo(F'(2) = F'(y))

| <z —yll

(=

- NTo(F'(F(2)) = F'(F(zo))| <&, = F(zo)]|

In earlier studies [1, 3, 5], the condi.. » b < 1 is used which restricts the applicability of (1.3). This
condition is omitted here and in place of 1.. condition, we have taken ap < 1. Now, for the semilocal
convergence of (1.3), we preser a ler ma w.ich will utilize further for the main result. This lemma shows
the convergence of sequence {s,} « 1 ..}, starting with so = n, to = 0, t1 = so + 1 (252) (so — t)?

and forn >1

l (b(Snfl - tnfl) + %(tn - snfl)) (tn - Snfl)

o= 3.1
" + 1 —lpapt, ( )
1430\ (85— tn)?
= spH+l|—F— ) 7. 3.2
ot (550 1 (32)
Let us define tv » fun’ Jions hi(t) and ha(t), by

4 LY s 2 1 1 a -
,1(t) = loaot + loao +§l t +lbt - 5”77 51 (33)

ha(t)

(l <1+T3b) + l0a0> t2 + loagt —1 <1+T3b> (34)




We can easily get that hi(0) = 7%lb - %l < 0 and hi(1) = 2lpag + ”’7" > 0. Using int' .med te value
theorem, there exist at least one root of hy(¢) in (0,1), denote d; as the such smallest posiv. ~ oot. Now,
ha(0) = -1 (#) < 0 and ha(1) = 2lpag > 0. Using intermediate value theorem, there . "=t at 1cist one
root of hy(t) in (0, 1), denote dy as the such smallest positive root. Let us define anc her queatities d3
and 44, by
17 (143b) 2
5 = Hntsl(552)w)
1-— l0a0t1

1+ 3b
ot

Suppose that § = max (d1, da,d3,04) < 1 and choose the quantity =ms |, . 32), where

1

—1-1 d o=
b1 oaon and S; T+ loaon

Lemma 1 Let {s,} and {t,} be two sequences defined by (o. ana \».2), respectively. Assume § < 3
and n < ﬁ, then sequences {s,} and {t,} defined by (2 1\ and (=~ respectively are well defined and
bounded from above by I** = {15. Moreover, it converge i ‘heir unique least upper bound I* € [0,1**).
Furthermore, the following hold for all n > 0.

In <sp <tapr <o

and
Sn+. o ~‘/tn+l - Sn)
thy1 —. < 6(571 - tn)7

0 is defined above.

Proof Using mathematical inductic. ~n 'n’; w shall prove this lemma. For this, we first show that

l ({’(571 - L) + %(tn+1 - 5n))

<2 <, 3.6

- - 10a0t1L+1 - ( )

v_ 7 f+3b 7(8" — tn) < § and (3.7)
\ 2 1-— lgaotn

0< l()a/(]tn+1 <1 (38)

For n=0, it directly fo bws ~om the definition of § and assumption of the lemma. Suppose that (3.5)-(3.8)

is true for some k£ < - Us ag induction hypothesis, we get

s <t +6(tk — sp-1)
< spe1 + 0(spo1 — teo1) + 02 (Sk—1 — te—1)
<
‘ 1 — g2kt
< 140+ ..+‘..+521")7]:177577 (3.9)




and in a similar way, we have
thyr < sp+0(sp —te) < (1484624 ... + 8%+, (3.10)
Now, in order to show (3.6), with the help of (3.9) and (3.10), it will be sufficient .0 s1 >w that

l (b(sk - tk) + 1/2(tk+1 - Sk)) + 5l0a0tk+1 -0 < 0 or
1 §2k+2

.1
_ n+l(b62"+§62k“)n75§

(5l0aoﬁ

This motivates us to introduce the recurrent function hj, on (0,1) by
1 .
hi(t) = loag(L +t + ... + 2 Dy 4 1ot =1 4 Zip" - 1 (3.11)

In order to establish between two consecutive terms of hj(t), we rep.. = 'k’ by 'k + 1" in (3.11), which

gives

0) loag(1 +t + ...+ 23y 4 1oy, "+ + %lnt%” -1,

= hi(t) + % hy(t)n, (3.12)
where hq(t) is defined in (3.3). Since, d; is the small .., “*ve root of hy(t) and
hp(0)=1 ~n—1 -0 (3.13)
for sufficiently large ¢ > 0, we have
hi(t) 0 (3.14)

using (3.13) and (3.14) and the interr ediate alue theorem, it assures the existence of at least one root
of h(t) for each k > 1. Let us der. '~ them b &%, We can assert that 6} are unique as hi'(t) > 0 for

t > 0. Let us define the function . (¢) by

hL (t) = lim hy(t) (3.15)
Using (3.11), we have
hl(t) = ll‘)‘f“z - (3.16)

Using the definition £ (3.7.) and &1, we have that h}_,(t) = hi(t) for each k. As L' (t) > 0 for cach k
this shows that Al ;fl(t ) - an increasing sequence and héo(zﬁ) < 0. Thus, (3.6) holds true. Now, we shall
show (3.7), we « lopt he same procedure as for (3.6). For convenience, we take L = Z(HTS}’) and then

(3.7) can be rew *t a as

L(sg —tr) < (1 — lpaoty)




which gives
L6y +lpag(d + ... + 6% -5 <0

Now, repeating the same way as above. We can easily establish that sequences  s,} {t,} are nonde-

creasing, bounded from above by I** and such that they converge to their comr. " lir .t I*.

Theorem 2 Let F' € C as defined above. Suppose that Lemma 1 hold tr ¢ and Plzg,1*) C Q. Then

starting with xg, sequence {x,} generated by (1.3) is well defined and cor rerge to t > fized point z* €

B(zo,1*) of (1.1). Furthermore, the following estimates hold for all n > "

A

HznfiL‘nH < sp—tn (317)

”xn+1 - Zn” < tpg1 — Sn, (318)

where sy, tp and I* are defined in Lemma 1 and definitions the. “n. Fir lly, if there exist R such that

lao (* 4 R) < 1 then x* is unique in B(xo, R).

Proof Using induction on n, we show (3.17) and (3.18). r. ~t we show that the estimates hold for n = 0.

20 = zoll = [ITo(zo — F. vy . so—to
20— Y = Z[)—F(,T(])
= 20—T0— g Mz — z0) = F'(yo) (20 — o)
This gives
120 = yoli < bll(z0 — o). (3.19)

Now to proceed further, we need ome esti. ~ ion

20— F(z0) = « - F(z —To(wo — F(z0))
= To(( — (o)) (wo — F(20)) — (xo — F(x0)))
= 1y "(x0) — F(20) = F'(y0)(x0 — 20) — F'(y0)(20 — F(20))) (3.20)

and
I+ I+ F o) ) (20 = F(z0) = (I+ F'(y0) ™ (F(xo) = F20) — F'(yo) (w0 — 20))  (3:21)
Using (3.20) ana 2 21), v = get

(20 — F(20)) = F(z0) — F(20) — F'(y0)(x0 — 20) (3.22)




Now, from (1.3), we have

w1 —z = —(—F'(y)) (20 — F(20))
1
= / F'(z0 + t(wo — y0)) — F'(y0) (xo — 20) (3.23)
0
On taking norm both sides and using (3.19)-(3.23),
1
v ol < ¢ (1o = oll + o — ol ) 1o =
1
< U{ bllzo = @oll + 5 (1 +B)ll20 — zoll | llz0 — o,
1+3b 1+ 3b
< 1(72 )l\z07$0\|2:l<72 >(0*7‘/ = 1 — so. (3.24)
Thus,
H.Tl — T()” = HT1 — 20+ 20 — To“ <ti—so+. —to=11" B(OI*)

the induction holds for n = 0. Suppose this is true for some k ~ -

llzk — zoll < llzx — 26—1ll + .. + |20 —oll < tpg —- 1 +...+ 80 —to =t € B(0,1")
This shows that zj, € B(zo,l*) and it is easy to show wa. = B(zo,1*). Now,
I7=ToI = F'(ye)) 'l = [ITo(F' ) — £ ‘wo))|
< DollF (k) E) < loaollzy — zoll < loaoty < 1.

Using Banach lemma on invertible operators, v oet

1
I — Flag))™ )| € ——.
I = F/0)) Tl < T
Using some algebraic manipulations we can she ¥ that
rl
zp — Fxg) = (F Yt — _/ F'(2—1 + t(zg — zk,l))dt> (zk — 2k—-1) (3.25)
0

With the help of (1.3), (3.25) auc ~ -finit’ n of C, we get
1
o —aell < (I(T- \YIFHH/ Co(F'(yr-1) — F'(zk—1 + t(wx — 26-1)))dt| || (1 — 25—1) |
0

N _ 1
< 10 =T (e =l + gl — 5l ) o2 - 1)

- 1
< e ) (s = el + gl = sl G- 1)
1 t — Sp-1
< T(b(s) 1 —tp_ —(tk — Sk— —— = 5 — lg-
< \(9/ 1 k1)+2(k Sk 1)>1—l0a0tk Sk — Uk

Similarly, a' .., the sa. - lines as (3.24), it can also be shown that

lzker —2ell < tign — s

10




Now, we have to show the existence of z*. Using (3.25) and C we have
lzk — Fa)l] < 2b(t, — sp—1) < 2062t — sy — 0 as k — oo

This shows that z* is the unique fixed point of (1.1). It remains to show the uni ,uen ss part. Suppose

y* be another fixed point of (1.1) in B(zg, R), then we have
1
O=a"—F@") -y +Fy)=a"—y" —/ Flly* +t(a” —1 ))dt(z* - y).
0

In order to show z* = y*, it will be sufficient to show that fol I—-F'(y* 4+t *—1",) is invertible. Let
T= fol I—F'(y* +t(z* — y*)) and

-1
L T LU
0

1
< [ a0l vl -
0
lag N |
< 7(”750*3/ |+ [lzo —2
/
< %(R+t*)<1.

So, using Banach lemma, it gives that T is invertible una . 28 the theorem.

s

4 Numerical Experiment

In this section, we workout Numerical example. “o iuu e radius of convergence using local and semilocal
convergence of iterative method. We conclude that ¢ «r results can be used to solve nonlinear equations

but earlier ones (see [6,11-13]) using ¢ .. -nger contractivity type hypotheses cannot be used.
Example 1 Let X = Q = B(0,1) an. ‘efine tt : function F on Q by
Flz)y=€e"—z—-1 (4.1)

Solution: From the assum dons, (2. (2.3) and (2.4) we get (for z* =0),a =e—1,8=¢e—2,7=¢
and radius 7 is given by » | = = 0.219981153. We fail to apply the results in [6,11-13] due to the F' is

not contraction on €.
Example 2 Let X - D= 5(0,1) and z* = (0,0,0). Define the function F on Q for u = (z,y,2)" by
I 1, T
Flu) = (e" = 1,554 +4,2) (4.2)

Solution:From the “ssu' .ptions, (2.2), (2.3) and (2.4) (for z* = (0,0,0)7), we get B =e+l,a=e—1,
vy = @ﬁ a’ Jd the ra “us r is given by r = 0.0883232. We notice that the results in [6,11-13] cannot apply

due to the ¥ is not ¢ ntraction on €.
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Example 3 Let X = D = B(0,1) a. Define the function F' on Q by
22
F(z) = Efomll:r eQ=[-1,1] (4.3)

Solution: From the assumptions (1)-(6), we have zo = 0.1, ap = 0.505, I’y = 1 4000, . m = 0.0099504,
[ = 1.00005, lp = 1.00005, b = 1. Since, all the conditions of the Lemma 1 & sat’ fied. Hence from

the Theorem 2, we conclude that the the iterative method converge to fixed ~~nt = B(z9,l*), where

I* € [0,1**) and I** = 0.04935.

5 Conclusions

we discussed the local and semilocal convergence of third order Stir’ ng-Like met .od under the assumption
that the first order Fréchet derivative satisfies the lipschitz continun, -ondition. The existence and
uniqueness region that is the convergence balls of these methoa . ~btained Numerical examples for both
the local and semilocal convergence cases discussed with our ~rk wucre earlier works cannot apply to

solve equations.
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