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Abstract

We have very few literature on fixed point iterative methods for solving nonlinear equations. We

consider the Stirling method given by Rall [2]. Based on stirling method, In this paper, we propose a

third order stirling-like method for finding fixed point for nonlinear equations in Banach spaces. We

study the local and semilocal convergence of this method for finding the fixed points of nonlinear equa-

tions in Banach spaces. The convergence established under the assumption that the first order Fréchet

derivative satisfies the Lipschitz continuity condition. The existence and uniqueness theorem that es-

tablishes the convergence balls of these methods is obtained. We consider the numerical examples for

local and semilocal convergence case and calculate the existence and uniqueness region of convergence

balls even we fail to apply the results in [6, 11–13] due to the F is not contraction on Ω.

Keywords:Local convergence, Semilocal convergence, Fréchet derivative, Fixed points, Banach spaces

1 Introduction

One of the most important problems in computational mathematics is to solve nonlinear equations. The

problem of solving these systems of nonlinear equations arises in diverse areas of engineering, mathematics,

physics, chemistry and biology for systems which model various phenomena. In many situations, the

nonlinear problems naturally appear in the form of nonlinear equations or systems of nonlinear equations

in Banach spaces. Finding the solution of nonlinear equations is actually enough motivation for researchers

to develop new computationally efficient iterative methods. A main reason is of course that analytical

solutions are often not available for most types of nonlinear equations and hence numerical iterative

methods are best suited for this purpose. We discuss the development of iterative schemes for scalar

nonlinear equations, for computing the generalized inverse of a matrix, for general classes of systems of

nonlinear equations and for specific systems of nonlinear equations associated with ordinary and partial

differential equations. We have experience with many higher order iterative methods for solving nonlinear

equations. The convergence analysis of iterative methods in Banach spaces is usually divided into two

categories, namely semilocal and local convergence analysis. The local convergence analysis is based on
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the information in the vicinity of the solution, and the semilocal convergence is based on assumptions

at initial approximations and on the domain. There are two different types of approaches to discuss the

convergence analysis of iterative methods. The majorizing sequence approach and the recurrence relations

approach. Using these approaches, we assume different types of Kantorovich assumptions to discuss the

convergence analysis.

The development of higher order one point and multi point iterative methods without involving higher

order derivative have important role to solve nonlinear equations. Many researchers developed higher order

iterative methods for solving nonlinear equations (see [7,9]). The local and semilocal convergence of higher

order iterative methods developed by [8, 10]

The purpose of this study is computation of a fixed point of nonlinear operator equation of the form

x = F (x) (1.1)

where, F : Ω ⊆ X → Y be a nonlinear Fréchet differentiable on a convex subset Ω of X with values in

Y . We motivated from this approximating a fixed point x∗ of nonlinear operator equation (1.1). This is

important and challenging problems extensively studied in numerical analysis and many applied scientific

areas. Bartle [1] studied the following quadratically convergence iterative method for finding fixed points

of nonlinear equation

xn+1 = xn − (I − F ′(yn))−1(xn − F (xn)) (1.2)

where, F has a Fréchet derivative F ′ at least at the required point. From this, for yn = xn it is reduced

to Newton’s method and for yn = x0 modified Newton’s method. The special case for yn = F (xn), n =

0, 1, 2 . . . we obtained the stirling’s method (see Rall [2]). Consider the Stirling method defined in [3]. The

semilocal convergence of a Stirling method under the assumption that the first order Fréchet derivative

satisfies the Lipschitz continuity condition established by [4]. The local and semilocal convergence of the

stirling method given in [5, 6, 11–13] under the restrictive assumption that ∥F ′(x)∥ is strictly bounded

above by 1.The local and semilocal convergence provided without making use of ∥F ′(x)∥ < 1 established

in [6]. Inspired by this, we propose stirling-like method




yn = F (xn),

zn = xn − (I − F ′(yn))−1(xn − F (xn))

xn+1 = zn − (I − F ′(yn))−1(zn − F (zn)),

(1.3)

The main focus of this paper is that the the local and semilocal convergence of Stirlings method(1.3)

is established, even if ∥F ′(x)∥ < 1 is not satisfied. The convergence established under the assumption

that the first order Fréchet derivative of the involved operator satisfies the Lipschitz continuity condition.

The existence and uniqueness region of the solution for the method established. We have considered the

number of numerical examples and computed radii of the convergence balls even we fail to apply the

results in [6, 11–13] due to the F is not contraction on Ω.
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2 Local convergence analysis

In this section, we discuss the local convergence analysis based on some Lipschitz constants and some

contraction consideration. For prove the local convergence study of (1.3), Let Γ0 = (I − F ′(y0))
−1 ∈

BL(X,X), exists at some point x0, y0 ∈ Ω, where, BL(X,X) is bounded linear operator defined from X

to X and the following assumptions hold on the operator F such that

A∗ = I − F ′(F (x∗)) (2.1)

is invertible, and for α ≥ 0, β ∈ (0, 1) and γ ≥ 0 and for all x, y ∈ Ω such that

∥A−1
∗ [F ′(F (x∗)) − F ′(F (x))]∥ ≤ α∥F (x∗) − F (x)∥ (2.2)

∥F (x∗) − F (x)]∥ ≤ β∥x∗ − x∥ (2.3)

∥A−1
∗ [F ′(x) − F ′(y)]∥ ≤ γ∥x − y∥ (2.4)

Now, define function g1(t) on the interval [0, 1
αβ ) by

g1(t) =
γ(1 + 2β)t

2(1 − αβt)
(2.5)

g2(t) =
γ(g1(t)(1 + β) + βg1(t))g1(t)t

2(1 − αβt)
(2.6)

Throughout this study, we denote B(x∗, ρ) and B(x∗, ρ) as closed and open ball at centered at x∗

and radius ρ respectively. Now, we present the local convergence theorem of (1.3) followed by the above

defined functions.

Theorem 1 Let F : Ω ⊆ X → Y be a Fréchet differentiable operator. Suppose that there exist x∗ ∈ Ω

such that (2.1), (2.2),2.3 and (2.4) are satisfied and B(x∗, r) ⊆ Ω, where, the radius r is to be determined.

The sequence {xn} generated by (1.3) for x0 ∈ B(x∗, r) is well defined for n = 0, 1, 2 . . . remains in B(x∗, r)

for all n ≥ 0, and converges to x∗. Moreover, the following hold for n = 0, 1, 2, . . . ,

∥yn − x∗∥ ≤ β∥xn − x∗∥ < ∥xn − x∗∥ (2.7)

∥zn − x∗∥ ≤ g1(∥xn − x∗∥)∥xn − x∗∥ < ∥xn − x∗∥ (2.8)

and

∥xn+1 − x∗∥ ≤ g2(∥xn − x∗∥)∥xn − x∗∥ < ∥xn − x∗∥, (2.9)

where gi, i = 1, 2 are defined above.
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Proof We shall prove (2.7)-(2.9) using Mathematical induction. Using (2.1), (2.2), we get

∥A−1
∗ (A∗ − (I − F ′(F (x))))∥ ≤ ∥A−1

∗ (I − F ′(F (x∗)) − I + F ′(F (x)))∥

≤ ∥A−1
∗ (F ′(F (x)) − F ′(F (x∗)))∥

= α∥F (x) − F (x∗)∥ = αβ∥x − x∗∥ = αβr∗ < 1 (2.10)

and,

∥F (x) − x∗∥ = ∥F (x) − F (x∗)∥ ≤ β∥x − x∗∥ ≤ βr∗ ≤ r∗ (2.11)

Using Banach Lemma on invertible functions, (I − F ′(F (x)))−1 exists and

|(I − F ′(F (x)))−1A∗| ≤ 1

1 − αβ|x0 − x∗| . (2.12)

Thus, y0 is well defined and using (1.3) for n = 0, we get

∥y0 − x∗∥ = ∥F (x0) − F (x∗∥)

= β∥x0 − x∗∥ < ∥x0 − x∗∥

(2.13)

this shows that (2.7) holds for n = 0 and y0 ∈ B(x∗, t). Now to proceed further, From the second step of

the method, we get

z0 − x∗ ≤ (I − F ′(F (x0)))
−1(x0 − F (x0))∥ (2.14)

≤ (I − F ′(F (x0)))
−1((I − F ′(F (x0)))(x0 − x∗) − (x0 − F (x0)))

≤ (I − F ′(F (x0)))
−1A∗A−1

∗
(∫ 1

0
F ′(θx0 + (1 − θ)x∗) − F ′(θF (x0) + (1 − θ)F (x0))

)
(x0 − x∗)dθ

Apply the norm on both side, we get

∥z0 − x∗∥ ≤ 1

(1 − αβ∥x0 − x∗∥)
γ

∫ 1

0
∥θx0 + (1 − θ)x∗ − (θF (x0) − (1 − θ)F (x0))∥∥x0 − x∗∥dθ

≤ γ

2(1 − αβ∥x0 − x∗∥)

(
∥x0 − F (x0)∥ + ∥F (x0) − F (x∗)∥

)
∥x0 − x∗∥ (2.15)

Since,

∥x0 − F (x0)∥ ≤ ∥x0 − x∗∥ + ∥F (x0) − F (x∗)∥ ≤ (1 + β)∥x0 − x∗∥ (2.16)

We get,

∥z0 − x∗∥ ≤ γ((1 + β)∥x0 − x∗∥ + β∥x0 − x∗∥)

2(1 − αβ∥x0 − x∗∥)
∥x0 − x∗∥

≤ g1(∥x0 − x∗∥)∥x0 − x∗∥ (2.17)
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Consider the function h1(t) = g1(t) − 1. Since, h1(0) = −1 < 0 and h1(1/αβ) → ∞. Therefore, by

intermediate value theorem, h1(t) has at least one root in (0, 1/αβ). let r1 be the smallest root of h1(t)

in (0, 1/αβ). then we get 0 < r1 < 1/αβ and

0 ≤ g1(t) < 1 (2.18)

Therefore, by using (2.17) and (2.18), we get

∥z0 − x∗∥ ≤ g1(∥x0 − x∗∥)∥x0 − x∗∥ < ∥x0 − x∗∥ (2.19)

Since

∥z0 − F (z0)∥ ≤ ∥z0 − x∗∥ + ∥F (z0) − F (x∗)∥ (2.20)

≤ ∥z0 − x∗∥ + β∥z0 − x∗∥

≤ (1 + β)∥z0 − x∗∥

≤ g1(∥x0 − x∗∥)(1 + β)∥x0 − x∗∥

From the third step of the iterative method,

∥x1 − x∗∥ ≤ ∥(I − F ′(F (x0)))
−1

(
(I − F ′(F (x0)))(z0 − x∗) − (z0 − F (z0))

)
∥ (2.21)

≤ ∥(I − F ′(F (x0)))
−1A∗∥∥A−1

∗

∫ 1

0
F ′(θz0 + (1 − θ)x∗) − F ′(θF (z0) + (1 − θ)F (z0))∥∥z0 − x∗∥dθ

≤ γ

1 − αβ∥x0 − x∗∥

∫ 1

0
∥θz0 + (1 − θ)x∗ − θF (z0) − (1 − θ)F (z0)∥∥z0 − x∗∥dθ

≤ γ

2(1 − αβ∥x0 − x∗∥)
(∥z0 − F (z0)∥ + ∥F (x∗) − F (z0)∥)∥z0 − x∗∥

Using (2.20), we get

∥x1 − x∗∥ ≤ γ

2(1 − αβ∥x0 − x∗∥)

(
g1(∥x0 − x∗∥)(1 + β)∥x0 − x∗∥

+βg1(∥x0 − x∗∥)∥x0 − x∗∥)g1(∥x0 − x∗∥
)
∥x0 − x∗∥ (2.22)

≤ g2(∥x0 − x∗∥)∥x0 − x∗∥

Consider the function h2 = g2(t)−1, Since, h2(0) = −1 < 0 and h2(r1) > 0. Therefore, by intermediate

value theorem, h2(t) has at least one root in (0, r1). let r be the smallest root of h2(t) in (0, r1). then we

get r < r1 < 1/αβ and

0 ≤ g2(t) < 1∀t ∈ [0, r) (2.23)
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By using (2.22) and (2.23) we have

∥x1 − x∗∥ ≤ g2(∥x0 − x∗∥)∥x0 − x∗∥ < ∥x0 − x∗∥ < r (2.24)

Thus x1 ∈ B(x∗, r) and (2.9) holds for n = 0. Now, interchange x0, y0, z0 and x1 by xn, yn, zn

and xn+1 in the similar way. We arrive to the estimate (2.7)-(2.9) for n = 0, 1, 2, ... and yn, zn and

xn+1 ∈ B(x∗, r). Now,

∥xn+1 − x∗∥ ≤ g2(∥xn − x∗∥)∥xn − x∗∥ < g2(∥xn − x∗∥)g2(∥xn−1 − x∗∥)∥xn−1 − x∗∥ < . . . < g2(t)
n+1(∥x0 − x∗∥)

This shows that xn → x∗ as n → ∞.

3 Semilocal convergence analysis

In this section, semilocal convergence analysis of (1.3) is developed. Let η > 0, a0 > 0, b > 0, l > 0 and l0

are some positive constants. We say that F belongs to the class C(η, a0, b, l, l0) if

1. Γ0 = (I − F ′(y0))
−1 ∈ BL(X,X).

2. ∥Γ0(x0 − F (x0))∥ ≤ η

3. ∥F (x) − F (x0)∥ ≤ a0∥x − x0∥

4. ∥F ′(F (x))∥ ≤ b

5. ∥Γ0(F
′(x) − F ′(y))∥ ≤ l∥x − y∥

6. ∥Γ0(F
′(F (x)) − F ′(F (x0)))∥ ≤ l0∥F (x) − F (x0)∥

In earlier studies [1, 3, 5], the condition b < 1 is used which restricts the applicability of (1.3). This

condition is omitted here and in place of this condition, we have taken a0 < 1. Now, for the semilocal

convergence of (1.3), we present a lemma which will utilize further for the main result. This lemma shows

the convergence of sequences {sn} and {tn}, starting with s0 = η, t0 = 0, t1 = s0 + l
(

1+3b
2

)
(s0 − t0)

2

and for n ≥ 1

sn = tn +
l
(
b(sn−1 − tn−1) + 1

2(tn − sn−1)
)
(tn − sn−1)

1 − l0a0tn
(3.1)

tn+1 = sn + l

(
1 + 3b

2

)
(sn − tn)2

1 − l0a0tn
. (3.2)

Let us define two functions h1(t) and h2(t), by

h1(t) = l0a0t
4 +

(
l0a0 +

1

2
l

)
t3 + lbt2 − 1

2
lb − 1

2
l (3.3)

h2(t) =

(
l

(
1 + 3b

2

)
+ l0a0

)
t2 + l0a0t − l

(
1 + 3b

2

)
(3.4)
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We can easily get that h1(0) = −1
2 lb − 1

2 l < 0 and h1(1) = 2l0a0 + lbη
2 > 0. Using intermediate value

theorem, there exist at least one root of h1(t) in (0, 1), denote δ1 as the such smallest positive root. Now,

h2(0) = −l
(

1+3b
2

)
< 0 and h2(1) = 2l0a0 > 0. Using intermediate value theorem, there exist at least one

root of h2(t) in (0, 1), denote δ2 as the such smallest positive root. Let us define another quantities δ3

and δ4, by

δ3 =
l
(
bη + 1

2 l
(

1+3b
2

)
η2)

)

1 − l0a0t1

δ4 = l

(
1 + 3b

2

)
η

Suppose that δ = max (δ1, δ2, δ3, δ4) < 1 and choose the quantity β = min (β1, β2), where

β1 = 1 − l0a0η and β2 =
1

1 + l0a0η

Lemma 1 Let {sn} and {tn} be two sequences defined by (3.1) and (3.2), respectively. Assume δ ≤ β

and η < 1
l0a0

, then sequences {sn} and {tn} defined by (3.1) and (3.2), respectively are well defined and

bounded from above by l∗∗ = η
1−δ . Moreover, it converge to their unique least upper bound l∗ ∈ [0, l∗∗).

Furthermore, the following hold for all n ≥ 0.

tn ≤ sn ≤ tn+1 ≤ sn+1,

and 



sn+1 − tn+1 ≤ δ(tn+1 − sn)

tn+1 − sn ≤ δ(sn − tn),
(3.5)

δ is defined above.

Proof Using mathematical induction on ’n’, we shall prove this lemma. For this, we first show that

0 ≤ l
(
b(sn − tn) + 1

2(tn+1 − sn)
)

1 − l0a0tn+1
≤ δ, (3.6)

0 ≤ l

(
1 + 3b

2

)
(sn − tn)

1 − l0a0tn
≤ δ and (3.7)

0 ≤ l0a0tn+1 < 1 (3.8)

For n=0, it directly follows from the definition of δ and assumption of the lemma. Suppose that (3.5)-(3.8)

is true for some k ≤ n. Using induction hypothesis, we get

sk ≤ tk + δ(tk − sk−1)

≤ sk−1 + δ(sk−1 − tk−1) + δ2(sk−1 − tk−1)

≤ . . . . . .

≤ (1 + δ + . . . + . . . + δ2k)η =
1 − δ2k+1

1 − δ
η (3.9)
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and in a similar way, we have

tk+1 ≤ sk + δ(sk − tk) ≤ (1 + δ + δ2 + . . . + δ2k+1)η. (3.10)

Now, in order to show (3.6), with the help of (3.9) and (3.10), it will be sufficient to show that

l (b(sk − tk) + 1/2(tk+1 − sk)) + δl0a0tk+1 − δ ≤ 0 or

δl0a0
1 − δ2k+2

1 − δ
η + l(bδ2k +

1

2
δ2k+1)η − δ ≤ 0

This motivates us to introduce the recurrent function h1
k on (0, 1) by

h1
k(t) = l0a0(1 + t + . . . + t2k+1)η + lbηt2k−1 +

1

2
lηt2k − 1. (3.11)

In order to establish between two consecutive terms of h1
k(t), we replace ’k’ by ’k + 1’ in (3.11), which

gives

h1
k+1(t) = l0a0(1 + t + . . . + t2k+3)η + lbηt2k+1 +

1

2
lηt2k+2 − 1,

= h1
k(t) + t2k−1h1(t)η, (3.12)

where h1(t) is defined in (3.3). Since, δ1 is the smallest positive root of h1(t) and

h1
k(0) = l0a0η − 1 < 0 (3.13)

for sufficiently large t > 0, we have

h1
k(t) > 0 (3.14)

using (3.13) and (3.14) and the intermediate value theorem, it assures the existence of at least one root

of h1
k(t) for each k ≥ 1. Let us denote them by δk

1 . We can assert that δk
1 are unique as h1

k
′
(t) > 0 for

t > 0. Let us define the function h1
∞(t) by

h1
∞(t) = lim hk(t) (3.15)

Using (3.11), we have

h1
∞(t) =

l0a0η

1 − t
− 1 (3.16)

Using the definition of (3.12) and δ1, we have that h1
k+1(t) = h1

k(t) for each k. As h1
k
′
(t) > 0 for each k

this shows that h1
k+1(t) is an increasing sequence and h1

∞(δ1) ≤ 0. Thus, (3.6) holds true. Now, we shall

show (3.7), we adopt the same procedure as for (3.6). For convenience, we take L = l
(

1+3b
2

)
and then

(3.7) can be rewritten as

L(sk − tk) ≤ δ(1 − l0a0tk)

8



which gives

Lδ2kη + l0a0(δ + . . . + δ2k)η − δ ≤ 0

Now, repeating the same way as above. We can easily establish that sequences {sn}, {tn} are nonde-

creasing, bounded from above by l∗∗ and such that they converge to their common limit l∗.

Theorem 2 Let F ∈ C as defined above. Suppose that Lemma 1 hold true and B(x0, l
∗) ⊆ Ω. Then

starting with x0, sequence {xn} generated by (1.3) is well defined and converge to the fixed point x∗ ∈
B(x0, l

∗) of (1.1). Furthermore, the following estimates hold for all n ≥ 0.

∥zn − xn∥ ≤ sn − tn (3.17)

∥xn+1 − zn∥ ≤ tn+1 − sn, (3.18)

where sk, tk and l∗ are defined in Lemma 1 and definitions therein. Finally, if there exist R such that

la0
2 (t∗ + R) < 1 then x∗ is unique in B(x0, R).

Proof Using induction on n, we show (3.17) and (3.18). First we show that the estimates hold for n = 0.

∥z0 − x0∥ = ∥Γ0(x0 − F (x0))∥ ≤ η = s0 − t0

z0 − y0 = z0 − F (x0)

= z0 − x0 − (I − F ′(y0))(z0 − x0) = F ′(y0)(z0 − x0)

This gives

∥z0 − y0∥ ≤ b∥(z0 − x0)∥. (3.19)

Now to proceed further, we need some estimation

z0 − F (z0) = x0 − F (z0) − Γ0(x0 − F (x0))

= Γ0((I − F ′(y0))(x0 − F (z0)) − (x0 − F (x0)))

= Γ0(F (x0) − F (z0) − F ′(y0)(x0 − z0) − F ′(y0)(z0 − F (z0))) (3.20)

and

(I + (I + F ′(y0))
−1F ′(y0))(z0 − F (z0)) = (I + F ′(y0))

−1
(
F (x0) − F (z0) − F ′(y0)(x0 − z0)

)
(3.21)

Using (3.20) and (3.21), we get

(z0 − F (z0)) = F (x0) − F (z0) − F ′(y0)(x0 − z0) (3.22)

9



Now, from (1.3), we have

x1 − z0 = −(I − F ′(y0))
−1(z0 − F (z0))

=

∫ 1

0
F ′(z0 + t(x0 − y0)) − F ′(y0)(x0 − z0) (3.23)

On taking norm both sides and using (3.19)-(3.23),

∥x1 − z0∥ ≤ l

(
∥z0 − y0∥ +

1

2
∥x0 − y0∥

)
∥z0 − x0∥

≤ l

(
b∥z0 − x0∥ +

1

2
(1 + b)∥z0 − x0∥

)
∥z0 − x0∥

≤ l

(
1 + 3b

2

)
∥z0 − x0∥2 = l

(
1 + 3b

2

)
(s0 − t0)

2 = t1 − s0. (3.24)

Thus,

∥x1 − x0∥ = ∥x1 − z0 + z0 − x0∥ ≤ t1 − s0 + s0 − t0 = t1 ∈ B(0, l∗)

the induction holds for n = 0. Suppose this is true for some k ≤ n.

∥xk − x0∥ ≤ ∥xk − zk−1∥ + . . . + ∥z0 − x0∥ ≤ tk − sk−1 + . . . + s0 − t0 = tk ∈ B(0, l∗)

This shows that xk ∈ B(x0, l
∗) and it is easy to show that zk−1 ∈ B(x0, l

∗). Now,

∥I − Γ0(I − F ′(yk))
−1∥ = ∥Γ0(F

′(yk) − F ′(y0))∥

≤ l0∥F (xk) − F (x0)∥ ≤ l0a0∥xk − x0∥ ≤ l0a0tk < 1.

Using Banach lemma on invertible operators, we get

∥(I − F ′(yk))
−1Γ0∥ ≤ 1

1 − l0a0tk
.

Using some algebraic manipulations, we can show that

xk − F (xk) =

(
F ′(yk−1) −

∫ 1

0
F ′(zk−1 + t(xk − zk−1))dt

)
(xk − zk−1) (3.25)

With the help of (1.3), (3.25) and definition of C, we get

∥zk − xk∥ ≤ ∥(I − F ′(yk))
−1Γ∥∥

∫ 1

0
Γ0(F

′(yk−1) − F ′(zk−1 + t(xk − zk−1)))dt∥∥(xk − zk−1)∥

≤ ∥(I − F ′(yk))
−1Γ∥l

(
∥yk−1 − zk−1∥ +

1

2
∥xk − zk−1∥

)
(xk − zk−1)

≤ ∥(I − F ′(yk))
−1Γ∥l

(
b∥zk−1 − xk−1∥ +

1

2
∥xk − zk−1∥

)
(xk − zk−1)

≤ l

(
b(sk−1 − tk−1) +

1

2
(tk − sk−1)

)
tk − sk−1

1 − l0a0tk
= sk − tk.

Similarly, along the same lines as (3.24), it can also be shown that

∥xk+1 − zk∥ ≤ tk+1 − sk.
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Now, we have to show the existence of x∗. Using (3.25) and C we have

∥xk − F (xk)∥ ≤ 2b(tk − sk−1) ≤ 2bδ2kt1 − s0 → 0 as k → ∞

This shows that x∗ is the unique fixed point of (1.1). It remains to show the uniqueness part. Suppose

y∗ be another fixed point of (1.1) in B(x0, R), then we have

0 = x∗ − F (x∗) − y∗ + F (y∗) = x∗ − y∗ −
∫ 1

0
F ′(y∗ + t(x∗ − y∗))dt(x∗ − y∗).

In order to show x∗ = y∗, it will be sufficient to show that
∫ 1
0 I − F ′(y∗ + t(x∗ − y∗)) is invertible. Let

T =
∫ 1
0 I − F ′(y∗ + t(x∗ − y∗)) and

∥I − Γ0T∥ ≤
∫ 1

0
∥Γ0(F

′(y∗ + t(x∗ − y∗)) − F ′(y0))∥dt

≤ l

∫ 1

0
(1 − t)∥y0 − y∗∥ + t∥y0 − x∗∥

≤ la0

2
(∥x0 − y∗∥ + ∥x0 − x∗∥)

≤ la0

2
(R + t∗) < 1.

So, using Banach lemma, it gives that T is invertible and it proves the theorem.

4 Numerical Experiment

In this section, we workout Numerical examples to find the radius of convergence using local and semilocal

convergence of iterative method. We conclude that our results can be used to solve nonlinear equations

but earlier ones (see [6, 11–13]) using even stronger contractivity type hypotheses cannot be used.

Example 1 Let X = Ω = B(0, 1) and define the function F on Ω by

F (x) = ex − x − 1 (4.1)

Solution: From the assumptions, (2.2), (2.3) and (2.4) we get (for x∗ = 0), α = e − 1, β = e − 2, γ = e

and radius r is given by r1 = r = 0.219981153. We fail to apply the results in [6, 11–13] due to the F is

not contraction on Ω.

Example 2 Let X = D = B(0, 1) and x∗ = (0, 0, 0)T . Define the function F on Ω for u = (x, y, z)T by

F (u) =
(
ex − 1,

e − 1

2
y2 + y, z

)T
(4.2)

Solution:From the assumptions, (2.2), (2.3) and (2.4) (for x∗ = (0, 0, 0)T ), we get β = e + 1,α = e − 1,

γ = e
1

βγ and the radius r is given by r = 0.0883232. We notice that the results in [6,11–13] cannot apply

due to the F is not contraction on Ω.
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Example 3 Let X = D = B(0, 1) a. Define the function F on Ω by

F (x) =
x2

2
forallx ∈ Ω = [−1, 1] (4.3)

Solution: From the assumptions (1)-(6), we have x0 = 0.1, a0 = 0.505, Γ0 = 1.00005, η = 0.0099504,

l = 1.00005, l0 = 1.00005, b = 1. Since, all the conditions of the Lemma 1 are satisfied. Hence from

the Theorem 2, we conclude that the the iterative method converge to fixed point x∗ ∈ B(x0, l
∗), where

l∗ ∈ [0, l∗∗) and l∗∗ = 0.04935.

5 Conclusions

we discussed the local and semilocal convergence of third order Stirling-Like method under the assumption

that the first order Fréchet derivative satisfies the lipschitz continuity condition. The existence and

uniqueness region that is the convergence balls of these method is obtained. Numerical examples for both

the local and semilocal convergence cases discussed with our work where earlier works cannot apply to

solve equations.
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