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 Connection of curse of dimensionality to uncertainty analysis of inverse problems. 

 Dependency of the sampling probability on ill-conditioning of the linear system. 

 The bounds provided by linear analysis are very large for nonlinear inverse problems. 

 Only 4-6 independent dimensions can be efficiently sampled by search methods. 

 Model reduction techniques serve to increase the sampling probability. 

Highlights (for review)
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Abstract 11 

Nonlinear inverse problems in real problems in industry have typically a very underdetermined 12 

character due to the high number of parameters that are usually needed to achieve accurate 13 

forward predictions. The corresponding inverse problem is ill-posed, that is, there exist many 14 

solutions which are compatible with the prior information, fitting the observed data within the 15 

same error bounds. These solutions are located in (one or several) flat curvilinear and 16 

disconnected valleys of the cost function topography. The random sampling of these equivalent 17 

models is impossible due to the curse of dimensionality and to the high computational cost 18 

needed to provide the corresponding forward predictions. This paper generalizes the curse of 19 

dimensionality to linear and nonlinear inverse problems outlining the main differences between 20 

them. With a simple 2D example we show that nonlinearities allow for a reduction in size of the 21 

nonlinear equivalence region that could be embedded in a linear hyperquadric with smaller 22 

condition number than the corresponding linearized equivalence region.  We also analyze the 23 

effect of the regularization in the posterior sampling, and that of the dimensionality reduction, 24 

which is needed to perform efficient sampling of the region of uncertainty equivalence in high 25 
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dimensional problems. We hope that the additional theoretical knowledge provided by this 26 

research will help practitioners to design more efficient methods of sampling.  27 

 28 

1. UNCERTAINTY ANALYSIS IN INVERSE PROBLEMS 29 

Inverse problems are often encountered in many fields of technology, including 30 

engineering, science and mathematics. Solving an inverse problem entails the 31 

determination of certain model parameters from a set of observed data or measurements.  32 

The mapping of data to model parameters is done via a physical system in the case of an 33 

inverse problem, or through a regression model or a classifier in the case where the 34 

physics is unknown. For example, in the field of geophysics the model parameters, such 35 

as the electrical conductivity, the density, the magnetic permeability, the porosity or the 36 

seismic velocity are identified from some projections that are acquired on the surface of 37 

the earth (i.e. observed data) and are related to the model parameters through a forward 38 

model. More precisely, an inverse problem may be formulated in discrete form by 39 

defining the forward problem as follows:   40 

( )  F m d ε          (1)  41 

where nm R  is the estimated geophysical model that belongs to a set of admissible 42 

models M defined in terms of some prior knowledge (e.g., geological interpretation), 43 

sd R  are the observed data, and  1 2( ) ( ), ( ),..., ( ) ,F m m m msf f f  represents the 44 

forward model, with ( )jf m  being the scalar field that accounts for the j-th data. The 45 

term ε  is introduced to explain that the relationship ( ) F m d  is not perfect, that is, this 46 

set of equations might not have any solution. 47 

The inverse problem consists in finding m, given F and d.  A classification problem can 48 

be cast in the same way, with F being the classifier that is built to emulate the physics 49 
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and d the set of observed classes. In geology, this second kind of problems is more 50 

atypical and involves machine learning techniques (Caté et al., 2017).  51 

Both types can be referred to as parameter identification problems, which are commonly 52 

ill-posed, that is, there exist different kinds of model parameters sets m that predict the 53 

observed data with the same precision and are compatible with the prior information 54 

that is at disposal. That is to say, the geological/geophysical model that we hypothesize 55 

as the real one is not unique. This fact is usually called the model uncertainty and the 56 

discipline that tries to quantify it, model appraisal (Snieder and Tampert, 1999; Scales 57 

and Snieder, 2000).  58 

Uncertainty exists in inverse problems because of a variety of factors, such as poor 59 

data calibration, contamination and noise in data measurements, discrete data coverage, 60 

approximated physics and conceptualization, discretization of continuous inverse 61 

problems, linearization and numerical approximations, model physical assumptions 62 

(e.g., isotropy, homogeneity, anisotropy, etc.), limited bandwidth, poor resolution, and 63 

so forth. Snieder (1998) studied the role of nonlinearity in inverse problems, introducing 64 

the relationship Inversion=Estimation+Appraisal, pointing out that non-uniqueness and 65 

error propagation are the main reasons for uncertainty assessment.  66 

The problem of uncertainty has a natural interpretation in a Bayesian framework 67 

(see Scales and Tenorio, 2001). Bayes’ rule (1763) states that a set of model parameters 68 

is more probable if it explains the observed data with a higher probability, that is, if the 69 

observed data are more likely to have happened: 70 

( / ) ( )
( / ) .

( )

P P
P

P


d m m
m d

d
           (2) 71 

The term ( / )P d m  is called the likelihood and typically depends exponentially of the 72 

data misfit  || ||pF m d  in a certain norm p, being ( )P m  the prior probability and 73 
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( )P d  the evidence that is usually considered as a normalization constant in these 74 

approaches. 75 

Besides, assuming the likelihood and the prior probability in the family of Gaussians it 76 

is easy to prove the equivalence between the maximum likelihood method that finds the 77 

mode of ( / )P d m  and the deterministic least squares method with the regularization 78 

introduced by the prior information (see for instance Aster et al., 2005; Fernández-79 

Martínez et al., 2013). 80 

From the deterministic point of view, uncertainty assessment involves finding the 81 

family ( tolM ) of geophysical models, m, that are consistent with our prior knowledge 82 

and fit the observed data 
sd R  (comprising all the observables) within the same 83 

relative misfit tolerance ( tolE ): 84 

2

2

( )
 : .

F m d
m M

d
tol tolE


                     (3) 85 

In the case of linear problems, the region of uncertainty will be called tolL , and it is 86 

defined as follows: 87 

2

2

 : .
Fm d

m L
d

tol tolE


                     (4) 88 

Uncertainty analysis is important, since this ambiguity in the model parameters 89 

determination generates a risk in the decisions that can cause possible negative 90 

outcomes. Uncertainty analysis is quite well understood in linear inverse problems with 91 

linear algebra and linear inverse theory (see for instance Menke, 1984; Aster et al., 92 

2005).   93 

Nevertheless, in nonlinear inverse problems the uncertainty analysis has been 94 

intimately related to random sampling methods and Bayesian frameworks (Mosegaard 95 
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and Tarantola, 1995; Sambridge 1999; Sambridge and Mosegaard, 2002; Tarantola, 96 

2005), due to the fact that the linearized inverse problem only provides a local linear 97 

approximation to the nonlinear variability (see for instance Alumbaugh, 2002; 98 

Fernández Álvarez et al., 2008; Fernández-Martínez et al., 2013).  However, most of 99 

these stochastic sampling schemes depend too strongly on the dimension of the 100 

parameter space and can often require intractable numbers of forward solves (e.g., 101 

Haario et al., 2001). Scales and Snieder (2000) pointed that Monte Carlo sampling 102 

methods are not feasible for large-scale inverse problems, and developing an operational 103 

theory to account for the appraisal problem of nonlinear inverse problems with large 104 

number of parameters is one the biggest theoretical and practical challenges in 105 

inversion, which is much more important than establishing uniqueness proofs of 106 

idealized mathematical problems. 107 

Fernández-Martínez et al. (2012, 2013) analyzed deterministically the uncertainty space 108 

of linear and nonlinear inverse problems through the cost function landscape (3) in the 109 

regions of low misfits. They showed that the region of equivalence tolM  in linear 110 

inverse problems is the part of the model space inside the hyperquadric surface of 111 

equivalence, whose axes depend on the error tolerance, tolE , and on the ill-conditioning 112 

of the matrix of the linear system involved. This hyperquadric surface varies from a 113 

very oblong ellipsoid to an elliptical cylinder (rank-deficient systems).  Least-squares 114 

method tries to determine the center of this surface. Obviously in the case of flat 115 

elongated valley (rank deficient system) this problem does not admit a unique solution. 116 

The determination of the center of the hyperquadric is very sensitive to the effect of 117 

noise and also to the type of regularization that it is used to stabilize the inversion 118 

(Fernandez-Martinez et al., 2014 a,b). 119 
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While the curse of dimensionality is often talked about in optimization and inverse 120 

problem settings, the blessings of dimensionality are less well-known or utilized 121 

(Donoho, 2000). Asymptotic methods in statistical physics allow derivation of results in 122 

very high dimensional settings that would be difficult in moderate dimensions. There 123 

may be potential for applying high-dimensional approximation theory and probability 124 

theory (e.g. Johnstone, 1998, 2000) to exploit the blessings of dimensionality for 125 

inverse problems. 126 

Advantages and/or drawbacks of the dimensionality, in this paper we generalize the 127 

results shown in Tarantola (2006) about the curse of dimensionality in sampling, to the 128 

case of linear and nonlinear inverse problems, expanding the results that were already 129 

outlined in Fernández-Martínez (2015). In this previous work, Tarantola (2006) just 130 

showed that sampling inside an isotropic space (hypersphere) is almost impossible for 131 

more than 10 independent dimensions, trying to make aware practitioners that the model 132 

space is almost empty of good solutions, and the uncertainty analysis of the inverse 133 

solution is a very complicated problem.  134 

In this paper, we generalize the results known as the curse of dimensionality (Bellman, 135 

1961) that refers to the probability sampling within a hypersphere to the uncertainty 136 

analysis in inverse problems, relating the sampling probability to the ill-conditioning of 137 

the linear system and studying the effect of model reduction. This idea was briefly 138 

outlined in Fernández-Martínez (2015). The curse of dimensionality was used to explain 139 

the difficulty of sampling high dimensional model spaces by means of random sampling 140 

methodologies (Curtis A., Lomax A., 2001; Tarantola A., 2006). This paper has the 141 

novelty of explaining this fact by means of mathematical analysis. Besides, we show 142 

that the use of an orthonormal reduced basis set does not alter the ill-conditioning of the 143 

system matrix but serves to reduce considerably the dimensionality of the model space 144 
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because the solution is searched in a subspace. This analysis is generalized to the case of 145 

nonlinear problems either by reparameterization or by embedding the nonlinear region 146 

of equivalence within the linearized region of equivalence for a higher misfit. We show 147 

in a simple 2D example that the nonlinearities reduce the size of the nonlinear 148 

equivalence region compared to the linearized equivalence region, provoking an 149 

increase of the sampling probability for higher dimensions. This fact could explain why 150 

sampling is possible when an informative prior is adopted. Although this paper remains 151 

theoretical, it provides new insights about the directions that should be adopted to 152 

improve the uncertainty analysis in linear and nonlinear problems, and shows that for 153 

high-dimensional problems, brute force and/or fully random sampling approaches 154 

cannot be used to deal with the uncertainty problem. 155 

 156 

2. THE CURSE OF DIMENSIONALITY IN INVERSE PROBLEMS 157 

2.1 Linear problems 158 

In the previous section, we have seen that the challenge consists mainly in sampling low 159 

misfit elongated valleys of the cost function in order to obtain representative samples of 160 

the linear/nonlinear uncertainty region. This sampling is hampered by the 161 

dimensionality of the problem, and the explanation is as follows: let us imagine that we 162 

want to sample inside the circle that it is inscribed in the square of side r. The 163 

conditional probability of throwing a dart inside the circle, knowing that it is inside the 164 

square is: 

2

2

2
.

4

r

r




 
 
    In this case, the square plays the role of our search space.  If we 165 

increase one dimension, then the probability of sampling within the sphere that it is 166 

inscribed into a cube of side 2r is 

3

3

4

3 2
.

6

r

r




 
 
    This probability goes very fast to zero 167 
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(see for instance Tarantola, 2006) when the number of dimensions increases and 10.n   168 

In his own words: “large-dimensional spaces tend to be terribly empty. Hitting by 169 

chance the circle inscribed in a square is easy. Hitting by chance the sphere inscribed 170 

in a cube is a little bit more difficult. When the dimension n of the space grows, the 171 

probability of hitting the hypersphere inscribed in a hypercube rapidly tends to zero (for 172 

n>10)”.  173 

The deduction of the formulas concerning to the volumes of the hypersphere and the 174 

hyperellipsoid can be consulted in Wilson (2010).  The volumes SV  and CV  of the 175 

hypersphere of radius r inscribed in a hypercube (of side 2r) are:  176 

 

 
 

/2

/2

1

2
,

/ 2 ( ) .
2 / 2

2

n n

n
S

i n

n

C

r
V

n n P P x S x C
n n

V r







 

     


 

  (5) 177 

In what follows ( )iP P x S x C     is the probability of sampling a point within the 178 

hypersphere, conditioned of being inside the hypercube. The subscript i stands for 179 

isotropic, that is, the uncertainty is the same in all the directions of the space (sampling 180 

inside the hypercube). Figure 1 shows the probability  iP n  as a function of the number 181 

of dimensions n. It can be observed that this probability approaches to 0 for n greater 182 

than 10.  This simple fact known as the dimensionality curse (Curtis and Lomax, 2001) 183 

serves to explain why the random exploration of large-dimensional spaces is unfeasible. 184 

This would mean that no more than 10 dimensions could be handled to study an 185 

isotropic space of uncertainty. The phrase “curse of dimensionality” was probably first 186 

coined by Bellman (1961) in the context of optimization over a large number of 187 

variables. 188 

Nevertheless, it has been shown that the uncertainty in inverse problems (and more 189 

generally in any decision problem) is not the same in all the directions of the model 190 
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space, that is, the region of equivalence is elongated and the uncertainty regions have an 191 

anisotropic nature (Fernández-Martínez et al., 2012).  Therefore, it is easy to understand 192 

that the number of effective dimensions that we have to actually sample in this 193 

anisotropic uncertainty world is much less than the actual number of dimensions, 194 

depending on the valley eccentricity, which is related to the ill-conditioning (condition 195 

number) of the linear system matrix F . We will also prove that this situation improves 196 

for nonlinear inverse problems due to the effect of the nonlinearities that serve to bound 197 

the size of the nonlinear equivalence region.  198 

The demonstration in the case of linear problems is as follows: in the case of a purely 199 

overdetermined linear problem, Fm d , where the matrix of the linear system F has 200 

spectrum with all non-null singular values 
1 2 0n      , then the condition number 201 

is defined as the ratio of the maximum and minimum singular values of F, 1

n





 , and 202 

the linear region of equivalence tolL  is expressed as: 203 

   
2T T 22

2

2

.tol tol


    
Fm d

m F F m d
d

                        (6) 204 

where 
T 1 T( )  m m F F F d  is the model increment referred to the least-squares 205 

solution. To arrive to formula (6) we took account that the Moore-Penrose 206 

pseudoinverse of  F writes: 
† T 1 T( )F F F F

 . 207 

Considering the singular value decomposition of TF UΣV , and referring to the V 208 

base, we arrive at (Fernández-Martínez et al., 2012, 2013): 209 

   

2

( )
2 2T T 2 2

2 2
1

,
1

F

m Σ Σ m d d
n rank

Vk
V V

k

k

m
tol tol







 
     

 
 
 

     (7) 210 Jo
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which is a hyperellipsoid with semi-axes 2
d

i

i

tol
a


 .  The volume of a hyperellipsoid 211 

with semi-axes 1 2, ,..., na a a  is 
 

/2

1 22
.

/ 2

n

n
E

a a a
V

n n





 Therefore the probability of 212 

sampling inside Ltol , conditioned to the fact that the point is inside of a hypercube of 213 

side   2
1 2

2
2max , ,..., 2

d
n n

n

tol
H a a a a


    is: 214 

 

 
 

/2 2

1 2 1/2

1

1 2 1

2

2

/ 2 ( ) .
2 / 2

2

d

d

n

n

n nn
E n

n

nn

C

n

tol

V
n n P x E x C

n n
tol

V


  



  













 
    


  

   
  

 (8) 215 

For instance, in the 2D space (Figure 2A) the probability of sampling inside the ellipse, 216 

when the point is inside of the hypercube, is 217 

 
1 11 2 1 2

2

2 12

.
4 4 42

a i

a a a
P P

aa

   
 



                            (9) 218 

In the 3D space (Figure 2B), the probability aP  is  219 

 

2 21 2 3
23 31 2

2 2 2

3 1 2 13

4

3 .
6 6 62

a i

a a a
a a

P P
aa


   


  

                               (10) 220 

These results coincide with those that are obtained by applying equation (8) for n=2,3. 221 

Denoting by ( )aP P x E x C    the anisotropic conditional probability, and 222 

introducing the anisotropic constant 
1

1 2 1

,
n

n
a

n

C


  





  we have: 223 

,a i aP P C                                                           (11) 224 

that is, the anisotropic sampling probability is proportional to the isotropic sampling 225 

probability through the anisotropic constant that depends on the ill-conditioning of F. 226 
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The following lower and upper bounds can be found for aC  227 

1
1

1

1

,
n

nn
a n

C









                                                     (12) 228 

 
2

1 11 1 1

1 1 2 1 1 2 1

.
n

nn n n
a

n n

C
    

 
      


 

 

                                  (13) 229 

Therefore, we have the lower and upper bounds of the anisotropic probability: 230 

1 1

min max

n

i a iP P P P P      .                                             (14) 231 

Figure 3 shows the upper bound ( maxP ) of the sampling probability ( aP ) inside of the 232 

linear region of equivalence, tolL , for linear systems with dimensions between 2n   233 

and 12, and condition numbers 
210, 10  and 10

3
, which are not extremely high. It can 234 

be observed that these probabilities are very small, and drop to zero for 
310   when n 235 

is greater than 3, for 
210   when n is greater than 7, and for 10   when n is greater 236 

than 9. Therefore, ten independent dimensions can only be sampled in isotropic spaces 237 

which is not the case of the unceratinty analysis in linear inverse problems, where the 238 

sampling probability decreases dramatically fast when the condition number and/or the 239 

number of dimensions increases. 240 

Figure 4 illustrates these results showing the anisotropic sampling probability aP  and 241 

the upper and lower bounds, maxP  and minP , for different square random matrices with 242 

dimensions between 2 and 100, with their corresponding condition numbers. This plot is 243 

obtained by averaging the results obtained from 5000 random simulations. It can be 244 

observed that although these matrices are always full rank (due to their random 245 

generation that provides linear independence of their column vectors) their condition 246 

numbers vary from 1.9710  to 3.510  and the (anisotropic) sampling probability within the 247 
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tolL  region is close to zero.  The algorithm to generate these results is given in 248 

Appendix A. 249 

It has been analytically shown that the regularization in linear inverse problems has the 250 

effect of improving their condition number, since it bounds the axes of the linear 251 

equivalence region with higher uncertainty, decreasing the condition number 252 

(Fernández-Martínez et al., 2013). The condition number of the system matrix is related 253 

to the minimum and maximum axes of the linear hyperquadric as follows:  254 

max1

min

,
n

e

e





                                                           (15) 255 

with  256 

2 2
max min

1

,
d d

n

tol tol
e e

 
  .                                           (16) 257 

Therefore, taking into account (14) and (15), the regularization increases the lower and 258 

upper bounds of the anisotropic probability aP , and has the effect of improving the 259 

sampling. Besides, taking into account that iP  increases by reducing n (the number of 260 

dimensions), the model reduction is the simplest solution that can be adopted to 261 

improve the sampling. This analysis will be shown later in this paper.  262 

Finally, the lower bound in (14), minP , can be used to establish the maximum number of 263 

dimensions and/or the amount of regularization needed to fulfil minaP P . For that 264 

purpose, we have to solve the nonlinear equation: 265 

 

/2
1 1

min 12 / 2

n
n n

i n
P P

n n


  


 


.                             (17) 266 

Therefore, supposing that we know the condition number , the relationship (17) can be 267 

rewritten as follows: 268 
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          minlog log log 1 log 2 log / 2 (1 ) log
2

n
P n n n n         .    (18) 269 

Figure 5 shows the lower probability bounds for three different values of the condition 270 

number  10,100   and 1000 with dimensions from 1 to 10.  It can be observed that the 271 

lower bound minP  drops very fast with the ill-conditioning of F. Therefore, without 272 

using any kind of regularization (and prior information) sampling very ill-conditioned 273 

problems via random sampling methodologies is literally impossible in high 274 

dimensions. This is a very important conclusion, which does not hamper the Bayesian 275 

approach of inverse problems (see for instance Scales and Tenorio, 2001; Rappel et al., 276 

2018, 2019). 277 

2.2 Application to gravimetric inversion 278 

In this section we show the application of the previous results to a 1D geophysical 279 

model that accounts for the gravity anomaly  z kg s  at the observation point ks  located 280 

in the surface, generated by a linear dense body with density distribution  x  located 281 

at a constant depth D  (see Blakely, 1995): 282 

 283 

 
  

 3/2
22

b

z k
a

k

D
g s G x dx

D s x

 

 
 .                                (19) 284 

This geophysical problem corresponds to a Fredholm integral equation of first kind (see 285 

Hansen, 2010). 286 

The discrete inverse problem consists in expanding the density function  x  in a set 287 

of basis functions  ( ), 1,...,i x i n    as follows (Fernández-Muñiz et al., 2015): 288 Jo
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          

   

1 1

1 1

, ,

, , , 1,..., ,

n nb b

z k k i i i k i
a a

i i

n n

i k i i ki

i i

g s K x s x dx K x s x dx

K x s x G k m

   

  

 

 

 
   

 

  

  

 

          (20) 289 

where  
  

3/2
22

, k

k

D
K x s G

D s x

 

 

, and i  are the coordinates of the unknown 290 

density function  x  into the set of basis functions  ( ), 1,...,i x i n  , and 291 

     
1

, , , ,
i

i

x

ki k i k
x

G K x s x K x s dx


                                 (21) 292 

is the projection of the kernel function  , kK x s  at the point ks  onto the basis function 293 

i .  294 

In this case, we have used the piecewise continuous functions (pixel basis set): 295 

 
   1

1

1 , , 1 , ,
1 1

0 otherwise

i i

i ii

b a b a
x x x a i a i

x x n nx




   
          




       (22) 296 

As result of the discretization, the discrete inverse problem can be written: 297 

, zGρ g                                                        (23) 298 

where  m nM G R  is the matrix that contains the values of the projected kernel, 299 

 , kik i GG ,  1 2, ,...,ρ n    and  1 2( ), ( ),..., ( )zg z z z mg s g s g s . This linear system 300 

turns to be very ill-conditioned, due to the low spatial resolution of the geophysical 301 

kernel,  , kK x s .  302 

Figure 6 shows the condition number for several examples of this simple linear 303 

gravimetric inverse problem as a function of the number of data (m), and the number of 304 

model parameters (n). In real problems the linear systems are typically under-305 

determined (or rank-deficient) since data acquisition has a cost that we try to minimize, 306 
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and the number of model parameters only depend on the number of pixel basis used for 307 

the discretization of the continuous inverse problem and has no cost. The rank deficient 308 

character implies that there exists a redundancy, both, in data acquisition and model 309 

parameterization. In this particular case, the rank is around 17 independently of the size 310 

of the linear discrete system. 311 

It can be observed that the condition number (in log10 scale) is very high with an order 312 

of magnitude between 14 and 19 (condition numbers in the interval  14 2010 ,10 ). This 313 

provides an idea of the very low sampling probabilities that can be achieved for n>6. 314 

This result highlights the importance of reducing the dimension to sample the 315 

equivalent models (using a reduced basis set, and it is relevant since it relates the curse 316 

of dimensionality in the uncertainty analysis of linear inverse problems with the ill- 317 

conditioning of their system matrix.  318 

In Tarantola’s words (Tarantola, 2006): “sampling uncertainty in a nonlinear problem 319 

is like finding a needle (a curvilinear needle for nonlinear inverse problems) in a 320 

haystack”. In other words, in an anisotropic universe no more than 4-6 dimensions can 321 

be efficiently sampled, depending on the eccentricity of the linear equivalent region, 322 

which is related to the ill-conditioning of the linear system to be solved. This result also 323 

explains why the use of model reduction techniques and subspace methods is essential 324 

in quantifying uncertainty. The main question now resides in finding the right reduced 325 

dimensions to approach the uncertainty of any inverse problem. 326 

In the case of rank-deficient linear systems, the zero-order Tikhonov’s regularization 327 

has the effect of limiting the axes of the hyper ellipsoid to 1/   in the directions of the 328 

V vectors spanning the null space of F, with 2  being the damping parameter used to 329 

stabilize the inversion: 
2 22

2 2
min

m
Fm d m  .  The zero-order regularization has the 330 

effect of fixing the minimum singular value of F to   (Fernández-Martínez et al, 331 
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2014a). Therefore, the regularization improves the ill-conditioning of the system matrix, 332 

and also the sampling efficiency. It is important to remark that the linear hyperquadric 333 

in the case of rank deficient systems is a straight valley of infinite length in the 334 

directions spanning the kernel (or null-space) of F, that is, the ill-conditioning of these 335 

problems is infinite.  The regularization modifies the condition number as follows: 336 

1 .





  337 

2.3 The effect of model reduction 338 

The importance of model reduction in inverse problems has been analysed by 339 

Fernández-Martínez (2015). In this case, we try to study its effect in the uncertainty 340 

analysis. 341 

Let us suppose now that the solution of the linear system Fm d  is searched in a 342 

subspace of dimension q 343 

1

q

k k

k




 m v Qα ,                                         (24) 344 

where  1 2, ,...,v v vq
 is an orthogonal reduced basis of this subspace, 1 2[ ... ]Q v v vq   345 

is the orthogonal matrix that has  1 2, ,...,v v vq
 as column vectors, and 346 

 1 2, ,...,α q    are the coordinates of m  in this subspace. Now the problem consists 347 

in finding α  such as 
2

FQα b is minimum.  348 

Taking into account the SVD of F we have: 349 

 
T

T T T ,  FQ UΣV Q UΣ Q V UΣP                               (25) 350 

where TP Q V  is also an orthogonal matrix. In conclusion:    . FQ F  351 

Therefore, the orthogonal model reduction has the effect of reducing the dimension 352 

from n parameters to q principal modes, but it does not alter the conditioning of the 353 
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linear system. Although the dimensionality reduction does not provide an improvement 354 

of the condition number of the system matrix, the sampling probability increases.  355 

Different methods to define the basis set  1 2, ,...,v v vq
 are available in the literature 356 

(see for instance Tompkins et al., 2011 a,b; 2013; Fernández-Martínez, 2015; 357 

Fernández-Martínez et al., 2017).  358 

The model reduction techniques are crucial to design operational methods able to solve 359 

the uncertainty problem independent of the dimension of the model space and of the 360 

computational cost needed to solve the forward model, as requested by Scales and 361 

Snieder (2000).  The underlying reason is that the model parameters must have an 362 

intrinsic correlation introduced by the physics of the forward problem which is needed 363 

to match the observed data. Therefore, these parameters should not be sampled 364 

independently: model reduction methods take advantage of these correlations to reduce 365 

the dimension and improve sampling. These methods are compatible with the Bayesian 366 

approach of uncertainty in inverse problems.  367 

 368 

2.3 Nonlinear problems 369 

In the case of nonlinear problems, the region of equivalence tolM  is a valley with 370 

curvilinear shape and might be composed of different disconnected basins (Fernández-371 

Martínez et al., 2012).  372 

We will show in a simple synthetic case that the results shown for the linear case can be 373 

applied to the nonlinear case to establish upper bounds for the sampling probabilities. 374 

The basic idea is that the nonlinear region of equivalence for a given error bound can be 375 

imbedded into the linearized region of equivalence that is deduced from the Jacobian of 376 

the forward model taken in the solution of the inverse problem. Nevertheless, it should 377 

be pointed out that the condition number of the linearized equivalence region (linear 378 
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hyperquadric) is much higher than the condition number of the embedding hyperquadric 379 

(calculated according to the expression (6)). 380 

To show numerically this fact, let us consider a nonlinear regression problem of the 381 

kind:  382 

 ; , ,kbx

k k ky f x a b ae                                           (26) 383 

where 
ky  are the observed data in a set of observation points  

1,...,k k s
x


, 

k the 384 

realization of the observational noise in 
kx , and  ,a b  the parameters that we would like 385 

to identify. In this case, we have generated a synthetic dataset with    , 4,3a b   as 386 

true model. The observed values have been perturbed by 3% of Gaussian white noise in 387 

order to simulate the noise in the measurement data.  388 

To determine the linearized region of equivalence the Jacobian matrix around the true 389 

model  ,T Ta b   for the discrete dataset  
1,...,

,k k k s
x y


needs to be calculated as follows: 390 

 

1 1

2 2

1

2

,
, .JF

T T

k

T T

T T

k

T s T s

b x b x

Tbxk
b x b x

T

a b
bxk

k b x b x

T s

e a x ey
e

e a x ea

y
ax e

b e a x e

 
             

                            (27) 391 

The ellipse of equivalence in the plane  ,a b  for a tolerance value tol referred to its 392 

principal axes writes: 393 

   
2 2

2 2

1 2

2

1,

, 1,2,

T T

k

k

k

a a b b

e e

d
e tol k



 
 

 

                                        (28) 394 

where 
k  are the singular values of the Jacobian matrix. This ellipse has to be rotated to 395 

its principal axis provides by the eigenvectors of the matrix T
JF JF . 396 

In this case there are two different ways of embedding the nonlinear equivalence region 397 

for a given tolerance tol into the linearized equivalence region: 398 
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1. The first way consists in using the logarithmic parametrization. Figure 7A shows 399 

the nonlinear (green color) and linearized uncertainty region for relative error 400 

tolerances of 5% and of 10%, respectively, in the  ,a b  plane.  Figure 7B shows 401 

the same regions in the  ln ,a b  plane. Therefore, in this particular case, the results 402 

shown for linear problems can be applied to the sampling of   ln ,a b . 403 

2. The second way consists in using linearization techniques by computing the 404 

Jacobian. In the previous example, the condition number of the matrix T
JF JF  is 405 

2

1

87.3
e

e
  and the corresponding ellipse of equivalence for 10% relative misfit, 406 

which includes the nonlinear region, is too big compared to the nonlinear region. 407 

For that reason, in Figure 8 we have plotted the ellipse (red line) with numerical 408 

axes ( 2

1

15
e

e
 ) that almost encompasses the entire nonlinear equivalence region 409 

(green line) for a condition number 6 times smaller than the theoretical one. 410 

Therefore, in this case the sampling probability of the nonlinear equivalence region 411 

is bounded by the sampling probability of a linear inverse problem in 2 dimensions 412 

with condition number 2

1

15
e

e
   .   413 

3. Following the same idea, in other nonlinear cases it is always possible to find a 414 

linear hyperquadric for a higher tolerance error that contains the nonlinear region of 415 

value tol. Obviously in this case, some models inside the hyperquadric do not 416 

belong to the nonlinear equivalence region. Then the application of relationship 417 

(14) to the hyperquadric provides approximate bounds of the anisotropic sampling 418 

probabilities in the nonlinear case. A similar analysis was performed in a nonlinear 419 

1D-DC inverse problem (Fernández-Alvarez et al., 2008) concerning the inversion 420 

of Vertical Electrical Soundings (VES) using the logarithmic parameterization.  421 
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 422 

CONCLUSIONS 423 

 424 

In this paper, we have generalized the curse of dimensionality known for an isotropic 425 

world to uncertainty sampling which is intrinsically anisotropic. We have shown that 426 

the sampling depends not only in the dimensionality but also in the ill-conditioning of 427 

the linear system. Albert Tarantola was more than right and whether the needle is even 428 

thinner, or the haystack is huge, it does not matter. More than 4-6 independent 429 

dimensions cannot be efficiently sampled by exhaustive grid search in the case of well-430 

conditioned linear inverse problems. This sampling probability drops to zero for very 431 

ill-conditioned linear systems. In the case of nonlinear problems, these results can be 432 

applied to the linearized inverse problem, but the nonlinearity has a positive role in 433 

reducing the size of the nonlinear uncertainty region with respect to the corresponding 434 

linearized equivalence region. These results are independent of the sampling algorithm 435 

that is used.  436 

As a main conclusion, model reduction techniques are needed to efficiently sample the 437 

equivalence region in linear and nonlinear inverse problems. We have shown that model 438 

reduction techniques based in orthogonal basis sets do not alter the ill-conditioning of 439 

the system matrix but increases the anisotropic sampling probability because the 440 

dimensionality is drastically reduced. Otherwise, the only way to successfully 441 

performing the sampling is adopting very informative priors, but this is not the purpose 442 

of the uncertainty analysis, that has to be able to unravel other possible (or plausible) 443 

inverse solutions with a different structure than the one shown by the solution that has 444 

been adopted (see for instance Tompkins et al., 2011 a,b, 2013). Although the results 445 

shown in this paper are theoretical at this stage, we hope that the additional knowledge 446 

provided by this research will help practitioners to design more efficient methods of 447 

sampling.  Particularly, the probability bounds given in this paper could be used to 448 
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estimate the number of reduced dimensions and the amount of regularization that is 449 

needed. 450 
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LIST OF CAPTIONS 549 

 550 

 

 551 

Figure 1: Isotropic sampling. The graph shows the conditional probability of sampling 552 

within a hypersphere inscribed into a hypercube.  553 

  554 

Jo
ur

na
l P

re
-p

ro
of

Journal Pre-proof



 555 

 

 
 556 

Figure 2: Anisotropic sampling in 2 and 3 dimensions. In the mathematical deduction, 557 

the length of the hypercube coincides with the axis of maximum uncertainty.  558 

 559 

 560 
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 561 

 

Figure 3: Anisotropic sampling: conditional probability as a function of the number of 562 

dimensions for different condition numbers of the system matrix. The low probabilities 563 

indicate that no more than 5 to 9 dimensions can be efficiently sampled depending on 564 

the condition number. For high condition numbers the sampling probability is close to 565 

zero.  566 
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 567 

Figure 4: Anisotropic sampling probabilities (in log10 scale) of the region of linear 568 

equivalence for random matrices with dimensions between 10 and 100. A) Condition 569 

number. B) Anisotropic sampling probabilities and lower and upper bounds. 570 

 571 

 572 
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Figure 5: Variation of the values of the lower bound of the sampling probability (in 573 

logarithmic scale) with the number of dimensions (from 1 to 10), for different values of 574 

the condition number.  575 

  576 
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 577 

 578 

 
 

 579 

Figure 6: Condition number in logarithmic scales for different sizes of the discrete 580 

inverse gravimetric problem matrix. It can be observed that independent of its size the 581 

gravimetric problem is very ill-conditioned with condition numbers between 10
14 

and 582 

10
20

. In the figure m represents the number of data and n the number of parameters of 583 

the different matrices. 584 
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 585 

Figure 7: Nonlinear regression problem. A) Nonlinear equivalence regions for 5% 586 

(green curve) and 10% of relative error (pink curve). B) Linearized equivalence regions 587 

in the  ln ,a b  plane, obtained by logarithmic reparameterization. 588 

 589 
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Figure 8: Nonlinear equivalent region (green line) of 10% and linearized linear region 590 

(red line) with 1 20.4, 6e e  . 591 

  592 
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Appendix A 593 

Algorithm 1 Linear Problem 

1. Select a matrix condition number:  1 2, , , n    594 

2. Select a number of matrix dimensions:  1 2, , , rn n n  595 

3. Choose the number of the matrices considered for each number selected in 2: N 596 

4. for  1 2, , , ri n n n  do 597 

5.            12 2 ;iden i i   598 

6.           
2

;
i

iP
den


  599 

7.         for 1:j N  do (for each matrix) 600 

8.                ( );matrix rand i  601 

9.                ( );matrixs svd  602 

10.                
1min( )

;
( )

is
Ca

prod s



  603 

11.                ( );matrixcond   604 

12.                1 ;i

iCL P   605 

13.                1;iCU P   606 

14.                ;iPa P Ca  607 

15.         end for 608 

16.  end for 609 

17.  Calculate: median (CL), median (CU), median (Pa) 610 

 611 

In the case of nonlinear problems these calculations, can be performed in the Jacobian 612 

matrix JF(m0) to estimate the number of reduced dimensions and the amount of the 613 

regularization that is needed to have a minimum sampling probability according to (18), 614 

taking into account that the condition number is the maximum singular value of JF(m0) 615 

divided by  ,  that is, the squared root of the damping parameter used in the zero-order 616 

Tikhonov regularization. 617 
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