
Journal of Computational and Applied Mathematics 38 (1991) 61-75 
North-Holland 

61 

PCG methods applied to a system 
of nonlinear equations 

Xiaojun Chen 
Department of Mathematics, Wan Jiaotong University, Xi’an, China 

Tetsuro Yamamoto 

Department of Mathematics, Faculty of Science, Ehime University, Matsuyama 790, Japan 

Received 17 August 1990 
Revised 12 June 1991 

Abstract 

Chen, X. and T. Yamamoto, PCG methods applied to a system of nonlinear equations, Journal of Computa- 
tional and Applied Mathematics 38 (1991) 61-75. 
In this paper, we consider a quasi-Newton iteration for solving a nonlinear equation F(x) = Ax + g(x) = 0 in 
R”, where A is a symmetric positive definite matrix and g is a bounded continuous function. We discuss the 
PCG method with various preconditioners to solve the linear equation at each step of the iteration, estimate 
their condition numbers, and compare their computing time for a numerical example. 
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1. Introduction 

In recent papers [2,3,7], we have discussed convergence of the Newton-like method 

B(xk)(xk+l -x/J= -F(x,), k>O, (1.1) 

for solving the equation F(x) = f( x) + g(x) = 0 in a Banach space, where B(x) is a linear 
operator and f is differentiable, while the differentiability of g is not assumed. 

In this paper, as a model problem, we restrict our attention to a system of finite-difference 
equations 

P(x) =Ax+g(x) =o, XER”, (1.2) 
in R”, where A is an n X n symmetric positive definite block tridiagonal M-matrix denoted by 

‘T, 4 \ 

A2 T2 4 

A= -. -. -. 

A,:, T,:, A,,, 

=(aij>, 
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where q;, i=l,..., m, are m X m tridiagonal symmetric matrices and Aj, j = 2,. . . , m, are 
m x m diagonal. Such an equation arises from the usual discretization of the nonlinear elliptic 

equation 

in 1(2 = (0, 1) X (0, 1) C iR2, 

subject to the boundary condition 

4x, Y) =p(x, Y), on aa7 

where p* 2 p(x, y) > p* > 0, q* 2 q( x, y) > q* > 0, x, y E 1(2, and $ is a continuous function 
whose partial derivatives $,, #,,, \c/,,. do not necessarily exist. 

We use the Newton-like method (1.1) to solve (1.2). Updating matrices B( xk) are chosen as 
B(xk) = A + +(xk) where $(xk) are defined as follows. For k> 0, let (x,), be the ith 

component of the vector xk and ]xk] be the vector with the components ](xk)r I,..., ](x~)~]. 

Let k 2 1 and ]] xk - xk_l I] M = 1 xk - x~_~ Ii (the jth component of the vector 1 xk - x~_~ I). 

The notations a+ and a- are defined by 

a Z 0, and a-= 0, a#O, 

a=O, 
1, a=O. 

Then we put +(x0) = 0 and for k > 1, 

+lcxk) = diag((xk - xk-,)~‘)? 

~2(Xk)=(xk-xk-l)~1~~l[eje~+eie~)(xk-xk-l)~~ 

and 

+(xk) = (dxk) + +2(xk)) diag((dxk) - dxk-,))i>~ 

where e, stands for the ith column of the n X n identity. Then B(xk) = A + +(xk) satisfy the 

quasi-Newton equations 

B(Xk)(Xk - xk-1) = +k) - F(xk_,), k a 1, (1.3) 

so that { xk} converges to a solution of (1.2), if g(x) satisfies a Lipschitz condition (see [2]). 
Here, we are interested in the preconditioned conjugate gradient (PCG) method for solving the 

linear system 

B(x,)y=(A++(x,))y= +(X,), k=0,1,2 ,..., 

at each step of the quasi-Newton iteration. We shall choose a preconditioner A4 based on the 
structure of A and fix it for all k a 0. Let D = diag( a,,), T = diag( T,) (block diagonal) and L 
and L, be lower triangular matrices such that 

L+L’=A-D and L,+L’,=A-T. 

Then the following matrices A4 are considered: 
(1) A4 = D, 
(2) M = T, 

Jacobi, 
Block Jacobi, 

(1.4) 
(1.5) 
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(3) M = s, = (D + uL)Ir’( D + oL’)/((2 - w)w), 
(4) M= c,= (T+ wL,)T-‘(T+ uL’,)/((2 - w)w), 
(5) M= I, 
(6) M=A, 

SSOR, 
Block SSOR, 

(1.6) 
(1.7) 

(7) M = H, an incomplete block Cholesky factorization of A. (1.8) 
We first estimate the spectral condition number K( M-‘B( xk)) = X,/X, (2 1) with different 

M, where X, and A, are the smallest and largest eigenvalues of M-‘B(x,), respectively, under 
the condition that II are positive definite. As is well known, the PCG method converges 
rapidly if X,/h, is small. However, the total computing time throughout the Newton-like 
iteration may increase, since solving linear equations with coefficient matrix M may be 
necessary, which needs considerable amount of work if n is large. Hence, the total number of 
operations will be counted, and we shall show that efficiency of PCG methods applied to 
nonlinear equations depends not only on the preconditioning matrix M but also on the 
dimension n and a stopping constant E. Finally, in Section 4, the results are illustrated with a 
numerical example. 

2. Construction of preconditioners 

For the sake of simplicity, we denote +( xk), B( xk) and - F( xk) by +, B and b, respectively, 
and consider the PCG methods with the preconditioners M applied to the linear system By = b, 
which are defined as follows [l]. Choose Y, = xk, calculate r,, = By, - b and q0 = M-rrO and put 
pO= -qO. For 120: 

h 4,) 
ffl= (Ply BP,) ’ 

Yl,l =y/+ (YIP/, h1 = 5 + ~IBPI, 

q1+1 = M-hi> 
( r1+1, 4r+1 1 

‘I= (r,, ql) ’ 
PI+1 = -q/+1 + PIP,. 

The following iterative methods for solving linear equations Ax = b are well known: 
(1) Jacobi: 

yl+l = (I - D-‘/I) y, + D-lb, 

(2) Block Jacobi: 

yl+l = (I- T-‘A)yl+ T-lb, 

(3) SSOR: 

Y/+ l/2 
= &-’ 

(-~Yl+l,2-~‘y,+b]+(1-~)Yl> 

Yl,l = wD-‘( -LY1+1,2 - L’Y/,l + b] + (1 - dYr+1,2, 

(4) Block SSOR: 

Y1+1/2 = @( -LY,+,,, - GYl+ b] + 0 - dYl? 

Y1+1 = @( 4cYl+l,2 - cYl+l + b) + (1 - 4Y1+1,2. 
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They can be rewritten in the form M( y, - yI+ r) = 6, where 5 = Ay, - b and M is a symmetric 
positive definite matrix defined in (1.4)-(1.7). 

We are now interested in constructing H, an incomplete block Cholesky factorization of A. 
Being motivated by the fact 

A = (2 + L,)Z-‘(2 + L;), 

where 2 is the symmetric block diagonal matrix with m X m blocks 2; satisfying 

21 = T,, Ei= ~-Aizll~llA:, i=2 ,..., m, 

we construct the matrix H as follows. Put 

A, = T,, Ai= T-AiAi_lAi, i=2 ,..., m, 

where Ai_ 1 is a tridiagonal matrix (denoted by trid( A;.r)) whose tridiagonal elements are those 
of A;_!,. 

Decompose the matrices Ai and Ai: 

Ai = Pip:, Ai= QiQI, i=l ,..., m, 

where Pi and Qi are lower bidiagonal. Put K = AiQi_l, i = 2,. . . , m, 

u’= .p2 . w, 

and M = H = U’U. We can prove that all the A, are positive definite M-matrices so that Pi are 
nonsingular. Hence, H = U’U is a symmetric positive definite matrix. Similarly, let 

'Qlp: \ 

Z= = (Zij). 

\ Qmf'ti,, 
Then Z is a nonsingular &diagonal matrix and H can be written as H = T + L,Z + Z’L’,. 

Here Ai are computed by the following method (see [8]). Let 

‘bl a2 \ 

a2 ‘. . . 
Ai=To= . . . a , a2 ,..., a,#O. 

m 

\ a, b, 

Define two sequences { ui }, { ui } as follows: 

Ug = 0, ur= h,, Ui= -+,(lli_lUi-2 + bi-lUi-I)> 

q,, = h,, 

; 
u m+1= 0, ui= - G(bi+lui+l+ ai+,ui+,), 0 < i =z m - 1, (2.2) 
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where h,, h,, a, and a,,, may be chosen arbitrarily, but h,, h, and a, may not be zero. Then 
Ai = trid(A;‘) = (rjj) is given by 

/ UlUl UlU2 

%U2 

t7,i)=& . . . .*. 

Let 

I b;-1 I I ai- I 
a= max ~ piJ - 

2~igm Iail ’ p= max Iail ’ ‘= IYLfi lail ’ ‘= max 
I ai+l I 

3<i<m ldigm-1 I4 a 
Then we have the following theorem which improves the estimates for bounds of I ui I and 

I u, I in I41. 

Theorem 1. Let T, be diagonally dominant and I b, I > I a2 1, I b,,, I > I a, I. Then (i) Tc’ exists 
and the sequences { ui } and { vi } satisfy 

IUIl<IU21< .** <l%nl, IV~l’I~1I’ *** ‘Ivml; 
(ii) there exist positive constants s, o, Z, a” for which 

1 ui I < st* ‘-l + K’, i=l,2 m, ,...’ (2.3) 

I vi I < qm-i + qi, i=O, 1,2 ,..., m, (2-4) 

where t, and t, are the roots of t 2 - at - ,8 = 0, and Tl and r2 are the roots of t 2 - 6t - ,8 = 0, 

which satisfy 

-l<t,<O<l<t,, -1<7,<O<l<t;; 

(iii) the inequalities (2.3) and (2.4) hold with equality ifb = b, = - - * = b,,, and a = a2 = - - - = 

a,. Furthermore, 1 ui I = I v,,,__~+~ I if I h, I = I h, I. 

Proqf. From (2.1), we have 

lb, I 
IU2I = la21 IUII’ IUll7 

and for i> 3, 

I~~l~~~l~~-~ll~~-~l~I~~-~lI~~-~I~~~~l~~-~l~I~~-~l~l~~-~I>lu~-~l~ I 
if I u~_~ I > I ui_2 I. Hence the sequence { ui} is strictly increasing. Now we prove that (2.3) is 
true. From (2.1) we have 

Iu,I < y$ I’i-II+ lail lailllUi_21 ~alUi_ll+plUi_21. 

The linear difference equation z~+~ = (YZ~ + pzi_r has the general solution zi = sti + at;, where s 
and u are constants, and it is a simple matter to show that 

-1<t,<0<1<t,. 
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For example, we have 

t, = ;( a - pTq+ < 0 

and 

It,I=f(~~-~)~t(li012+--_)~:(ii(a+--_)=l, etc. 

The constants s and u can uniquely be determined by the relations 

z. = s + u = 1241 1) z1 = st, + at, = 1 2.42 I. 

Furthermore, it can easily be shown that S, u > 0. We now obtain by induction that I ui I < 

z,-1, i= 1,2,..., m. In fact, if this is true up to some i > 2, then 

1 u;+1 I < a I u; I +p I U,_l I < (YZ,_l + pq_2 = zj. 

By the same way, we can obtain I q, I > . - - > I u, ) and (2.4). 0 

The following corollary justifies our procedure which approximates A;’ by the tridiagonal 
matrix Aj. 

Corollary 2. Suppose that the conditions of Theorem 1 hold. Then we have 

1~~~1 2 l~~~+~l, fori<j, 

lTijl >, lTij-ll, forj<i, 

(2.5) 

(2.6) 

and 

(2.7) 

where 

Ibile la;+11 lbil- Iail 
r= min 

2<igm-1 Iail ’ la,+1 I 

and 

R= max 
lbil+lai+ll IbiI+lail 

Zgi<m-1 Iail 

Proof. The inequalities (2.5) and (2.6) are direct consequences from the definition of ( rjj) and the 
assertion (i) of Theorem 1. To prove (2.7), take h, arbitrarily. Then, for ui = h,, we have 

Iu21 = -;f;(a,u,+b,u,) = 2 lull 2 lull. II I 
If I 2 I q2 1, i 2 3, 

luil =(~(a;-~ui-2+~~-~~~-*)1> &t I I”i-II- I”i-21) 
I 

I ai I i 
’ I ’ 

I I 
G lull 
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and 

I b;-I I + I a,-, I 
I ‘i I 

l~,_l l <R\ui-ll <RIP2 

By the same way, we obtain 

1 u, 1 >, F-‘-l ” 1 urn 1 I I m 

and 

Iu,I <R"-'-' $’ I&l, I I i=O, l,..., 

i, then 

so that (2.7) holds. 0 

3. Estimates of spectral condition number and number of operations 

Let P be an n X n matrix, X,(P) and A,(P) the smallest and largest eigenvalues of P, 
respectively. We discretize the nonlinear equation in Section 1 by the usual finite-difference 
method with h = l/(m + 1) and put n = m X m. 

In this section, we estimate the spectral condition number K( M-‘B) = A,( M-‘B)/A,( M-‘B) 

with different preconditioners M. 
We first consider the two cases A4 = I and M = A. 

Theorem 3. If there exists a positive constant (Y such that 11 C#I II o. < ah2 < 4( p* + q*)sin2$rh, then 
as h + 0, we have 

K(B) > 
4( p* + q*) sin2&r(l - h) - ah2 

4(p*+q*) sin2&h+ah2 
‘00 

and 

K(A-‘B) < 
4( p* + q*) sin2$rh + ah2 ~ ( p* + q*)T2 + LY 

4( p* + q*) sin2$rh - ah2 (P*+4*)T2-a‘ 

(34 

(3.2) 



/2(p*+g*)I,-p*c -4*1??? 

-4*L 2(p* + q*)I, -p*c -4*L 
r, = 

-4*L 

I -4*L? 2(p* + q*)r, -p*c 

I2( P* + 4*)&l - P*C - 4*Im \ 

- 4*&l 3 P* + 4*)L - P*C - 4*1m 

r, = 7 

- 4*Im 
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Proof. We first consider two splittings of A such that 

A=r,--V, and A=T,+vz, 

where 

\ 

I, is the m x m identity and 

10 1 
1 0 1 

- 4Jm 2( P* + 4*)L - P*C, 

\ 

c= *.* .._ .._ (mxm). 

1 0 1 

\ 1’ 0 

We have 

and 

X,(T,)=2(p*+q*)(l-cosdz)=4(p*+q*)sin2$nh, 

MT,) = 2( P* + 4*)(1 - cos ITS) = 4( p* + q*) sin2+& 

h,(T;) = 2( p* + q*)(l - cos mnh) = 4( p* + q*) sin2+rr(l - h) 

(see [5]). It can easily be shown that the matrices aI = (( v~);~) and v2 = (( v2)ij) are symmetric 

positive definite, since 

(V~)jj=(r,-A)ii=2(P*+q*)-aii>, C I(Vl)ijI >O 
i=+j 

and 

(V*)ii=(A-G)ii=aii-2(P*+4*)~ C I(V2)ijl >O* 
i+j 

From 

(BX> 4 ~ u-b, 4 + (4% x) 
(x3 4 b, 4 (x, x) 

>, 4( p* + q*) sin2$ah - ah2 > 0, 
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for any vector x # 0, we have that the eigenvalues of B and A -‘B are positive and 

and 

< &(I’,) + ah2. 

This implies that 

X (B) 
K(B) = +jJ 2 

A,,(&) - ah2 4( p* + q*) sin2$T(l - h) - ah2 

AI(rl) + Cyh2 = 4( p* + q*) sin2&rh + ah2 
+oo 

(as h+O). 

On the other hand, we consider A-‘B=I+A-‘I$. Since ~~A-‘B~~,gl + [(A-‘([,. IIc#III~ 
and A,( r,) G A,( A), we have 

&(A-‘B) < 1 + ah2h,‘(r2), X,(/l-‘B) > 1 - cyh2A,‘(T2) 

and 

= 1 + ah2/4( p* + q*) sin2:Th --, (p* + q*)T2 + (Y 

1 - ah2/4( p* + q*) sin2&rh (p*+q*)72_(y (as h+O). I2 

Next, we consider the cases M = D, M = T, M = S,, and M = C,. Let 

1 1 

“= 1 -min(&, +) 
and y2 = 

1 - min(6,, +) ’ 

Then we have the following corollary. 

Corollary 4. Under the conditions of Theorem 3, as h -+ 0, we have 

(9 (P* +q*) 
K(D-‘B) 2 (p* + qy(B) -+ 00, 

(ii) K(T-‘B) 2 
2q, + 4p, sin2&rh 

2q* + 4p* sin’iT(l - h) 
K(B) -+ 00, 

(iii) K(S,-‘B) 2 
E;bN P* + q*)2 

4(P* +q*)2 
K(B)+~, ifw<x, 

(iv) K(C;%) > 
E;( w)(2q, + 4p, sin2&rh)2 

16(p* + q*)2 
K(B) -+ 00, if w<Y2, 
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where 

Furthermore, 

A,(D_‘A) < 8, < (P* +4*j* 
(P*+4*+P*+4*)2 

+ A,( D-‘/l), 

and 

A,( PA) < 6, < (cl*>’ 
(2q, + 4p, sin*:Th) 

* +X,(7%4) 

MY,), if S,<S*, 

min F,(w) = 
O<WdY, if 6, > 6*, 

i 

F,(Y*h if 6*<8*, 

min F,(w) = 
O<WdYl if 6, 2 6 * , 

(3.3) 

(3 4 

where 6* = : + l/(2&%). 

Proof. Since 

[ma{(h x)/@k 41 
K(“-‘B) = [min((Bx, x)/(&k, x)}] ’ 

we have 

0) IC(M-‘B) >, ___ 
K(M). 

Hence, to prove (i)-(iv), it suffices to estimate the lower bounds of X,(D), X,(T), A,(&) and 
X,(C,) and the upper bounds of h,(D), X,(T), A,( S,) and X,(C,). We obtain the following: 

(i) X,(D) > 2(p* + q*) and X,(D) < 2(p* + q*). 

(ii) h,(T) > 2q, + 4 p,sin*iqh and X,(T) < 2q* + 4p*sin*:n(l - h). 
(iii) The matrix S, can be expressed as 

s = oA + (1 - w)D + w2LD-‘L’ 
0 (2-w)w . 

Hence 

u2 (( 
LD-‘L’ + A)x, x) 

(&x, x> 2 
(Dx, x) 

+(1-o) (2_wjw, forw<l, 
I 

(Dx, x) 

J 
LD-‘L’ + A)x, x) 

I 

(Dx, x) 

(Dx, x) 
+(1-o) (2_wIo, forwal, 
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and 

Furthermore, we have from (1.6), 

MX.J G II s, II cc G 
II D + (JJL II M II D + WL’ II 00 II D-l II 00 (P* +4*)* 

(2-w)w G * (P* + q*)(2 - w)w 

This proves (iii). 
Now we shall prove (3.3). We first observe that 

(Ae,, e,) 
&VA) G (De,, ei) = 1. 

If L’x # 0, then 

(( LD-‘L’ + A)x, x) (Ax, x) 

(Dx, x) 
’ (Dx 

> 
x) ah,(D-lA). 

If L’x = 0, then 

(( LD-‘L’ + A)x, x) (Dx, x) 

(D-G x) = (Dx, x) = ‘. 

Hence 6, > h,(D-‘A). We have also 

6, < rnax (LFilLtx’) x, + min {F’ “i = X,(D-‘LD-‘L’) + X,(D-‘A) 
x, x x, x 

< II D-‘L II Q) II D-‘L’ II m + X,(D-‘A) < (p* +4*)* 

(P*+q*+P*+q*)* 
+ A,( D_‘A). 

Next we shall prove (3.4). If 6, < i, then F,(w) is strictly decreasing and rning< oGy,Fl( w) = 
F,(y,) = 0. If 6, > i, then there is a unique zero l/(28,) of F,‘(w), 0 < w < 1. Furthermore, 

___ ~F,(2)=26,-1, if &>,a*. 

Part (iv) may be proved in the same way as in the proof of (iii). q 

Remark 5. Axelsson and Barker gave an upper bound for K( S; ‘A) in [l]. Their results are stated 
as follows. Let 

(Dx, x) 
‘= tt:: (Ax, x) ’ 

*=max(( 
LD-‘L’- :D)x, x) 

xzo 
(Ax X) , 

7 

and 

G(+ 1+ [(2-w)*/(4w)]p+w8 
2-w 

Then, S >, - $, h,(Sl’A) < 1, A,(Sl’A) > l/G(w) and K(S;‘A) G G(w). Furthermore, 

omiy,G(~) = G(w*) = /m + 4 < /m + +, 

where w * = 2&/(fi + 2J_). 
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They further proved that 6 is bounded (6 < 0) if 

(1 D-1’2LD-“21j, < ; and I( D-“~L’D-‘/~ I( m G +. 

By using their results, we obtain 

(3.5) 

K(S,-‘B) < G(w) x1(sm) + ah2 
A,&) - ah2G(w) ’ 

since 

K(S-‘B) < h,(K’~) + ~~2X,(S,-‘) 
w ’ h&s,-‘A) - ah2h,(S,-‘) 

and A,( S;‘) = l/X,( S,). Hence under the assumptions (3.5), K( S,;‘B) = 0(/K(A)), and observ- 
ing (3.1) and (3.2) we see that K(A) and K(B) have the same order, so that K(&‘B) is 

O(Jm>, i.e., O(h). 
The lower bound for K(S;‘B) in (iii) of Corollary 4, together with (3.1), implies that K(S;‘B) 

is at least O(K( B)) = O(n) = 0( K2), if w < yl. Furthermore we remark that yi < w* if 
A,(D-‘A) < i(2 - a). In fact, under the assumptions (3.5), we have 6, < i + h,(D-‘A) so that 
y, < 4/(3 - 4A,(D-‘A)). On the other hand, observing that X,(A-ID)-’ = h,(D-‘A) < 1, we 
have 

2 4 

= 1 + x,(D-‘A)Jz a 3 - 4x,(D-‘A) a yl. 

If the results are applied to the preconditioned Block SSOR, then corresponding estimates can 
be obtained by replacing D and L by T and L,, respectively. For example, we have K( C;‘A) < 
G(o), where p and 6 in G(w) are replaced by 

(TX, x> 
p = 2: (Ax, x) ’ 

Remark 6. Now we count the number of multiplication for solving the linear equations My = b 

in the PCG method with different preconditioners. The results are as follows: 

(1) M= D: n, k > 0, l,, 0; 
(2) M= T: 5n, k = 0, I= 0, 

3n, otherwise; 
(3) M = s,: 7n, k>,O, IaO; 
(4) M = C,: 13n - 2m, k=O, Z=O, 

lln - 2m, otherwise; 
(5) M= I: 0, k >, 0, I> 0; 
(6) M=A: (2m + 1)n + $z(n - 1) + $2(7n + 5), k=O, I=O, 

(2m + l)n, otherwise; 
(7) M = H: 19n, k=O, I=O, 

6n, otherwise. 
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4. A numerical example 

Example 7. Consider the Dirichlet problem 

-Au- 1~1 = -2(x(x-l)+y(y-l))- IX+-l)(y-l)-0.0251, 

x, Y E (0, l), 

U(0, t) =u(t, 0) = U(1, t) =u(t, 1) = -0.025, tE [o, 11. 

This problem has a solution u( x, _y) = xy( x - l)( y - 1) - 0.025. 
We first discretize the problem by the standard five-point difference formula, and obtain a 

system of nonlinear algebraic equations. Next, we solve the system by the quasi-Newton iteration 
(1.1) and (1.3) combined with the PCG method, with preconditioners given in Section 2. We 
choose the initial values (x~)~ = 20( - l)i, 1 < i & n, and employ the stopping criteria I( r, 11 2 < 

lo-? II J-(x!f+l) II co/II F(G) II m G 10 -5. Total computing times are shown in Table 1, together 
with the number of iterations in Table 2, where h: square mesh size (h = l/(m + 1)); n: interior 

Table 1 
Total computing time (sec.) 

n D T S, s ld* c u* Z A H 

9 0.17 0.20 0.22 0.23 0.23 0.13 0.18 0.23 
49 1.43 1.80 1.65 1.53 1.70 1.37 1.33 1.70 

225 10.38 11.23 9.05 7.53 7.88 8.93 11.62 8.20 
961 88.25 89.48 64.75 44.23 47.22 .76.53 149.85 51.43 

3969 806.75 683.83 463.37 248.12 261.95 672.02 2226.67 347.83 

Table 2 
Number of iterations (k[l,, I,, . . . , /,I) 

n D T Sl S lO* c ld* Z A H 

9 3[3,3,31 3[4,4,41 3]4,4,31 3]4,4,31 3]4,3,31 3]3,3,31 4L2,1,21 X6,5,41 
49 4[9,9,8,8] 4[12,9,8,81 4]9,6,5,51 4]8,6,5,41 4[7,5,4,41 4]9,9,9,91 4]1,2,2,21 4]9,7,6,51 

225 3[25,18,18] 3[24,17,15] 3[15,10,8] 3]12,8,71 3]11,6,61 3[18,19,19] 3[1,2,2] 3]14,9,71 
961 3[51,37,37] 3[46,33,28] 3[27,17,14] 3[17,12,10] 3[15,9,8] 3[38,39,39] 3[2,2,2] 3[22,13,11] 

3969 3[104,74,73] 3[90,55,54] 3[50,28,27] 3[24,16,13] 3[21,12,11] 3[75,77,78] 3[2,2,2] 3[38,22,18] 

Table 3 
Total computing time (sec.) 

c D T S, S 0* C Id* Z A H 

5.0.10-’ * * * * * * 13.65 * 
1.0.10-6 * * * * * 

2.5.10-6 * 14.30 11.32 * * 
5.0.10-6 10.40 11.25 9.05 7.52 9.73 
7.5.10-6 10.40 11.30 9.05 7.53 7.87 

* Iteration diverged. w* are chosen based on Remark 5, where S = 0. 

* 13.65 * 
11.80 13.65 10.08 
8.87 11.63 8.23 
8.87 11.62 8.28 
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Table 4 
Number of iterations (k[l,, I,,..., r,]) 

f D T S, S W* C w* I A H 

5.0.10-’ * * * * * * 
4[1,2,2,21 * 

1.0.10-6 * * * * * * 
4[1,2,2,21 * 

2.5.10-” * 4[24,17,15,15] 4[15,10,8,8] * * 4[18,19,19,19] 4[1,2,2,2] 4[14,9,7,7] 
5.0.10-6 3[25,18,18] 3[24,17,15] 3[15,10,8] 3[12,8,7] 4[11,6,6,5] 3[18,19,19] 3[1,2,21 3[14,9,7 
7.5.10-6 3[25,18,18] 3[24,17,15] 3[15,10,8] 3[12,8,7] 3[11,6,6] 3[18,19,19] 3[1,2,21 3[14,9,71 

Table 5 
Upper and lower bounds for K(A-‘B) and K(B) 

9 49 225 961 3969 

K(A-‘B)< 1.1127 1.1082 1.1077 1.1068 1.1068 
K(B) > 5.4826 23.9917 98.0526 394.3027 1579.305 

mesh number (n = m X m and h = l/(& + 1)); k: number of the iterations for the quasi-New- 
ton method; 1,: iterative number of the PCG method at the ith iteration. 

Now, we change the value c for the stopping criterion 1) F(xk) (1 ,/I\ F(x,) 11 o. < e to solve 
equation (1.2) in R225. Total computing times are shown in Table 3, together with the number of 
iterations in Table 4. 

According to Theorem 3, we give in Table 5 upper and lower bounds for K( A-‘B) and K(B), 

respectively. 

Remark 8. From Table 2, Theorem 3 and Corollary 4, we see that convergence speed of the PCG 
method with preconditioner M = A or M = C,, is faster than the others and we roughly conclude 
that 

K(B) >, K(D-‘B) >, K(T-lb) >, K(S,‘B) >, K(H-lB) >, K&b) > K&i??) 

>, K(A-‘B). 

However, from Remark 6 and Table 1, we observe that if the stopping constant e is not so small, 
then 

T( APB) >, T( PB) ,, T( T’B) 2 T(B) > T( S,‘B) ,, T( HPB) 2 T( C$B) 

for larger n, where T( P-‘Et) stands for the computing time for solving (1.2) by the iteration (1.1) 
with the preconditioner P. 

Computations were carried out on the Apollo DOMAIN 3000 (single precision) at the 
Department of Mathematics, Ehime University. 
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