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Abstract

In this paper, we present a smoothing Gauss–Newton method for solving the generalized horizontal linear complementar-
ity problem and prove that the method is both globally and locally quadratically convergent under reasonable assumptions.
As a by-product of our analysis, we obtain a su2cient condition for the existence and boundedness of the solutions to
the problem. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Let {A; B} be a pair of matrices in Rm×n and q be a vector in Rm. The generalized horizontal
linear complementarity problem is to <nd a vector (x; y) ∈ R2n such that

Ax − By = q;

xTy = 0; x¿0; y¿0: (1)

We denote the problem by ĤLCP(A; B; q). This problem is a special case of the XLCP by
Mangasarian and Pang [15] or the general LCP by Ye [26]. It arises from economic equilib-
rium problems, noncooperative games, tra2c assignment problems, and optimization problems. When
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m = n, it reduces to the well-known horizontal linear complementarity problem which is denoted
by HLCP(A; B; q); when m= n and B= I , it becomes the linear complementarity problem which is
denoted by LCP(A; q).

In the last couple of years the HLCP attracted attention of many researchers. Zhang [27] used it as
a unifying framework for the convergence analysis of a class of infeasible interior-point algorithms
for solving linear programs and complementarity problems. Subsequent work in this area includes
Billups and Ferris [1], Bonnans and Gonzaga [2], GNuler [11], Monteiro and Tsuchiya [16], etc. Some
basic properties in the context of HLCP have been studied in [8,21,22,24], etc.

In this paper, we address the ĤLCP. Our contribution is three-fold: <rst, we describe and charac-
terize P0-property in ĤLCP along the line of the classical LCP in Section 2; second, based on the
smoothed Fischer–Burmeister function, we present a smoothing Gauss–Newton method for solving
problem (1) with m¿n in Section 3; the third, we establish global and local quadratic convergence
of this smoothing method under reasonable conditions, and get a su2cient condition for the existence
and boundedness of solutions to the problem in Section 4. We conclude with some <nal remarks in
Section 5.

Throughout the paper, all vectors are column vectors with the superscript T denoting a transpose.
For simplicity, we use (x; y) for column vector (xT; yT)T. The notations Rn

+ and Rn
++ are used for

nonnegative and positive orthants, respectively, in Rn. We denote by x=Vec{xi} a vector x whose
ith element is xi. A¿0 (¿ 0) means the matrix A is positive semi-de<nite (de<nite). Finally, || · ||
denotes l2 norm of a vector or a matrix.

2. P0-property and its characterizations

It is well known that, in the standard LCP, there are various classes of matrices, which play an
important role in developing theory and methods for LCP (see, e.g., [6]). In this section we shall
establish the generalized P0-matrices in the context of ĤLCP.

De�nition 1. Given two matrices A; B ∈ Rm×n, we say that {A; B} has the column P0-property if
rank[A;−B] = 2n, or the condition

Au− Bv= 0; (u; v) �= (0; 0) ⇒ ∃ui0 �= 0; ui0vi0¿0; or ∃vj0 �= 0; uj0vj0¿0 (2)

holds; and that {A; B} has the row P0-property if it satis<es the condition

(ATu; BTu) �= 0; u ∈ Rm ⇒ ∃(ATu)i0 �= 0; (ATu)i0 (B
Tu)i0¿0; (3)

or

∃(BTu)j0 �= 0; (ATu)j0 (B
Tu)j0¿0:

{A; B} is said to have P0-property if it has both column and row P0-properties.

It is easily seen that, when m=n, the column P0-property is the same as the P0-property introduced
in [24], where they show that their P0-property is equivalent to the W0-pair of Willson Jr. [25]. It
is clear that the matrix A + B is of full column rank and hence m¿n if {A; B} has the column
P0-property. In fact, assuming that there is a nonzero vector x ∈ Rn satisfying (A+B)x=0, then by
this property, there exists an index i0 such that xi0 �= 0 and xi0 (−xi0)¿0, a contradiction. Note also
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that, in the de<nition of the row P0-property, we do not require the assumption: for any nonzero
vector u ∈ Rm ⇒ (ATu; BTu) �= 0: In other words, rank[A;−B] = m is not needed. In addition, the
row P0-property is diPerent from the row W0-property of Sznajder and Gowda [21] for the extended
vertical LCP (see Remark 2 of this section for the details).

Recalling the de<nitions of the column and row su2cient properties in [9], we immediately obtain
the following result.

Proposition 2. The column (row) su5ciency of {A; B} implies the column (row) P0-property.

Now, we further describe the characterization of P0-property, which can be regarded as an exten-
sion of the seminal work by Kojima, Megiddo, Noma and Yoshise [14].

Theorem 3. Given two matrices A; B ∈ Rm×n and de7ne the matrix Q associated with {A; B} by

Q :=
[
A −B
D QD

]
(m+n)×(2n)

; (4)

where D = diag(dj) and QD = diag( Qdj) are two positive semi-de7nite matrices. Then
(a) the pair {A; B} has the column P0-property if and only if the matrix Q de7ned in (4) is of

full column rank for any D¿ 0 and QD¿ 0;
(b) the pair {A; B} has the row P0-property and rank[A;−B] = m if and only if the matrix Q

de7ned in (4) is of full row rank for any D¿ 0 and QD¿ 0.

Proof. (a) ⇒: Assume that, for some D¿ 0 and QD¿ 0, the matrix Q de<ned in (4) is not of full
column rank. Then there exists a nonzero vector (u; v) ∈ R2n, such that Q(u; v) = 0, i.e.,

Au− Bv= 0; Du+ QDv= 0: (5)

By the properties of D and QD, we know from the second equation of (5) that ui = −d−1
i

Qdivi for
i = 1; 2; : : : ; n. This yields that

uivi ¡ 0; or ui = vi = 0; i = 1; 2; : : : ; n: (6)

This contradicts the column P0-property of {A; B}.
⇐=: Assume {A; B} does not have the column P0-property. Then by rank[A;−B]¡ 2n, there is a

nonzero vector (u0; v0) ∈ R2n satisfying Au0 −Bv0 = 0 and (6). De<ne the matrix Q in (4) by taking

D=diag(dj); dj = 1 for v0j = 0; else|v0j |;
QD=diag( Qdj); Qdj = 1 for u0j = 0; else |u0j |:

It is easy to verify that D¿ 0; QD¿ 0, and Q(u0; v0) = 0. Since Q is of full column rank by the
assumption, we have (u0; v0) = 0, a contradiction.

(b) ⇒: Assume that, for some D¿ 0 and QD¿ 0, Q de<ned in (4) is not of full row rank. Then
there is a nonzero vector (u; v) ∈ Rm+n such that QT(u; v) = 0, i.e.,

ATu+ Dv= 0; −BTu+ QDv= 0: (7)

This implies that

(ATu)i(BTu)i =−(Dv)i( QDv)i =−di
Qdiv2i ; i = 1; 2; : : : ; n: (8)
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By D¿ 0 and QD¿ 0, from (7) and (8) we have

(ATu)i(BTu)i ¡ 0; or (ATu)i = (BTu)i = 0; i = 1; 2; : : : ; n: (9)

From (u; v) �= 0, rank[A;−B] = m and (7), we have (ATu; BTu) �= 0. So, the row P0-property
implies that (ATu)i0 (B

Tu)i0¿0 for some (ATu)i0 �= 0, or (ATu)j0 (B
Tu)j0¿0 for some (BTu)j0 �= 0, a

contradiction to (9).
⇐=: rank[A;−B] = m follows directly from rank(Q) = m+ n. Suppose {A; B} does not have the

row P0-property. Then by the de<nition, there is a nonzero vector u0 ∈ Rm such that

(ATu0)i(BTu0)i ¡ 0; or (ATu0)i = (BTu0)i = 0; i = 1; 2; : : : ; n: (10)

De<ne the matrix Q in (4) by

D=diag(dj); dj = 1 for (ATu0)j = 0; else |(ATu0)j|;
QD=diag( Qdj); Qdj = 1 for(BTu0)j = 0; else |(BTu0)j|:

Then by a simple operation and (10), we know that the vector (u0;−sign(ATu0)) �= 0, where
sign(ATu0) = Vec{sign(ATu0)i}, satis<es the equation QT(u0;−sign(ATu0)) = 0. This contradicts the
condition that Q has full row rank. The proof is complete.

Remark. (1) The special case of result (a) in the above theorem, for m=n, was obtained by Sznajder
and Gowda [21] and TNutNuncNu and Todd [24], respectively. Furthermore, for the special case where
m=n and B= I , the result (a) was proved by Kojima et al. [14], who were interested in developing
a uni<ed interior point algorithm for P0-matrices.

(2) Result (b) in the above theorem shows that, when m = n and rank[A;−B] = m, the row
P0-property of {A; B} is equivalent to the row W0-property of {AT; BT} in the VLCP by Sznajder
and Gowda [21, Theorem 6].

(3) This theorem exhibits an interesting fact that, for m¡n the column P0-property does not
hold; for m¿n, when rank[A;−B] =m, the row P0-property does not hold. So, for the case m¿n,
{A; B} may have both the column and row P0-properties only if rank [A;−B] �= m. For example, let
A = [1; 1]T and B = [1; 1]T, and we see that {A; B} has these two properties. For the case m = n,
the column P0-property implies the row P0-property; however the row P0-property together with
rank[A;−B] = m imply the column P0-property. This indicates that the ĤLCP is more complicated,
and may lose many good properties which the HLCP possesses.

Following the above discussion, we can introduce the concepts of column and row P-properties
provided that all “¿” in De<nition 1 are replaced by “¿”, and get similar characterization results
for the two concepts.

Theorem 4. Given two matrices A; B ∈ Rm×n. Then
(a) the pair {A; B} has the column P-property if and only if the matrix Q de7ned in (4) is of

full column rank for any D¿0; QD¿0 and D + QD ¿ 0;
(b) the pair {A; B} has the row P-property and rank[A;−B] = m if and only if the matrix Q

de7ned in (4) is of full row rank for any D¿0; QD¿0 and D + QD ¿ 0:
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We say that {A; B} has weak P-property if it has both the column and row P-properties, i.e., the
following equivalent conditions hold:

(P1) Au− Bv= 0; uivi60; i = 1; 2; : : : ; n ⇒ (u; v) = 0;
(P2) (ATu)i(BTu)i60; i = 1; 2; : : : ; n ⇒ (ATu; BTu) = 0.

The word “weak” is related to the P-property by Gowda [9], who de<ned the P-property by (P1)
and (P2)′, where

(P2)′ (ATu)i(BTu)i60; i = 1; 2; : : : ; n ⇒ u= 0:

Similar to the previous analysis, the weak P-property can be introduced for m¿n; however the
P-property in [9] requires the condition m= n.
As in the standard LCP and HLCP, the full-rank property of Q de<ned in (4) permits us to

develop a class of smoothing methods for solving problem (1).

3. Smoothing Gauss–Newton method

In the remainder of this paper we only address problem (1) with m¿n. Obviously, (1) is equivalent
to a nonsmooth equation

F(x; y) :=

[
Ax − By − q

�(x; y)

]
= 0; (1′)

where �(x; y)=( (x1; y1); : : : ;  (xn; yn))T,  (a; b)=a+b−√
a2 + b2 (Fischer–Burmeister function).

By using the smoothed Fischer–Burmeister function

p(a; b; �) = a+ b−
√

a2 + b2 + 2�2; (11)

where �¿ 0 is a smoothing parameter which is also viewed as a variable, we can construct a smooth
approximation to (1′) with respect to variable (w; �) ∈ R2n × R++:

H (w; �) :=

[
Ax − By − q

!(x; y; �)

]
= 0 (12)

with w = (x; y) and

!(x; y; �) :=



p(x1; y1; �)

· · ·
p(xn; yn; �)


 :

It is easy to check that H (w; �) is twice continuously diPerentiable on (w; �) ∈ R2n × R++ and
continuous at (w; 0). Of course H (w; 0)=F(w). The Jacobian matrix of (12) with respect to variable
w is given by

�wH (w; �) =

[
A −B

�x!(x; y; �) �y!(x; y; �)

]
; (13)
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where

�x!(x; y; �) = diag

(
1− xi√

x2i + y2
i + 2�2

)
; �y!(x; y; �) = diag

(
1− yi√

x2i + y2
i + 2�2

)
:

By using Theorem 3 and noting that both �x!(x; y; �) and �y!(x; y; �) are in interval (0; 2) for any
�¿ 0 (see Lemma 5(ii) in the next section), we know that, under the column P0-property of {A; B},
�wH (w; �) is of full column rank, and hence G(w; �) := �wH (w; �)T�wH (w; �) is nonsingular for
any �¿ 0.
Consider the least-squares problem associated with (12)

min
w

r(w; �) = 1
2H (w; �)TH (w; �): (14)

Then the gradient is given by g(w; �) := �wr(w; �) = �wH (w; �)TH (w; �); the Hessian matrix is
given by

�2
wr(w; �) = G(w; �) +

n∑
j=1

!j(w; �)�2
w!j(w; �):

We try to solve (14) inexactly using just one step of Gauss–Newton method for a <xed value of
�¿ 0, and then reduce this value of � by some rule. By repeating the above computation we will
get a sequence of iterates. The details of our algorithm are described as follows. For simplicity, at
the kth iteration we use rk = r(wk; �k), gk = g(wk; �k);�wHk =�wH (wk; �k), etc.

Algorithm (I)
Step 0: Given constants $ ∈ (0; 1); % ∈ (0; 1); & ∈ (0; 1) and '¿ 0.
Choose any initial point (w0; �0) ∈ R2n × R++. Set $0 = 1 and k = 0.
Step 1: The search direction. If �k = 0 then stop. If gk = 0 then wk+1 = wk , and go to the “If”

part of Step 3. Otherwise, compute dk ∈ R2n as the solution of the linear system

(�wHk)T(�wHk)d=−gk : (15)

Step 2: The fast step. Let Qwk+1=wk+dk; Q�k+1=min{$k+1; &}�k where $k+1=min{$k; ||F( Qwk+1)||2}.
If Qr k+16&rk where Qr k+1 = r( Qwk+1; Q�k+1), then wk+1 = Qwk+1; �k+1 = Q�k+1, and go to Step 4.
Step 3: The safe step. Set wk+1 = wk + (kdk , where (k = %mk and mk is the smallest nonnegative

integer m satisfying the Armijo condition

r(wk + %mdk; �k)6rk + $%m · (gk)Tdk: (16)

If ||g(wk+1; �k)||6'�k , then �k+1 = min{$k+1; &�k} where $k+1 = min{$k; ||F(wk+1)||2}; otherwise
�k+1 = �k; $k+1 = $k:
Step 4: k := k + 1, and go to Step 1.

Remark. (1) In the above algorithm we use the Gauss–Newton equation (15) to get the search
direction. So, our algorithm is diPerent from the smoothing Newton methods (see, e.g., [18–20])
and the noninterior path-following methods (see, e.g., [3–5,23]), and is called the smoothing Gauss–
Newton algorithm.

(2) If the case where �k = 0 occurs in Step 1, then by the updating rule for �k in Step 2 and
Step 3, we know that F(wk) = 0 and hence wk is a solution of (1). If Algorithm (I) produces an
in<nite sequence {�k}, then from �k+16&�k or �k+1 = �k , it must be a decreasing sequence.
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(3) For global convergence, only the safe step is needed. The fast step is added to ensure local
quadratic convergence. Design of the fast step is motivated by Qi [17], Facchinei and Soares [7]
and Chen and Xiu [5], and the safe step by Kanzow [13].

4. Theoretical analysis

In this section, we shall consider the global convergence and local rate of convergence for
Algorithm (I). To do so, we need to study further the properties of the smoothed Fischer–Burmeister
function p(a; b; �) and the target function r(w; �).

Lemma 5. For the smoothed Fischer–Burmeister function p(a; b; �) de7ned in (11); it is twice
continuously di>erentiable on R× R× R++. Moreover;

(i) 0¡p(a; b; 0)− p(a; b; �)¡
√
2�; ∀(a; b; �) ∈ R× R× R++;

(ii) 0¡p′
i(a; b; �)¡ 2 (i = 1; 2); −√

26p′
3(a; b; �)¡ 0; ∀(a; b; �) ∈ R× R× R++;

(iii) [12, Lemma 2:1] p(a; b; �) is a strongly semismooth function on (a; b; �) ∈ R× R× R+;
(iv) let a′ → a; b′ → b; � → 0, then

lim
a′→a; b′→b; �→0

p′
i(a

′; b′; �)p(a′; b′; �) = @ip(a; b; 0)p(a; b; 0); i = 1; 2;

where @ip(a; b; 0) stands for the generalized derivative of the function p on the ith variable at
(a; b; 0) in the sense of Clarke.

Proof. (i) Follows from a direct calculation. (ii) Comes from the fact that

�p(a; b; �) =




1− a√
a2 + b2 + 2�2

1− b√
a2 + b2 + 2�2

− 2�√
a2 + b2 + 2�2



:

We now prove (iv). If p(a; b; 0) = 0, then by (ii) we have for i = 1; 2,

|p′
i(a

′; b′; �)p(a′; b′; �)− @ip(a; b; 0)p(a; b; 0)|
=|p′

i(a
′; b′; �)p(a′; b′; �)− 0|

=|p′
i(a

′; b′; �)| · |p(a′; b′; �)− p(a; b; 0)|
62|p(a′; b′; �)− p(a; b; 0)|:

If p(a; b; 0) �= 0, then a2 + b2 �= 0 and hence the function p is continuously diPerentiable at (a; b; 0)
with a2 + b2 �= 0. These two cases show that (iv) is true.

Consider the case where � = 0 in (14):

min
w

r(w; 0) = 1
2H (w; 0)TH (w; 0) = 1

2F(w)
TF(w): (17)
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Similar to the proof of Proposition 3:4 in [7], we can verify that the function r(w; 0) is continuously
diPerentiable on w and its gradient is @wH (w; 0)TH (w; 0) := g(w; 0), where @wH (w; 0) is the gener-
alized Jacobian matrix of H (w; 0) on variable w. Furthermore, we have the following result which
was actually obtained in [12, Proposition 2:1], but here we give the proof for reference.

Lemma 6. The target function r(w; �) in (14) is continuously di>erentiable on (w; �) ∈ R2n ×R+.

Proof. It su2ces to prove that limw′→w;�→0 g(w′; �) = g(w; 0). In fact, from

‖g(w′; �)− g(w; 0)‖
=‖�wH (w′; �)TH (w′; �)− @wH (w; 0)TH (w; 0)‖

6
∥∥∥∥
[

AT

−BT

]∥∥∥∥ ||(Ax′ − By′ − q)− (Ax − By − q)||

+
∥∥∥∥
[
�x!(w′; �)
�y!(w′; �)

]
!(w′; �)−

[
@x!(w; 0)
@y!(w; 0)

]
!(w; 0)

∥∥∥∥
and Lemma 5(iv), we derive the desired result.

A point w∗ is said to be a stationary point of (17) (or (1)) if g(w∗; 0) = 0. Obviously, the global
minimum point of (17) must be a stationary point. The following theorem, which is an extension
of Theorem 4:1 in [7], states that the inverse is true under some conditions.

Theorem 7. Suppose {A; B} has the row P0-property. Then every stationary point w∗ = (x∗; y∗) of
(17) is a global minimum point; and satis7es

w∗ ∈ argmin 1
2‖Ax − By − q‖2; and !(w∗; 0) = 0: (18)

Moreover; if rank[A;−B] = rank[A;−B; q]; then w∗ is a solution to (1).

Proof. We prove (18) mainly by following the pattern developed in [7, Theorem 4:1]. Assume
g(w∗; 0) = 0. This means that

AT(Ax∗ − By∗ − q) + @x!(w∗; 0)!(w∗; 0) = 0;

−BT(Ax∗ − By∗ − q) + @y!(w∗; 0)!(w∗; 0) = 0:
(19)

So, if !i(w∗; 0) = 0 for some index i, then

(AT(Ax∗ − By∗ − q))i = (BT(Ax∗ − By∗ − q))i = 0; (20)

otherwise, it holds that x∗i �= 0 and y∗
i �= 0, or x∗i = 0 and y∗

i ¡ 0, or x∗i ¡ 0 and y∗
i = 0. From

(x∗i )
2 + (y∗

i )
2 �= 0; @jp(x∗i ; y

∗
i ; 0) = p′

j(x
∗
i ; y

∗
i ; 0)¿ 0 (j = 1; 2) and (19), we have

(AT(Ax∗ − By∗ − q))i(BT(Ax∗ − By∗ − q))i ¡ 0: (21)

That is, (20) or (21) holds for i=1; 2; : : : ; n. By the row P0-property of {A; B}, we deduce !(w∗; 0)=0.
This implies from (19) that[

AT

−BT

]
[A;−B]

[
x∗

y∗

]
=
[

AT

−BT

]
q; (22)
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which means that w∗ is a stationary point, and hence a minimum point of the least-squares problem
min 1

2‖Ax − By − q‖2. Therefore, (18) holds.
It is clear that, when rank[A;−B]= rank[A;−B; q], i.e., the equation Ax−By= q is consistent, w∗

satis<es Ax∗ − By∗ = q by (18). The proof is complete.

Now, we recall the de<nition of R0-property of {A; B}, see, e.g., [10].

De�nition 8. Given two matrices A; B ∈ Rm×n, we say that {A; B} has the R0-property if the system

Au− Bv= 0; uTv= 0; u¿0; v¿0 (23)

has only zero solution.

Under R0-property we can obtain the following result whose proof is similar to the one of Theo-
rem 3:7 in [13], and is omitted.

Lemma 9. Given two matrices A; B ∈ Rm×n. If {A; B} has the R0-property; then the level set

L(,; �0) := {w ∈ R2n|‖H (w; �)‖6,; �6�0}
is bounded for any ,¿ 0 and �0 ¿ 0 (it may be empty).

We now show, using Theorem 3, Lemmas 5 and 9, that Algorithm (I) is globally convergent
under suitable assumptions.

Theorem 10. Given two matrices A; B ∈ Rm×n in (1) with m¿n. Assume that {A; B} has the
column P0- and R0-properties. Let {wk; �k} be an in7nite sequence generated by Algorithm (I).
Then (a) �k ↓ 0; (b) {wk} is bounded; (c) lim inf k→∞ ‖g(wk+1; �k)‖= 0; or {rk} ↓ 0.

Proof. (a) Assume that the result (a) is false. Then from �k+16&�k or �k+1 = �k for any k (see
Steps 2 and 3), there exists an iteration index k̂ such that �k̂+l = �k̂ ¿ 0 for all l = 1; 2; : : : . This
means that Algorithm (I) eventually reduces to a damped Gauss–Newton method for the least-squares
problem min{r(w; �k̂) |w ∈ R2n}. In view of Lemma 9 and Theorem 3, we know that the level set

L(wk̂; �k̂) := {w ∈ R2n | r(w; �k̂)6r(wk̂; �k̂)}
is bounded and G(w; �k̂) is nonsingular on this set. So, liml→∞ g(wk̂+l; �k̂) = 0. In particular, there
is an index l0 such that

‖g(wk̂+l0+1; �k̂+l0)‖= ‖g(wk̂+l0+1; �k̂)‖6'�k̂ = '�k̂+l0 :

By the updating rule for �k in Step 3, �k̂+l0+16&�k̂+l0 ¡�k̂+l0 , a contradiction. So, result (a) is true.
(b) According to the updating rule for �k , we partition set K := {0; 1; 2; : : :} into three parts:

K1 := {k ∈ K |�k+1 = min{$k+1; &}�k};
K2 := {k ∈ K |�k+1 = �k};
K3 := {k ∈ K |�k+1 = min{$k+1; &�k}}:
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For k ∈ K1; ‖Hk+1‖6√
&‖Hk‖ by Step 2. For k ∈ K2; ‖Hk+1‖ = ‖H (wk+1; �k)‖¡ ‖Hk‖ by (16).

For k ∈ K3, from Lemma 5(ii) and 06�k+16&�k we have for i = 1; 2; : : : ; n;

!i(wk+1; �k+1)6!i(wk+1; �k) + |!i(wk+1; �k)− !i(wk+1; �k+1)|
6!i(wk+1; �k) +

√
2|�k+1 − �k |

6!i(wk+1; �k) +
√
2�k:

Thus, for k ∈ K3,

‖H (wk+1; �k+1)‖6 ‖H (wk+1; �k)‖+
√
2n�k

¡ ‖Hk‖+
√
2n�k: (24)

This means that, for each k ∈ K ,

‖Hk+1‖6 ‖Hk‖+
√
2n�′

k

6 ‖H 0‖+
√
2n(&l + &l−1 + · · ·+ 1)�0

6 ‖H 0‖+
√
2n�0=(1− &); (25)

where �′
k := �k for k ∈ K3, or 0 for k ∈ K1 ∪K2; and l := max{j ∈ {0; 1; : : : ; k} | j ∈ K3}. So, result

(b) follows immediately from Lemma 9.
(c) If K3 is an in<nite subset, then by result (a),

lim
k∈K3 ; k→∞

‖g(wk+1; �k)‖6' lim
k∈K3 ; k→∞

�k = 0: (26)

Otherwise, we may assume that K = K1 ∪ K2. It follows from �k ↓ 0 that K1 must be an in<nite
subset. From rk+16&rk for k ∈ K1 and rk+1 ¡rk for k ∈ K2, we have

lim
k∈K=K1 ∪K2 ; k→∞

rk = 0: (27)

So, result (c) follows from (26) and (27). The proof is complete.

By using Theorems 7, 10 and Lemma 6, we obtain the following conclusion.

Theorem 11. Given two matrices A; B ∈ Rm×n in (1) with m¿n. Assume {A; B} has the column
P0- and R0-properties. Let {wk; �k} be an in7nite sequence generated by Algorithm (I). Then;

(a) there is one limit point w∗ in {wk} such that w∗ is a stationary point of (17);
(b) if rank[A;−B] = rank[A;−B; q] and {A; B} has the row P0-property; then {‖Hk‖} converges

to zero; and any limit point of {wk} is a solution to (1).

Proof. We only prove (b) because the proof of (a) can be observed from the one of (b). Based on
the proof of Theorem 10(c), if K3 is an in<nite subset then by the boundedness of {wk}, there is a
subset K4 ⊆K3 such that limk∈K4 ;k→∞ wk+1 = w∗. This, together with (26) and Lemma 6, imply that

g(w∗; 0) = lim
k∈K4 ; k→∞

g(wk+1; �k) = 0:
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That is, w∗ is a stationary point of (17) (from which and (27), we can derive result (a)). Moreover,
from the assumptions in (b) and Theorem 7, w∗ is a solution to (1). By (24), �k ↓ 0 and the
continuity of H (w; �), we have

lim
k∈K4 ; k→∞

‖H (wk+1; �k+1)‖6 lim
k∈K4 ; k→∞

(‖H (wk+1; �k)‖+
√
2n�k)

= ‖H (w∗; 0)‖+ 0

= 0;

which together with (27) show that there exists a subsequence of {‖Hk‖} which converges to zero.
This, plus the <rst inequality of (25) and

∑∞
k=0 �′

k ¡ +∞, imply that {‖Hk‖} converges to zero.
Hence, any limit point of {wk} is a solution to (1).

Theorem 11 tells us a su2cient condition for the existence and boundedness of solutions to (1),
and can be viewed as an extension of the result which states that a standard LCP with P0- and
R0-properties has a nonempty and bounded solution set (see, e.g., [6]).

At the end of this section, we discuss the local quadratic convergence of Algorithm (I).

Theorem 12. Given two matrices A; B ∈ Rm×n in (1) with m¿n. Assume that rank[A;−B] =
rank[A;−B; q]; and {A; B} has the column P- and row P0-properties. Let {wk; �k} be an in7-
nite sequence generated by Algorithm (I). Then {wk} converges to a unique solution; say w∗; to
problem (1). Moreover;

(a) {wk} converges Q-quadratically to w∗;
(b) {�k} converges Q-superlinearly to zero.

Proof. By Theorem 11 and the uniqueness of solution to (1) (see [9, Theorem 14]), we know that
{wk} converges to a unique solution, say w∗, to (1).

We now observe the local rate of convergence. Since �k ↓ 0 and K1 ∪K3 is an in<nite subset, we
have, for some su2ciently large (k − 1) ∈ K1 ∪ K3,

�k6max{1; �0}‖H (wk; 0)‖2 = O(‖H (wk; 0)− H (w∗; 0)‖2) = O(‖wk − w∗‖2); (28)

where the local Lipschitz continuity of H (w; 0) at w∗ is used. This means that for some su2ciently
large (k − 1) ∈ K1 ∪ K3,

‖wk + dk − w∗‖
= ‖wk − w∗ − (Gk)−1gk‖
6‖(Gk)−1‖ · ‖(�wHk)T‖ · ‖H (wk; �k)− (�wHk)(wk − w∗)‖
=O(‖H (wk; �k)− H (w∗; 0)−�wH (wk; �k)(wk − w∗)‖)
=O(‖(wk − w∗)‖2) + O(�k)

=O(‖(wk − w∗)‖2); (29)

where the second equality is due to the nonsingularity of G∗ := @wH (w∗; 0)T@wH (w∗; 0) (by Theorem
4) and the boundedness of {‖�wHk‖} (by Lemma 5(ii)); the third equality comes from the strong
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semismoothness of H (w; �) at (w∗; 0) (by Lemma 5(iii)) and the boundedness of {‖��!(wk; �k)‖}
(by Lemma 5(ii)). Thus,

‖H ( Qwk+1; Q�k+1)‖= ‖H ( Qwk+1; Q�k+1)− H (w∗; 0)‖
=O(‖( Qwk+1 − w∗)‖) + O( Q�k+1) (by Lemma 5(ii))

=O(‖(wk − w∗)‖2) + O(�k) (by Q�k+16&�k)

=O(‖(wk − w∗)‖2) (by (28))

=O(‖H (wk; �k)‖2); (30)

where the last equality is based on the relation

‖wk − w∗‖=O(‖Hk‖): (31)

In fact, by (29), (15) and the boundedness of {‖(Gk)−1(�wHk)T‖}, we have for some su2ciently
large (k − 1) ∈ K1 ∪ K3,

‖wk − w∗‖6 ‖dk‖+ ‖wk + dk − w∗‖
= ‖dk‖+O(‖wk − w∗‖2)
= ‖Hk‖+O(‖wk − w∗‖2):

That is, (31) holds.
Equality (30) shows that for some su2ciently large (k − 1) ∈ K1 ∪ K3; k ∈ K1. Repeating the

above proof, we know that k + 1 ∈ K1; k + 2 ∈ K1; : : : , i.e., the fast step is always taken after a
<nite number of iterations. Therefore, result (a) follows from (29), and result (b) is based on

�k+16$k+1�k = o(�k):

This completes the proof.

5. Final remarks

In this paper, we have studied the P0-property which allows us to propose a Gauss–Newton
algorithm for the solution of problem (1) with m¿n. The new algorithm needs to solve only a linear
equation per iteration and hence has a low cost. Its global convergence, and hence the existence
and boundedness of solutions to (1), have been shown under the P0- and R0-properties. Its local
quadratic convergence is established without the strict complementarity assumption.

Although we do not make numerical experiments, from theoretical results the new algorithm should
be ePective for obtaining the solution of problem (1) with m¿n. For problem (1) with m= n, we
suggest the readers to use the interior point methods or the noninterior path-following methods. For
problem (1) with m¡n, since the column P0-property (hence the column su2ciency and column
P-property) does not hold, we suggest the readers to use the <nite SLP algorithm of Mangasarian
and Pang [15], or the polynomial-time potential reduction algorithm of Ye [26], etc.
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However, we should point out that the further research on the ĤLCP (or XLCP) is necessary. For
example, is it possible to establish a global error bound for this problem with some monotonicity
assumption? Would the smoothing method solve the problem with such assumption?
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