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Abstract

This is a short personal history of the m-coe&cient for Sturm–Liouville di/erential and di/erence equations,
now associated historically with the names of Weyl, Hellinger, Nevanlinna and Titchmarsh.
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1. Introduction

This is a personal, and thereby selective, history of the m-coe&cient as connected with the
Sturm–Liouville di/erential equation, and the corresponding coe&cient for symmetric, second-order
di/erence equations. The account is based on my years of contact with E.C. Titchmarsh (1899–1963)
in Oxford, as undergraduate student (1949–52), doctoral student (1952–54), and at the Titchmarsh
seminars (1954–63).
In places in the text I have quoted from Titchmarsh as best as my memory serves, but I have

been careful not to attribute de<nite statements to him if I am uncertain of their authority.
Here are the main items in the development of this theory and which are treated in this account:

(1) The limit-point and limit-circle classi<cation of Weyl.
(2) The existence of integrable-square solutions of Weyl.
(3) The Hellinger–Nevanlinna w-coe&cient for di/erence equations.
(4) The Titchmarsh–Weyl m-coe&cient.

I have drawn up a list of references which I hope has some degree of completeness. Volume
II of Eigenfunction Expansions, see [23], is quoted in this list since although this book is largely
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concerned with partial di/erential equations, it contains the Titchmarsh list of references for the
second edition of volume I, see [24].
In referring to the Sturm–Liouville di/erential equation the general notation used in this paper is

− (py′)′ + qy = �wy on I ⊆ R; (1.1)

for some interval I of the real line R, and for the spectral parameter �∈C. Here the coe&cients
p; q; w have di/erent conditions from reference to reference; however the right-de<nite conditions
are implied in all cases, i.e., the weight coe&cient w¿ 0 on the interval I .
In all the references referred to below the basic requirements are, for speci<c choices of the

coe&cients p; q; w and the interval I :

(i) p; q; w : I → R,
(ii) w¿ 0 on I or w¿ 0 almost everywhere (Lebesgue) on I ,
(iii) properties of solutions of the di/erential equation are considered in the Hilbert function space

L2(I ;w).

Here are more speci<c conditions in some of the references quoted below; however, note that not
all these references concern the m-coe&cient but they do plot the development of the form of the
Sturm–Liouville di/erential equation:



1910 Weyl [25–27] p; q∈C[0;∞); p¿ 0 and w = 1 on [0;∞);

1912 Dixon [10] p−1; q; w∈L1[a; b];

1932 Stone [18] p−1; q∈L1loc(I) and w = 1 on I ⊆ R;

1941 Titchmarsh [19–24] p= q= 1 on [0;∞) and q∈C[0;∞);

1955

{
Coddington

Levinson
[9] p;p′; q∈C[0;∞) and p¿ 0 on [0;∞);

1969

{
Chaudhuri

Everitt
[8] p;p′; q∈C[0;∞) and p¿ 0 on [0;∞);

1983 Bennewitz [4] p−1; q; w∈L1loc(I);

1994 Everitt [13] p−1; q; w∈L1loc(I):

(1.2)

2. The Titchmarsh–Weyl m-coe�cient

At the beginning of this historical account it is well to record the signi<cance of the m-coe&cient;
for this purpose we take, as an example, the Titchmarsh di/erential equation, see (1.2) above. For
q : [0;∞) → R with q∈C[0;∞), we have

− y′′(x) + q(x)y(x) = �y(x) for all x∈ [0;∞) and all �∈C: (2.1)
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Let the solutions of (2.1) �; ’ : [0;∞) × C → C be de<ned by the initial conditions, for some
�∈ [0; �),

�(0; �) = sin(�) �′(0; �) = cos(�);

’(0; �) =−cos(�) ’′(0; �) = sin(�)
and for all �∈C. Then the pair �; ’ forms a basis for solutions of (2.1), for all �∈C, and
�(x; ·); �′(x; ·); ’(x; ·); ’′(x; ·) are all entire (integral) functions on C, for all x∈ [0;∞).
Weyl, see [26], proved that either

(i) the limit-point case

�(·; �) 	∈ L2(0;∞) and ’(·; �) 	∈ L2(0;∞) for all �∈C \ R

or

(ii) the limit-circle case

�(·; �)∈L2(0;∞) and ’(·; �)∈L2(0;∞) for all �∈C:

In both cases Titchmarsh showed, see [19], on the basis of an earlier result in [26], that there
exists an analytic function (the m-coe&cient) with the properties:

(i) m is regular on C \ R,
(ii) Im(�) = m( I�) for all �∈C \ R,
(iii) Im(m(�))¿ 0 for all � with Im(�)¿ 0; Im(m(�))¡ 0 for all � with Im(�)¡ 0,
(iv) the solution of Eq. (2.1)  (·; �) de<ned by

 (x; �) := �(x; �) + m(�)’(x; �) for all x∈ [0;∞) and all �∈C \ R (2.2)

satis<es∫ ∞

0
| (x; �)|2 dx = Im(m(�))

Im(�)
¡+∞ for all �∈C: (2.3)

The existence of this integrable-square solution  , and the analytic m-coe&cient are fundamental
to the Titchmarsh eigenfunction analysis as developed in the text [24].
Properties (i)–(iii) above imply that analytic coe&cient m(·) is a Nevanlinna (Herglotz, Pick,

Riesz) function and so has a representation of the form

m(�) = �+ ��+
∫ +∞

−∞

{
1

t − �
− t

t2 + 1

}
d�(t) for all �∈C \ R: (2.4)

Here the function � :R → R and is monotonic nondecreasing on R; this is the spectral function for
the m-coe&cient. For additional details of Nevanlinna functions see Section 7 below.

3. The contributions of Hermann Weyl

The references concerned are [25–27]; I have given all three of these references because Titchmarsh
quotes all of these papers in the <ve references to Hermann Weyl in [19–23].
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However it is the 1910 paper in Mathematische Annalen, see [26], that is the best source for the
Weyl results. This paper now stands as one of the most enduring and outstanding contributions to
mathematical analysis in the 20th century. The di/erential equation considered in this paper is

− (py′)′ + qy = �y on [0;∞): (3.1)

In addition, in 1950 towards the end of his long life in the vineyard of mathematics, Hermann
Weyl made his only return to the early work on the Sturm–Liouville di/erential equation; this is
his paper entitled “Rami<cations, old and new, of the eigenvalue problem.”, see [28]. In considering
again the limit-point/limit-circle classi<cation problem he wrote:

The very <rst result by which I added my mite to our stock of mathematical knowledge had to
do with the clari<cation of this issue.

In viewing the scene now after the passage of nearly 100 years we may consider ourselves justi<ed
in releasing Hermann Weyl from his notable modesty and replace the word ‘mite’ with ‘might’.
For Eq. (3.1) Weyl worked on the interval [0;∞) and proved, see [26, Kapitel I]:

(a) global existence theorems on [0;∞) and for all �∈C,
(b) the existence of at least one nonnull solution in the space L2(0;∞), for all �∈C \ R,
(c) the existence of the limit-point/limit-circle classi<cation of the singular endpoint at ∞,
(d) the results in [26, Kapitel I] can be extended to prove the independence of the limit-point/

limit-circle classi<cation from the spectral parameter �.

The extension of these results for Eq. (3.1) to the weighted di/erential equation

−(py′)′ + qy = �ky on [0;∞);

where the coe&cient k is continuous and nonnegative on [0;∞) and the function space is

L2([0;∞); k)

is discussed in a closing remark; see [26, Schlussbemerkung, p. 268, (90)].

Remark 3.1. In respect of results (a)–(d) above we remark, respectively:

(i) There are now more general existence theorems based on the use of the Lebesgue integral; for
suitable initial conditions imposed at a regular point of the di/erential equation, the solutions
are entire (integral) Cauchy analytic functions of the spectral parameter �.

(ii) The existence of this integrable-square solution is fundamental to the whole development of
Sturm–Liouville theory.

(iii) In later years this classi<cation is seen as connected with the introduction of de<ciency indices
for unbounded closed symmetric operators in abstract Hilbert spaces.

(iv) This result set in train the mathematical industry involved with the search for su&ciency con-
ditions on the coe&cients p; q; w to distinguish between the limit-point and limit-circle cases,
at singular endpoints of the interval I .

Remark 3.2. The condition on the coe&cient p in the paper [26, See Kapitel I, Section 1,
p. 221] states only that p∈C[0;∞); there is no requirement on the existence of the derivative p′,
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in particular there is no requirement that p′ ∈C[0;∞) as is used in the standard text of Coddington
and Levinson [9, Chapter 9]. In general, the initial conditions for a solution at the regular endpoint 0
of (1.1), involve the determination not of the classical derivative y′ but the combined function py′.
In this sense the Weyl paper [26] introduced, although not explicitly, the later-termed quasi-derivative
of the di/erential equation (1.1).

Remark 3.3. The list (i)–(iv), in Remark 3.1 above, covers the properties of the di/erential equation
(3.1) required for the de<nition of the m-coe&cient. However, in later sections of the paper [26,
Kapitel II and Kapitel IIII] Weyl introduces his de<nitions of Punktspektrum and Strekenspektrum.
Whilst his de<nition of Strekenspektrum has been overtaken by the later-named continuous spec-
trum, the Weyl spectral analysis remains a remarkable achievement made 20 years or so before the
introduction of the spectral theory of unbounded self-adjoint operators in abstract Hilbert space.

4. The di!erential equation of Dixon

This paper of 1912, see [10], seems to have been written without the knowledge of the Weyl
paper of 1910, see [26]. The main reason to regard this paper as signi<cant in the development of
the Sturm–Liouville di/erential equation is that it seems to be the <rst paper in which the continuity
conditions on the coe&cients p; q; w, see Remark 3.2, are replaced by the Lebesgue integrable
conditions; these latter conditions are the minimal conditions to be satis<ed by p; q; w within the
environment provided by the Lebesgue integral.
The Dixon conditions are:

(i) The interval [a; b] is compact and p; q; w : [a; b] → R.
(ii) The coe&cients p; q; w satisfy the Lebesgue minimal conditions p−1; q; w∈L1[a; b], and both

p;w¿ 0 almost everywhere on [a; b].
(iii) The Sturm–Liouville di/erential equation is studied in the Hilbert space L2((a; b);w).

The paper considers existence of solutions under these coe&cient conditions; this is the signi<cant
interest of the paper in respect of the development of the analytical properties of the Sturm–Liou-
ville di/erential equation. The paper contains a discussion of properties of regular boundary value
problems on the compact interval [a; b], with both separated and coupled boundary conditions.

5. The contributions of Hellinger–Nevanlinna

I failed to realise until some few years ago, that many of the ideas of the m-coe&cient had been
anticipated by the work of Hellinger [14] and Nevanlinna [17], both working in 1922 but indepen-
dently. This work concerned not the Sturm–Liouville equation (1.1) but the di/erence equation

bk−1yk−1 + akyk + bkyk+1 = �yk for all k = {1; 2; 3; : : :}; (5.1)

where ak ∈R, and bk ¿ 0 for all k = {0; 1; 2; 3; : : :}, with initial condition
(a0 − �)y0 + b0y1 = 0: (5.2)

The solution {yk : k = 0; 1; 2; 3; : : :} is then determined if the value y0 is given.
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Hellinger and Nevanlinna then developed properties of the solutions of this di/erence equation in
the Hilbert sequence space ‘2.
The original papers [14,17] are cited in the references, but there is a clear account of the results

therein to be found in the text [1] by Akhiezer; in particular:

(i) see [1, Chapter 1, Theorem 1.2.3] for the de<nition of the monotonic decreasing family of
Hellenger–Nevanlinna circles, for each �∈C \ R, with a footnote indicating that these circles
are analogous to the Weyl circles in [26],

(ii) see [1, Chapter 1, Theorem 1.3.1] for the existence of solutions of the di/erence equation (5.1)
in the Hilbert sequence space ‘2, with a footnote indicating that these solutions are analogous to
the Weyl solutions in the Hilbert function space L2([0;∞);w) which, taking notation di/erences
into account, are given in [26],

(iii) see [1, Chapter 1, Theorem 1.3.2] for invariance, in the spectral parameter �, of the cases when
the circles collapse to a point or reduce to a circle, again with an appropriate footnote to the
Weyl paper [26],

(iv) see [1, Chapter 1, De<nition 1.3.2] for, in e/ect, the introduction of the limit-point/limit-circle
classi<cation for the di/erence equation (5.1),

(v) see [1, Chapter 1, Theorem 1.3.3] for the introduction of the Hellinger–Nevanlinna w(·) analytic
function that is equivalent to the m-coe&cient for the Sturm–Liouville di/erential equation (1.1);
here there is no footnote to the Weyl paper [26] since, in spite of the remarkable results in
[26] in other directions, there is no contribution to the m-coe&cient in this landmark paper of
Weyl.

There are recent studies of the Hellinger–Nevanlinna theory by Brown et al.; see [6,7]. In partic-
ular in [7] the authors introduce the Hellinger–Nevanlinna m-coe&cient thereby renaming the w(·)
analytic function referred to in item (v) above; for details see Section 10 below.
In e/ect the Hellinger–Nevanlinna work is the <rst introduction of the m-coe&cient and precedes

the results of Titchmarsh discussed in the next section. However, there is no entry in all of the
Titchmarsh citations, included at the end of this paper, of either of the Hellinger paper [14] nor of
the Nevanlinna paper [17]. In all my conversations with Titchmarsh about the m-coe&cient I do not
recall any mention of the Hellinger–Nevanlinna results; to the best of my knowledge he did not
know of these results even at the time of his death in 1963.
I am bound to the personal conclusion that the later introduction of the Titchmarsh–Weyl m-coe&-

cient in 1941, see the next section, was carried out quite independently by Titchmarsh with no
knowledge of the earlier Hellinger–Nevanlinna results.

Remark 5.1. The Hellinger–Nevanlinna w(·) function is a Nevanlinna (Herglotz, Pick, Riesz) an-
alytic function; see, in particular, [1, Chapter 3, Section 1, [3.3]], and also [2, Chapter 6, Section 69]
For a collected account of the references concerning the names of Herglotz, Nevanlinna, Pick, M.

Riesz, for these particular analytic functions, see Chapters 1–3 and the bibliography of the text [1].

6. The Stone book

About the year 1927 J. von Neumann and M.H. Stone were independently developing the properties
of unbounded symmetric operators in abstract Hilbert space.
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The results of von Neumann were published in papers from GQottinger Nachrichten (1927) to
Annals ofMathematics (1932), and in his bookMathematischeGrundlagen derQuatenmechanik (1932).
The results of Stone were collected together into his now classic text Linear Transformations in

Hilbert Space (1932); see [18].
Stone refers to the 1910 paper of Weyl [26] for the early results concerning properties of the

Sturm–Liouville di/erential equation at singular endpoints of the interval I .
In the Stone book there is the <rst account of the spectral properties of Sturm–Liouville di/er-

ential operators, considered in the right-de<nite Hilbert function space, under the local Lebesgue
integrability conditions, see [18, Chapter X, Section 3, Theorem 10.11]. The setting for the Stone
analysis is

p−1; q∈L1loc(I) and w = 1 on I ⊆ R: (6.1)

Remark 6.1. We note

(i) p; q : I → R.
(ii) There is no sign restriction on the coe&cient p.
(iii) The Hilbert function space is L2(I).
(iv) The Stone analysis can be extended to the case when w(x)¿ 0, for almost all x∈ I , within the

space L2(I ;w).

The interest for this paper, however, is that the Stone theory does not make use of complex
variable techniques; in particular there is no introduction of the m-coe&cient. He works essentially
with the now named minimal and maximal operators, generated by the Sturm–Liouville di/erential
expression, in his space L2(I); then boundary conditions, in the form of linear functionals, are applied
on the elements of the maximal domain, to give domains of self-adjoint operators.

7. The contributions of Titchmarsh

The relevant Titchmarsh 1941 papers are [19–21]. These papers reconsider and reprove the Weyl
results listed as (a)–(d) in Section 3 above.
The Titchmarsh–Weyl l-coe&cient is introduced in [19, Section 2]; the analytic properties of this

coe&cient are given in [19, Section 5], noting the use made of the Vitali convergence theorem.
However, the notation here is quite di/erent from the notation later introduced in the texts of 1946
[22] and 1962 [24]. In [19] the spectral parameter and the coe&cient are denoted by w and l(·),
respectively; this notation was changed to � and m(·), respectively, for the two editions of the book
[22, Chapters II and III; 24, Chapters II and III], and has since been widely, but not exclusively,
used in later times.
In these 1941 papers Titchmarsh showed that the Weyl circle method, and thereby the limit-point/

limit-circle classi<cation, are connected with the l-coe&cient; this coe&cient is unique if and only
if the di/erential equation (1.1) is in the limit-point case.
The eigenfunction expansion results in [19] are concerned with the special case when the interval

for the di/erential equation is [0;∞) and the l-coe&cient is a meromorphic function on the complex
plane C.
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In the paper [20, Section 4, Lemma �] the interval is again [0;∞) but now the l-coe&cient is
used to de<ne the function k :R → R, which is monotonic non-decreasing on R. This k-function is
later de<ned in the book [24, Chapter III, Section 3, Lemma 3.3] by

k(�) := − lim
�→0+

∫ �

0
Im(m(u+ i�)) du for �∈R: (7.1)

In this respect it is interesting to quote the Titchmarsh statement from the references at the end of
[24, Chapter III, p. 70]:

So far as I know the function k(�) appeared for the <rst time in the <rst edition of this book. 1

It was rediscovered a little later by Kodaira, 1949; 2 see also Chapter VI. 3

The general form of the eigenfunction expansion is given in [20, Sections 5 and 7], but see also
[24, Chapters III and VI].
In the paper [21] the earlier results are extended to cover the case when the interval is (−∞;∞)

and requires the introduction of two l-coe&cients, l1 and l2.
In the 1941 papers and, later in the texts [22, Chapter III; 24, Chapters III and VI], Titchmarsh in-

troduces his de<nition of the spectrum of his boundary value problem. This de<nition, in the general
case, depends on the continuity and discontinuity properties of the monotonic nondecreasing func-
tion k(·) generated by the particular boundary value problem, i.e. from the associated l-coe&cient,
equivalently the later de<ned m-coe&cient. (In this respect see the remarks in Section 9 below on
the Chaudhuri–Everitt paper [8].)
I add the following personal remarks:

(1) Sometime about 1958 I pointed out to Titchmarsh that his k-function, see above, gave him the
Lebesgue–Stieltjes Hilbert space L2((−∞;∞); k) of Borel measurable functions f : (−∞;∞) →
C, such that∫ +∞

−∞
|f(t)|2 dk(t)¡+∞;

and that in this space the multiplication operator gives the canonical representation of his
self-adjoint boundary value problem. My intention was to link his remarkable achievements
in deriving results using only the methods of real and complex classical analysis, with the
general theory of eigenfunction expansions for self-adjoint operators in abstract Hilbert spaces.
However, he never expressed any enthusiasm for relating his results to abstract operator theory.

(2) About the same time I remarked to Titchmarsh that his m-coe&cient is a Nevanlinna (Herglotz,
Pick, Riesz) function, see [1, Chapter 3, Section 1; 2, Section 59], in that

Im(−m(�))
Im(�)

¿ 0 for all �∈C \ R; (7.2)

1 See [22], but note also the above references to the earlier papers published in 1941.
2 See [15].
3 See [24, Chapter VI].
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due to the formula, see [24, Chapter II, Section 2.1 (2.1.8) and Section 2 (2.5.2)],∫ +∞

0
| (x; �)|2 dx ≡

∫ ∞

0
|�(x; �) + m(�)’(x; �)|2 dx

=
Im(−m(�))
Im(�)

for all �∈C \ R: (7.3)

Here � and ’ denote the solutions of the Titchmarsh di/erential equation determined by
real-valued initial conditions [24, Chapter II, Section 2.1, (2.1.4)] at the endpoint 0 of the
interval [0;∞); see also Section 2 above.
For such analytic functions m(·), taking into account the negative sign in (7.2), there is the

Nevanlinna representation, see see [1, Chapter 3, Section 1; 2, Section 59; 5, Section 4] and
[11, Chapter 2],

− m(�) = �+ ��+
∫ +∞

−∞

{
1

t − �
− t

t2 + 1

}
d�(t) for all �∈C \ R; (7.4)

where
(i) the function � :R → R, is monotonic nondecreasing on R, and is uniquely determined if

made right-continuous on R; it is normalised by requiring that �(0) = 0
(ii) it follows from the existence of representation (7.4) that the growth of � at ±∞ is controlled

such that∫ +∞

−∞
1

t2 + 1
d�(t)¡+∞ (7.5)

(iii) �; � are uniquely determined real numbers with �¿ 0.
The integrals in (7.4) and (7.5) are best seen as Lebesgue–Stieltjes integrals with respect to

the regular, nonnegative, Borel measure generated by the function � on the Borel !-algebra of
R.

(3) I further mentioned that the Titchmarsh inverse formula (7.1) is equivalent to the Nevanlinna
inverse formula for (7.4),

�(t) =− lim
�→0+

1
�

∫ t

0
Im(m(s+ i�)) ds for all t ∈R; (7.6)

except for the factor involving �, i.e.,

k(t) = ��(t) for t ∈R; (7.7)

but I cannot recall his comment on this information.
(4) In retrospect it seems surprising that Titchmarsh made no use of the Nevanlinna representation

(7.4); however there are similar results, which seem to be due to Titchmarsh himself, to be
seen in [20,23, Section 1; Chapter XXII, Theorems 22.23 and 22.24].

(5) I discussed the content of the two references Kodaira, [15], and Stone, [18], with Titchmarsh
but again, I seem to recall, he was reluctant to become too involved with the content and
methods of, respectively, this paper and this volume. He gave the Kodaira paper [15] as a
reference in the second edition of his book [24] but did not reference the Stone book [18].
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All these remarks and discussions from 1958 have to be seen in the light of the changes that
Titchmarsh made for the second edition of his text [24] which appeared in 1962; see in particular
Chapter VI. However, note that (7.7) is equivalent to [24, Chapter VI, Section 6.7, (6.7.6)].
I played no part in the preparation of the 1962 second edition [24] and I have no memory of ever

discussing the contents of Chapter VI with Titchmarsh. The Titchmarsh references for this Chapter
involve the names of Levitan and Sears.

8. The Coddington-Levinson book

The well-known text on ordinary di/erential equations by Coddington and Levinson (1955), see
[9], devotes a whole chapter to singular Sturm–Liouville boundary value problems, including an
account of the properties of the m-coe&cient; see [9, Chapter 9].
Boundary value problems are considered on the interval [0;∞) with p;p′; q∈C[0;∞), with

p(x)¿ 0 and w(x) = 1 for all x∈ [0;∞). However there is a footnote [9, Chapter 9, p. 224] which
states it su&ces for the real-valued coe&cients p; q to satisfy p∈ACloc[0;∞) and q∈L1loc[0;∞).
The Weyl limit-point/limit-circle classi<cation is introduced, together with independence upon the

spectral parameter �∈C; see [9, Chapter 9, Section 2].
The Titchmarsh analysis is followed to give the existence of the m-coe&cient and the Weyl

solution in the integrable-square space L2[0;∞).
Eigenfunction expansions are determined but not by the Titchmarsh contour integration method;

instead, the expansion is obtained following the Levitan (1950) and Levinson (1951) analysis, using
a limit process from boundary value problems on compact subintervals [0; b] ⊂ [0;∞).
The Nevanlinna representation of the m-coe&cient, see (7.4)−(py′)′ + qy = �wy on, is intro-

duced indirectly, see [9, Chapter 9, Section 3, (3.10)]; no call is made on the general Nevanlinna
representation theorem.

9. The Chaudhuri–Everitt paper

The 1969 paper [8] seems to have been the <rst contribution to show the equivalence of the
Titchmarsh de<nition of spectrum of the boundary value problem in terms of the k(·) function
and the m-coe&cient, see (7.1) and [23, Chapter III, Section 3.9], and of the abstract de<nition of
the spectrum of the associated self-adjoint di/erential operator in the Hilbert function space, see
[16,2, Chapter IV, Section 12.5; and Chapter 4, Section 48].

10. The Brown, Evans, Littlejohn papers

For Sturm–Liouville type di/erence equations the equivalent of Eq. (1.1) can be written in the
Lagrange symmetric (formerly self-adjoint) form

−S(pn−1Sxn−1) + qnxn = �wnxn for all n∈N0: (10.1)

Here the di/erence operator S acting on any sequence of real or complex numbers {an} is given
by San := an+1 − an for any integer n; the spectral parameter �∈C.



W.N. Everitt / Journal of Computational and Applied Mathematics 171 (2004) 185–197 195

The Hellinger/Nevanlinna form (5.1) of the di/erence equation can be recast into the symmetric
form (10.1).
In considering the di/erence equation (10.1) we follow the notation of Brown and Evans, in

[6, Section 1] and of Brown et al. [7, Section 1]; in turn these papers are based on the results
of Atkinson in his now classic text [3, Chapters 2 and 5].
The sequence {xn} is the dependent variable of the di/erence equation; {pn}; {qn} and {wn} are

the coe&cient sequences; these sequences satisfy the conditions:

(i) xn ∈C for n=−1; 0; 1; 2 · · ·
(ii) pn; wn ∈R, pn 	= 0, and wn ¿ 0 for n=−1; 0; 1; 2 · · ·
(iii) qn ∈R for all n∈N0.

Eq. (10.1) is studied in the Hilbert sequence space ‘2w de<ned by

‘2w :=

{
{xn ∈C : n=−1; 0; 1; 2 · · ·} :

∞∑
n=−1

wn |xn|2¡+∞
}

(10.2)

with norm ||·||w and inner-product 〈·; ·〉w.
As in the Weyl and then the Titchmarsh study of the Sturm–Liouville equation (1.1), the results

of Hellinger [14] and Nevanlinna [17] were re-considered by Atkinson [3, Chapter 5] to prove that
the di/erence equation (10.1) has at least one non-null solution { n : n=−1; 0; 1; 2 · · ·} in ‘2w for all
�∈C \ R, i.e.,

||{ n}||2w =
∞∑

n=−1
wn | n(�)|2¡+∞: (10.3)

From this solution there follows the existence of the Hellinger/Nevanlinna w(·) analytic function,
and then the Atkinson m-coe&cient, see [3, Chapter 5]. In terms of recent notation see the account
in [6, Section 2] and [7, Section 2]; in particular we have the identity, see [7, Section 2, item (ii)]
and compare with (7.3),

∞∑
n=0

wn | n(�)|2 = Im(m(�))
Im(�)

for all �∈C \ R: (10.4)

This last property yields the m-coe&cient for the di/erence equation (10.1) as a Nevanlinna
(Herglotz, Pick, Riesz) analytic function.
The Nevanlinna representation of this m-coe&cient, i.e. following (7.4),

m(�) = �+ ��+
∫ +∞

−∞

{
1

t − �
− t

t2 + 1

}
d�(t) for all �∈C \ R: (10.5)

This representation is used in the papers [6,7].

11. The Bennewitz paper

In 1983 Bennewitz, on a visit to the University of Birmingham, completed a draft manuscript
[4] which, starting from the existence of an m-coe&cient for a regular or singular boundary value
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problem and the associated Nevanlinna spectral function �, gives a complete proof of the Sturm–
Liouville eigenfunction expansion using the contour integration method of Titchmarsh.
In order to claim the existence of the m-coe&cient one point of the interval I is taken to be

regular, whilst the other endpoint is regular, limit-point, or limit-circle; the one proof covers the
expansion theorem in all cases.
The results are connected by the spectral function � with the abstract de<nition of the spectrum of

the self-adjoint di/erential operators and so complement the earlier work of Chaudhuri and Everitt
[8].
It is hoped to incorporate the results of this manuscript into a future publication.

12. The Everitt paper

This paper [13] is concerned with using the properties of the Sturm–Liouville self-adjoint di/er-
ential operators to de<ne the m-coe&cient. The results provide an alternative method to show the
equivalence of the Titchmarsh de<nition of the spectrum and the abstract operatic theoretic spectral
de<nition; this gives another approach to the Chaudhuri–Everitt results given in Section 9.

13. Uncited reference

[12]
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