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Linear systems with M-matrices often appear in a wide variety of areas. In this paper,
we give general preconditioners for solving the systems with nonsingular M-matrix. We
show that our preconditioners increase the convergence rate of AOR iterative methods.
Numerical results for corresponding preconditioned GMRES methods are also given.
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1. Introduction

Consider the linear system

Ax = b, (1.1)

where A = (ai,j) ∈ Rn×n is nonsingular and b ∈ Rn.
For simplicity, in this paper we assume that A has unit diagonal entries and consider the usual splitting

A = I − L− U,

where−L and−U are strictly lower and strictly upper triangular parts of A, respectively.
The standard AOR (accelerated overrelaxation) iterative method given in [11] is defined as

x(i+1) = Lγ ,ωx(i) + (I − γ L)−1ωb, i = 0, 1, 2, . . .

with the iteration matrix

Lγ ,ω = (I − γ L)−1[(1− ω)I + (ω − γ )L+ ωU],

where ω and γ are real parameters with ω 6= 0.
It is well known that for certain values of the parameters ω and γ , we can obtain successive overrelaxation

(SOR), Gauss–Seidel, JOR and Jacobi methods. To improve the convergence rate of the basic iterative methods, several
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preconditioned iterative methods have been proposed in [8,10,12–16,20–22,24]. The main idea of these preconditioned
iterative methods is to transform the original system into the preconditioned form

PAx = Pb, (1.2)

where P ∈ Rn×n is nonsingular and nonnegative, and has unit diagonal entries. We call the basic iterative methods
corresponding to the preconditioned system (1.2) the preconditioned iterative methods, such as the preconditioned Jacobi
method, the preconditioned Gauss–Seidel method, etc.
For convenience, some notations, definitions and results thatwill be used in the following parts are given below. Amatrix

A is called nonnegative, semi-positive and positive if each entry of A is nonnegative, nonnegative but at least a positive entry
and positive, respectively. We denote them by A ≥ 0, A > 0 and A� 0. Similarly, for n-dimensional vectors, by identifying
them with n × 1 matrices, we can also define x ≥ 0, x > 0 and x � 0. Additionally, we denote the spectral radius of A
by ρ(A).

Definition 1.1. A matrix A = (ai,j) ∈ Rn×n is called a Z-matrix if for any i 6= j, ai,j ≤ 0; an L-matrix if it is a Z-matrix with
ai,i > 0, i = 1, . . . , n; a nonsingularM-matrix if A = sI − B, B ≥ 0 and s > ρ(B).

An equivalent definition forM-matrix is given in [23, Definition 2-7.3], where anM-matrix is defined as a Z-matrix with
nonnegative inverse.

Definition 1.2. Let A = (ai,j) ∈ Rn×n. We call 〈A〉 = (ãi,j) its comparison matrix if ãii =| aii | and ãi,j = − | ai,j | for i 6= j. If
〈A〉 is a nonsingularM-matrix, then A is called an H-matrix.

Definition 1.3. Let A ∈ Rn×n. The splitting A = M − N is called:

(a) weak regular ifM−1 ≥ 0 andM−1N ≥ 0;
(b) regular ifM−1 ≥ 0 and N ≥ 0;
(c) M-splitting ifM is a nonsingularM-matrix and N ≥ 0;
(d) H-compatible splitting if 〈A〉 = 〈M〉− | N |.

Lemma 1.4 ([7, Theorem 2-1.11], [10, Theorem 2.2], [18]). Let A ≥ 0.

(a) If αx ≤ Ax for some x > 0, then α ≤ ρ(A).
(b) If Ax ≤ βx for some x� 0, then ρ(A) ≤ β . Moreover, if A is irreducible and if Ax ≤ βx for some x > 0, then ρ(A) ≤ β and
x� 0.

Lemma 1.5 ([19, Theorem 2.20]). Let A ≥ 0. Then:

(a) A has a nonnegative real eigenvalue equal to its spectral radius ρ(A);
(b) to ρ(A), there corresponds an eigenvector x > 0, which is called the Perron vector;
(c) ρ(A) does not decrease when any entry of A is increased.

Lemma 1.6 ([7, Corollary 2-3.15]). If A ≥ 0 is irreducible, then ρ(A) > 0 is a simple eigenvalue and A has an eigenvector x� 0
corresponding to ρ(A).

Lemma 1.7 ([19, Theorem 3.16]). Let A ≥ 0. Then α > ρ(A) if and only if αI − A is nonsingular and (αI − A)−1 ≥ 0.

Lemma 1.8 ([17, 2.4.10]). Let A1 be an M-matrix with diagonal part D1 and off-diagonal part −B1 = A1 − D1. If D2 ≥ 0 is any
diagonal matrix and B2 ≥ 0 any matrix with zero diagonal satisfying B2 ≤ B1, then A = D1 + D2 − (B1 − B2) is an M-matrix
and A−1 ≤ A−11 .

Lemma 1.9 ([7, Theorem 6-2.3]). Let A be a Z-matrix. Then the following statements are equivalent:

(a) A is a nonsingular M-matrix.
(b) There is a vector x� 0 such that Ax� 0.
(c) Any weak regular splitting is convergent.

Lemma 1.10 ([9, Theorem 3.4]). Let A be an H-matrix. If A = M − N is an H-compatible splitting, then ρ(M−1N) < 1, i.e., the
splitting is convergent.

This paper is organized as follows. In Section 2 we will propose new preconditioners and discuss the convergence and
comparison of the preconditioned AOR iterativemethods. In Section 3 numerical results are presented to show the efficiency
of the preconditioned GMRES methods.
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2. Preconditioned AOR iterative methods

Applying P on (1.1) we obtain the equivalent linear system

Ãx = b̃ (2.1)

with Ã = PA and b̃ = Pb. We split Ã as

Ã = D̃− L̃− Ũ (2.2)

with D̃, L̃ and Ũ being diagonal, strictly lower and strictly upper triangular matrices, respectively.
The elements ãi,j of Ã are given by the expressions:

ãi,j =


1+

n∑
k=1,k6=i

pi,kak,i, 1 ≤ i = j ≤ n,

pi,j +
n∑

k=1,k6=j

pi,kak,j, 1 ≤ i 6= j ≤ n.
(2.3)

When A is a Z-matrix, in order to preserve the nonpositivity of all the off-diagonal elements and the Z-matrix character
of Ã, in the following we assume that

pi,j +
n∑

k=1,k6=j

pi,kak,j ≤ 0, 1 ≤ i 6= j ≤ n.

Then, we define

D̃ = diag

(
1+

n∑
k=1,k6=i

pi,kak,i

)
,

P = I + P1 + P2,
P1U = E1 + F1 + G1,
P2L = E2 + F2 + G2,

where E1 and E2 are diagonal matrices, F1, F2 and P1 are strictly lower triangular matrices, while G1, G2 and P2 are strictly
upper triangular matrices, so that Pi, Ei, Fi and Gi, i = 1, 2, are all nonnegative. Then the three matrices on the right-hand
side of (2.2) are given by

D̃ = I − E1 − E2,
L̃ = L− P1 + P1L+ F1 + F2 ≥ 0,
Ũ = U − P2 + P2U + G1 + G2 ≥ 0.

The preconditioned AOR iterative method of (1.1), i.e., the AOR iterative method of (2.1), is defined as

x(i+1) = L̃γ ,ωx(i) + (D̃− γ L̃)−1ωb, i = 0, 1, 2, . . . ,

where

L̃γ ,ω = (D̃− γ L̃)−1[(1− ω)D̃+ (ω − γ )L̃+ ωŨ]

is the preconditioned AOR iteration matrix.
In this section, we will show that, when A is an M-matrix, the preconditioned AOR iterative method is asymptotically

faster convergent than the original AOR iterative method for system (1.1). Some results about H-matrices are also given.
We first review and give the following lemmas which are used in the paper.

Lemma 2.1. Let A = (ai,j) ∈ Rn×n be a nonsingular M-matrix. If P = (pi,j) ≥ 0 is a nonsingular matrix such that pi,i = 1,
i = 1, 2, . . . , n, and

pi,j +
n∑

k=1,k6=j

pi,kak,j ≤ 0, 1 ≤ i 6= j ≤ n,

then PA is also a nonsingular M-matrix.

Proof. Since A is a nonsingularM-matrix, by Lemma 1.9, there exists x� 0 such that Ax� 0. Then PAx� 0. From (2.3), it
is easy to see that PA is a Z-matrix. The result is directly obtained from Lemma 1.9. �
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Lemma 2.2. Let A = (ai,j) ∈ Rn×n be a nonsingular M-matrix. Then there exists ε0 > 0 such that, for any 0 < ε ≤ ε0,
A(ε) = (ai,j(ε)) is also a nonsingular M-matrix, where

ai,j(ε) =
{
ai,j, if ai,j 6= 0,
−ε, if ai,j = 0.

(2.4)

Proof. Since A is a nonsingular M-matrix, A(ε) is a Z-matrix. Further, by Lemma 1.9, there exists a vector x � 0 such that
Ax� 0, i.e., it holds

n∑
k=1

ai,kxk > 0, i = 1, . . . , n.

Denote

δ =

n∑
k=1

xk.

Then δ > 0. We can choose ε0 such that

ε0 =
1
δ
min

{
n∑
k=1

ai,kxk, i = 1, . . . , n

}
.

Then ε0 > 0 and
n∑
k=1

ai,kxk − δε0 ≥ 0, i = 1, . . . , n.

Now, for any 0 < ε ≤ ε0, we have
n∑
k=1

ai,k(ε)xk >
n∑
k=1

ai,kxk − δε ≥
n∑
k=1

ai,kxk − δε0 ≥ 0, i = 1, . . . , n,

which implies

A(ε)x� 0.

It follows from Lemma 1.9 that A(ε) is a nonsingularM-matrix. �

Lemma 2.3. Let A = (ai,j) ∈ Rn×n be an H-matrix. If P = (pi,j) ≥ 0 is a nonsingular matrix with pi,i = 1, i = 1, 2, . . . , n, and

pi,j +
n∑

k=1,k6=j

pi,k
ak,j − |ak,j|

2
≤ 0, 1 ≤ i 6= j ≤ n, (2.5)

then PA is also an H-matrix.

Proof. From (2.5) we obtain

pi,j −
n∑

k=1,k6=j

pi,k|ak,j| ≤ 0, 1 ≤ i 6= j ≤ n.

By Lemma 2.1, it is easy to see that P〈A〉 is a nonsingularM-matrix.
On the other hand, from (2.5), we have

1+
n∑

k=1,k6=i

pi,kak,i ≥ 1−
n∑

k=1,k6=i

pi,k|ak,i| ≥ 0,

and for 1 ≤ i 6= j ≤ n,

pi,j −
n∑

k=1,k6=j

pi,k|ak,j| ≤ pi,j +
n∑

k=1,k6=j

pi,kak,j ≤
n∑

k=1,k6=j

pi,k|ak,j| − pi,j.

By Lemma 1.8 it follows that PA is an H-matrix. �
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Theorem 2.4. Assume A = (ai,j) ∈ Rn×n is an H-matrix. If P = (pi,j) ≥ 0 is a nonsingular matrix with pi,i = 1 for
i = 1, 2, . . . , n, pi,j = 0 whenever ai,j ≥ 0, and 0 ≤ pi,j ≤ |ai,j| whenever ai,j < 0, for 1 ≤ i 6= j ≤ n, then PA is also
an H-matrix.

Proof. For 1 ≤ i 6= j ≤ n, if ai,j ≥ 0, then we have

pi,j +
n∑

k=1,k6=j

pi,k
ak,j − |ak,j|

2
=

n∑
k=1,k6=i,j

pi,k
ak,j − |ak,j|

2
≤ 0.

While if ai,j < 0, then

pi,j +
n∑

k=1,k6=j

pi,k
ak,j − |ak,j|

2
= pi,j + ai,j +

n∑
k=1,k6=i,j

pi,k
ak,j − |ak,j|

2
≤ 0.

Now, by Lemma 2.3, the result can be obtained immediately. �

Theorem 2.5. Let A = (ai,j) ∈ Rn×n be an H-matrix and 0 ≤ γ ≤ ω ≤ 1, ω 6= 0. If P = (pi,j) ≥ 0 is a nonsingular matrix
with pi,i = 1 for i = 1, 2, . . . , n, pi,j = 0 whenever ai,j > 0 and 0 ≤ pi,j ≤ |ai,j| whenever ai,j ≤ 0, for 1 ≤ i 6= j ≤ n, then the
splitting

PA = M̃ − Ñ =
1
ω
(D̃− γ L̃)−

1
ω
[(1− ω)D̃+ (ω − γ )L̃+ ωŨ]

is an H-compatible splitting and ρ(L̃γ ,ω) < 1.

Proof. By Theorem 2.4, PA is an H-matrix. Let 〈PA〉 = (ãi,j) and 〈M̃〉 − |Ñ| = (bi,j).
For i = 1, 2, . . . , n, we get

ãi,i =

∣∣∣∣∣1+ n∑
k=1,k6=i

pi,kak,i

∣∣∣∣∣
and

bi,i =

∣∣∣∣∣ 1ω
(
1+

n∑
k=1,k6=i

pi,kak,i

)∣∣∣∣∣−
∣∣∣∣∣ 1ω(1− ω)

(
1+

n∑
k=1,k6=i

pi,kak,i

)∣∣∣∣∣
=

∣∣∣∣∣1+ n∑
k=1,k6=i

pi,kak,i

∣∣∣∣∣ = ãi,i.
For n ≥ i > j ≥ 1, we have

ãi,j = −

∣∣∣∣∣pi,j + n∑
k=1,k6=j

pi,kak,j

∣∣∣∣∣
and

bi,j = −
1
ω
γ

∣∣∣∣∣pi,j + n∑
k=1,k6=j

pi,kak,j

∣∣∣∣∣− 1ω(ω − γ )
∣∣∣∣∣pi,j + n∑

k=1,k6=j

pi,kak,j

∣∣∣∣∣ = ãi,j.
For 1 ≤ i < j ≤ n, we have

ãi,j = −

∣∣∣∣∣pi,j + n∑
k=1,k6=j

pi,kak,j

∣∣∣∣∣
and

bi,j = −
1
ω
ω

∣∣∣∣∣pi,j + n∑
k=1,k6=j

pi,kak,j

∣∣∣∣∣ = ãi,j.
Now, we can conclude that

〈PA〉 = 〈M̃〉 − |Ñ|,
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which implies

PA = M̃ − Ñ

is an H-compatible splitting. Then, by Lemma 1.10, we obtain ρ(L̃γ ,ω) < 1. �

Now we give comparison results about the asymptotic convergence rates of the original and the preconditioned matrix
splittings; see [1,6,2] about this kind of results for parallel matrix multisplitting and parallel decomposition-type relaxation
methods for large sparse systems of linear equations.

Theorem 2.6. Let A = (ai,j) ∈ Rn×n be a nonsingular Z-matrix. Assume that 0 ≤ γ ≤ ω ≤ 1, ω 6= 0 and P = (pi,j) ≥ 0 is a
nonsingular preconditioner with pi,i = 1 for 1 ≤ i ≤ n, and

pi,j +
n∑

k=1,k6=j

pi,kak,j ≤ 0, 1 ≤ i 6= j ≤ n. (2.6)

(a) If ρ(Lγ ,ω) < 1, then

ρ(L̃γ ,ω) ≤ ρ(Lγ ,ω) < 1.

(b) If ρ(Lγ ,ω) > 1 and P satisfies

1+
n∑

k=1,k6=i

pi,kak,i > 0, 1 ≤ i ≤ n, (2.7)

then

ρ(L̃γ ,ω) ≥ ρ(Lγ ,ω) > 1.

Proof. Consider the splittings

A = M − N =
1
ω
(I − γ L)−

1
ω
[(1− ω)I + (ω − γ )L+ ωU]

and

Ã = E − F =
1
ω
(D̃− γ L̃)−

1
ω
[(1− ω)D̃+ (ω − γ )L̃+ ωŨ].

Since A is a nonsingular Z-matrix, 0 ≤ γ ≤ ω ≤ 1 and ω 6= 0, then L, U and N are nonnegative matrices. Thus the splitting
A = M − N is anM-splitting.
For case (a), if ρ(Lγ ,ω) < 1, by Lemma 1.9, A is a nonsingularM-matrix. By Lemma 2.1, Ã is also a nonsingularM-matrix.

So D̃ ≥ 0 is invertible, L̃ ≥ 0, Ũ ≥ 0 and D̃−1 ≥ 0.
On the other hand, since γ ≥ 0 and L̃ ≥ 0, it is obvious that the diagonal elements of E are positive and its off-diagonal

elements are nonpositive, i.e., E is an L-matrix. Since γ D̃−1L̃ ≥ 0 is a strictly lower triangular matrix and ρ(γ D̃−1L̃) = 0 < 1,
by Lemma 1.7, we have (I − γ D̃−1L̃)−1 ≥ 0. Then

E−1 = (I − γ D̃−1L̃)−1D̃−1 ≥ 0,

which means that E is an nonsingularM-matrix. Furthermore, F ≥ 0. This shows that Ã = E − F is also anM-splitting.
For case (b), from (2.6), (2.7) and the above analysis, we can conclude that Ã = E − F is anM-splitting.
Now, according to Lemma 1.5, there exists a Perron vector x > 0 such that

Lγ ,ωx = ρ(Lγ ,ω)x. (2.8)

We denote ρ(Lγ ,ω) by λ. From (2.8) and the expression ofLγ ,ω , we obtain the following equality

[(1− ω)I + (ω − γ )L+ ωU]x = λ(I − γ L)x,

which is equivalent to

[(1− ω − λ)I + (ω − γ + λγ )L+ ωU]x = 0.

From these we get

ω(L+ U − I)x = (λ− 1)(I − γ L)x
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and

Lx =
(−1+ ω + λ)I − ωU

ω − γ + λγ
x, if ω − γ + λγ 6= 0.

It is easy to see that for ρ(Lγ ,ω) > 0 we have ω − γ + λγ 6= 0. Then, we have

L̃γ ,ωx− λx = (D̃− γ L̃)−1[(1− ω)D̃+ (ω − γ )L̃+ ωŨ − λ(D̃− γ L̃)]x

= (D̃− γ L̃)−1[(1− ω − λ)D̃+ (ω − γ + λγ )L̃+ ωŨ]x

= (D̃− γ L̃)−1[(1− ω − λ)(I − E1 − E2)
+ (ω − γ + λγ )(L− P1 + P1L+ F1 + F2)+ ω(U − P2 + P2U + G1 + G2)]x

= (D̃− γ L̃)−1{[(1− ω − λ)I + (ω − γ + λγ )L+ ωU] + [−(1− ω − λ)(E1 + E2)
+ (ω − γ + λγ )(−P1 + P1L+ F1 + F2)+ ω(−P2 + P2U + G1 + G2)]}x

= (D̃− γ L̃)−1[−(1− ω − λ)(E1 + E2)+ (ω − γ + λγ )(−P1 + P1L+ F1 + F2)
+ω(−P2 + P2U + G1 + G2)]x

= (D̃− γ L̃)−1[(λ− 1)(E1 + E2)+ γ (λ− 1)(−P1 + P1L+ F1 + F2)+ ω(P1 + P2)(L+ U − I)]x

= (D̃− γ L̃)−1[(λ− 1)(E1 + E2)+ γ (λ− 1)(−P1 + P1L+ F1 + F2)+ (λ− 1)(P1 + P2)(I − γ L)]x

= (λ− 1)(D̃− γ L̃)−1[E1 + E2 + γ (F1 + F2)+ (1− γ )P1 + P2 − γ P2L]x

= (λ− 1)(D̃− γ L̃)−1
[
E1 + E2 + γ (F1 + F2)+ (1− γ )P1 + P2 − γ P2

(−1+ ω + λ)I − ωU
ω − γ + λγ

]
x

= (λ− 1)(D̃− γ L̃)−1
[
E1 + E2 + γ (F1 + F2)+ (1− γ )P1 + ωP2

(1− γ )I + γU
ω − γ + λγ

]
x. (2.9)

Case I: λ > 1. Then (2.9) gives

L̃γ ,ωx ≥ λx.

By Lemma 1.4, we have

ρ(L̃γ ,ω) ≥ ρ(Lγ ,ω) > 1

and (b) is proved.
Case II: 0 ≤ λ < 1.
We first consider the case when A is irreducible.
Note that

Lγ ,ω = (I − γ L)−1[(1− ω)I + (ω − γ )L+ ωU]

= [I + γ L+ (γ L)2 + · · · + (γ L)n−1][(1− ω)I + (ω − γ )L+ ωU]
≥ (1− ω)I + (ω − γ )L+ ωU + γ (1− ω)L

= (1− ω)I + ω(1− γ )L+ ωU . (2.10)

When 0 ≤ γ < 1, from (2.10), we can see thatLγ ,ω is also irreducible. So, by Lemma 1.6, λ > 0 and we can assume that
the Perron vector x given in (2.8) is positive. Now, from (2.9), we have

L̃γ ,ωx ≤ λx.

By Lemma 1.4, we obtain

ρ(L̃γ ,ω) ≤ λ = ρ(Lγ ,ω).

When γ = 1, then ω = γ = 1 and we have

ρ(L̃1,1) = lim
γ→1−

ρ(L̃γ ,1) ≤ lim
γ→1−

ρ(Lγ ,1) = ρ(L1,1) < 1.

Now, we consider the case when A is reducible. According to Lemma 2.2, for any sufficiently small positive number ε,
A(ε) given in (2.6) is also a nonsingularM-matrix and irreducible. By the proof above, we have

ρ(L̃γ ,ω) = lim
ε→0+

ρ(L̃γ ,ω(ε)) ≤ lim
ε→0+

ρ(Lγ ,ω(ε)) = ρ(Lγ ,ω) < 1.

The proof of (a) is completed. �
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Theorem 2.7. Let A = (ai,j) ∈ Rn×n be a nonsingular M-matrix. Assume that 0 ≤ γ ≤ ω ≤ 1, ω 6= 0, P = (pi,j) ≥ 0 is a
nonsingular preconditioner with pi,j = −αi,jai,j, 0 ≤ αi,j ≤ 1, for 1 ≤ i 6= j ≤ n, and pi,i = 1 for 1 ≤ i ≤ n. Then we have

ρ(L̃γ ,ω) ≤ ρ(Lγ ,ω) < 1.

Proof. By Lemma 1.9, we get ρ(Lγ ,ω) < 1.
On the other hand, for 1 ≤ i 6= j ≤ n, we have

pi,j +
n∑

k=1,k6=j

pi,kak,j = pi,j + ai,j +
n∑

k=1,k6=i,j

pi,kak,j

= (1− αi,j)ai,j −
n∑

k=1,k6=i,j

αi,kai,kak,j

≤ 0,

i.e., (2.6) holds.
By Theorem 2.6, we can prove the result. �

Theorem 2.8. Let A = (ai,j) ∈ Rn×n be an H-matrix. Assume that 0 ≤ γ ≤ ω ≤ 1, ω 6= 0, and P = (pi,j) ≥ 0 is a
preconditioner with

pi,j = αi,j

∣∣∣∣ai,j − |ai,j|2

∣∣∣∣ , 0 ≤ αi,j ≤ 1,

for 1 ≤ i 6= j ≤ n and pi,i = 1 for 1 ≤ i ≤ n. Then, we have

ρ(L̃γ ,ω) ≤ ρ(Lγ ,ω(P〈A〉)) ≤ ρ(Lγ ,ω(〈A〉)) < 1, (2.11)

whereLγ ,ω(B) represents the AOR iteration matrix corresponding to the matrix B.

Proof. Since 〈A〉 is anM-matrix, by Lemma 1.9, it holds

ρ(Lγ ,ω(〈A〉)) < 1. (2.12)

For 1 ≤ i 6= j ≤ n, we have

pi,j −
n∑

k=1,k6=j

pi,k|ak,j| = αi,j

∣∣∣∣ai,j − |ai,j|2

∣∣∣∣− |ai,j| − n∑
k=1,k6=i,j

αi,k

∣∣∣∣ai,k − |ai,k|2

∣∣∣∣ |ak,j|
≤ 0.

By Lemma 2.1, P〈A〉 is a nonsingularM-matrix. Furthermore, by Theorem 2.6, we derive

ρ(Lγ ,ω(P〈A〉)) ≤ ρ(Lγ ,ω(〈A〉)) < 1.

Note that

pi,j +
n∑

k=1,k6=j

pi,k
ak,j − |ak,j|

2
= αi,j

∣∣∣∣ai,j − |ai,j|2

∣∣∣∣+ ai,j − |ai,j|2
+

n∑
k=1,k6=i,j

pi,k
ak,j − |ak,j|

2

=
|ai,j| − ai,j

2
(αi,j − 1)+

n∑
k=1,k6=i,j

pi,k
ak,j − |ak,j|

2

≤ 0.

By Lemma 2.3, PA is an H-matrix.
Then, it can be derived that

1+
n∑

k=1,k6=i

pi,kak,i ≥ 1−
n∑

k=1,k6=i

pi,k|ak,i| > 0

and

pi,j −
n∑

k=1,k6=j

pi,k|ak,j| ≤ pi,j +
n∑

k=1,k6=j

pi,kak,j ≤ −pi,j +
n∑

k=1,k6=j

pi,k|ak,j|.
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Table 1
CPU time and the number of iterations

N GMRES(100) PKGMRES(100) PRGMRES(100)
IT CPU IT CPU IT CPU

32 85 0.453 79 0.359 43 0.219
40 108 1.219 99 1.062 53 0.547
48 139 3.094 125 2.703 63 1.5
56 181 7.031 175 6.547 73 2.922

For convenience, we denote the split by

P〈A〉 = D̂− L̂− Û

with D̂, L̂ and Û being diagonal, strictly lower and strictly upper triangular matrices, respectively, so that D̂ ≥ 0, L̂ ≥ 0 and
Û ≥ 0.
So, we have

|L̃γ ,ω| = |(D̃− γ L̃)−1[(1− ω)D̃+ (ω − γ )L̃+ ωŨ]|

= |(I − γ D̃−1L̃)−1[(1− ω)I + (ω − γ )D̃−1L̃+ ωD̃−1Ũ]|

≤ |(I − γ D̃−1L̃)−1||(1− ω)I + (ω − γ )D̃−1L̃+ ωD̃−1Ũ|

≤ (I − γ |D̃−1L̃|)−1[(1− ω)I + (ω − γ )|D̃−1L̃| + ω|D̃−1Ũ|]

≤ (I − γ D̂−1L̂)−1[(1− ω)I + (ω − γ )D̂−1L̂+ ωD̂−1Û]
= Lγ ,ω(P〈A〉),

which implies

ρ(L̃γ ,ω) ≤ ρ(Lγ ,ω(P〈A〉))

and the proof is completed. �

Remark 2.9. When we choose αi,j suitably, we can obtain many known preconditioners. For instance, if αi,j = 0, j 6= 1,
then P is reduced to the preconditioner proposed first by Milaszewicz and generalized in [12]. If αi,j = 0, j 6= i + 1, and
j 6= i, then P is reduced to the preconditioner presented in [10] and parameterized in [13]. If αi,j = 0, for i > j, then P is the
preconditioner proposed in [14], etc.

Remark 2.10. Throughout the paper, by choosing special parameters, similar results about SOR, JOR, Gauss–Seidel and
Jacobi methods can be copied word by word from the above theorems. Here we omit them.

3. A numerical example

Consider the two dimensional convection–diffusion equation
−(uxx + uyy)+ 2exp(x+ y)(xux + yuy) = f (x, y)

on the square domainΩ = [0, 1] × [0, 1], with the homogeneous Dirichlet boundary conditions.
When the central difference scheme on a uniform grid with N × N interior nodes (N2 = n) is applied to this equation,

we can obtain a system of linear equations (1.1) with the five diagonal coefficient matrix; see [3–5].
We test for the preconditioned GMRES methods.
In the experiment, we choose two classes of preconditioners. They are Kotakemori et al.’s preconditioner and the

preconditioner P = I + L + U . The initial approximation of x(0) is taken as a zero vector, and the right-hand-side vector is
chosen so that e = [1, 1, . . . , 1]T is the solution of the considered system. Here ‖Ax(k) − Ae‖2/‖Ae‖2 ≤ 10−6 is used as the
stopping criterion.
All experiments were executed on a PC using MATLAB programming package.
In Table 1, we report the CPU time (T ) and the number of iterations (IT) for the corresponding preconditioned GMRES

methods.
HereGMRES(100) represents the restartedGMRES(100)method, the preconditioned restartedGMRES(100)methodwith

preconditioner P = I + L + U is denoted by PRGMRES(100), while PKGMRES(100) corresponds to Kotakemori et al.’s
preconditioner.
From the table, we can see that the preconditioned GMRES methods are superior to the basic GMRES methods. The table

also shows that the preconditioned GMRES method associated with P = I + L+ U is the best.
The observation can be further illustrated by the spectrum pictures plotted in Figs. 1–3. Clearly, the spectrum of the

preconditionedmatrices (I+L)A and (I+L+U)A aremore clustered than those of the original matrix A. Figs. 1–3 also show
that the spectral distribution associated with P = I+ L+U is more tightly bounded than those associated with Kotakemori
et al.’s preconditioner.
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Fig. 1. Spectra of the matrix A.

Fig. 2. Spectra of the preconditioned matrix (I + L)A.

Fig. 3. Spectra of the preconditioned matrix (I + L+ U)A.
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