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a b s t r a c t

The DFLU numerical flux was introduced in order to solve hyperbolic scalar conservation
laws with a flux function discontinuous in space. We show how this flux can be used to
solve a certain class of systems of conservation laws such as systems modeling polymer
flooding in oil reservoir engineering. Furthermore, these results are extended to the
case where the flux function is discontinuous in the space variable, such a situation
arises for example while dealing with oil reservoirs which are heterogeneous. Numerical
experiments are presented to illustrate the efficiency of this newscheme compared to other
standard schemes like upstream mobility, Lax–Friedrichs and FORCE schemes.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

The main difficulty in the numerical solution of systems of conservation laws is the complexity of constructing the
Riemann solvers. One way to overcome this difficulty is to consider centered schemes as in [1–5]. However, in general
these schemes are more diffusive than Godunov type methods based on exact or approximate Riemann solvers when
this alternative is available. Therefore in this paper we will consider Godunov type methods. Most often the numerical
solution requires the calculation of eigenvalues or eigenvectors of the Jacobian matrix of the system. This is even more
complicated when the system is nonstrictly hyperbolic, i.e. eigenvectors are not linearly independent. In this paper we
present an approach like in [6,7] which do not require, detailed information about the eigenstructure of the full system.

Let us consider a system of conservation laws in conservative form

Ut + (F(U))x = 0, U = (u1, . . . , uJ), F = (f 1, . . . , f J).
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A conservative finite volume method reads
Un+1

i − Un
i

∆t
+

Fni+1/2 − Fni−1/2

h
= 0

where Fni+1/2 is a numerical flux calculated using an exact or approximate Riemann solver. In a first order scheme this
numerical flux is calculated using the left and right valuesUn

i andUn
i+1. If we solve the equation field by field the j-th equation

reads

uj,n+1
i − uj,n

i

∆t
+

F j,n
i+1/2 − F j,n

i−1/2

h
= 0

where the j-th numerical flux is a function of Un
i and Un

i+1:

F j,n
i+1/2 = F j(u1,n

i , . . . , uj,n
i , . . . , uJ,n

i , u1,n
i+1, . . . , u

j,n
i+1, . . . , u

J,n
i+1), j = 1, . . . , J.

This flux function can be calculated by solving the scalar Riemann problem for t > tn:

uj
t + (f̃ j,n(uj, x))x = 0, (1)

uj(x, tn) = uj,n
i if x < xi+1/2, uj(x, tn) = uj,n

i+1 if x > xi+1/2,

where the flux function f̃ j, discontinuous at the point x = xi+1/2, is defined by

f̃ j,n(uj, x) ≡ f̃ j,nL (uj) = f j(u1,n
i , . . . , uj−1,n

i , uj, uj+1,n
i , . . . , uJ,n

i ) if x < xi+1/2,

f̃ j,n(uj, x) ≡ f̃ j,nR (uj) = f j(u1,n
i+1, . . . , u

j−1,n
i+1 , uj, uj+1,n

i+1 , . . . , uJ,n
i+1) if x > xi+1/2

(2)

(L and R refer to left and right of the point xi+1/2).
Scalar conservation laws like Eq. (1) with a flux function discontinuous in space have been the object of many studies

[8–20]. In particular, in [19] a Godunov type finite volume scheme was proposed and convergence to a proper entropy
condition was proved, provided that the left and right flux functions have exactly one local maximum and the same end
points (the case where the flux functions has exactly one local minimum can be treated by symmetry). At the discontinuity
the interface flux, that we call the DFLU flux, is given by the formula

F n
i+1/2(uL, uR) = min{fL(min{uL, θL}), fR(max{uR, θR})}, (3)

if f denotes the scalar flux function and θL = argmax(fL), θR = argmax(fR). When fL ≡ fR this formula is equivalent to the
Godunov flux so formula (3) can be seen as an extension of the Godunov flux to the case of a flux function discontinuous
in space. In the case of systems formula (3) can be applied to the fluxes f̃ j,nL and f̃ j,nR provided both agrees at the end
points of the domain for all j, like in the case of scalar laws with a flux function discontinuous in space. In the case of an
uncoupled triangular system, a similar scheme is used in [21,6,22] and its convergence analysis is studied. Also in [7], the
idea of discontinuous flux is used to study a coupled system arising in three-phase flows in porous media and shown its
successfulness.

To illustrate themethodwe consider the system of conservation laws arising for polymer flooding in reservoir simulation
which is described in Section 2. This system, or similar systems of equations, is nonstrictly hyperbolic and is studied in
several papers [23–26]. For example in [24] the authors solve Riemann problems associated to this system when gravity is
neglected and therefore the fractional flow function is an increasing function of the unknown. In this case, the eigenvalues of
the corresponding Jacobian matrix are positive and hence it is less difficult to construct Godunov type schemes which turn
out to be upwind schemes.When the abovemodel with gravity effects is considered, then the flux function is not necessarily
monotone and hence the eigenvalues can change sign. This makes the construction of Godunov type schemes more difficult
as it involves exact solutions of Riemann problems with a nonmonotonous fractional flow function. Therefore in Section 3
we solve the Riemann problems in the general case when gravity terms are taken into account so the flux function is not
anymoremonotone. Thiswill allow to compare ourmethodwith that using an exact Riemann solver. In Section 4we consider
Godunov type finite volume schemes. We present the DFLU scheme for the system of polymer flooding and compare it to
the Godunov scheme whose flux is given by the exact solution of the Riemann problem. We also present several other
possible numerical fluxes, centered like Lax–Friedrichs or FORCE, or upstream like the upstream mobility flux commonly
used in reservoir engineering [27,28,20]. In Section 5 we compare numerically the DFLU method with these fluxes. Finally
in Section 6 we considered the case where the flux function is discontinuous in the space variable and its corresponding
Riemann problem is discussed in Appendix.

2. A system of conservation laws modeling polymer flooding

A polymer flooding model for enhanced oil recovery in petroleum engineering was introduced in [29] as the following
2 × 2 system of conservation laws

st + f (s, c)x = 0
(sc + a(c))t + (cf (s, c))x = 0

(4)
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Fig. 1. Shapes of flux function s → f (s, c) (left) and adsorption function c → a(c) (right).

where t > 0 and x ∈ R, (s, c) ∈ I × I with I = [0, 1]. s = s(x, t) denotes the saturation of the wetting phase, so 1 − s is
the saturation of the oil phase. c = c(x, t) denotes the concentration of the polymer in the wetting phase which we have
normalized. Here the porositywas set to 1 to simplify notations. The flux function f is the Darcy velocity of thewetting phase
ϕ1 and is determined by the relative permeabilities and the mobilities of the wetting and oil phases, and by the influence of
gravity:

f (s, c) = ϕ1 =
λ1(s, c)

λ1(s, c) + λ2(s, c)
[ϕ + (g1 − g2)λ2(s, c)]. (5)

The quantities λℓ, ℓ = 1, 2 are the mobilities of the two phases, with ℓ = 1 referring to the wetting phase and ℓ = 2
referring to the oil phase:

λℓ(s, c) =
Kkrℓ(s)
µl(c)

, ℓ = 1, 2,

where K is the absolute permeability, and krℓ andµℓ are respectively the relative permeability and the viscosity of the phase
ℓ. kr1 is an increasing function of s such that kr1(0) = 0while kr2 is a decreasing function of s such that kr2(1) = 0. Therefore
λℓ, ℓ = 1, 2 satisfy

λ1 = λ1(s, c)is an increasing functions of s, λ1(0, c) = 0 ∀c ∈ [0, 1],
λ2 = λ2(s, c) is a decreasing functions of s, λ2(1, c) = 0 ∀c ∈ [0, 1].

(6)

The idea of polymer flooding is to dissolve a polymer in the injected water in order to increase the viscosity of the injected
wetting phase. Thus the injected wetting phase will not be able to bypass oil so one obtains a better displacement of the oil
by the injected phase. Thereforeµ1(c) is increasingwith c whileµ2 will be taken as a constant assuming there is no chemical
reaction between the polymer and the oil. Therefore f will decrease with respect to c. The function a = a(c) models the
adsorption of the polymer by the rock and is increasing with c.

ϕ is the total Darcy velocity, that is the sum of the Darcy velocities of the two phases ϕ1 and ϕ2:

ϕ = ϕ1 + ϕ2, ϕ1 =
λ1

λ1 + λ2
[ϕ + (g1 − g2)λ2], ϕ2 =

λ2

λ1 + λ2
[ϕ + (g2 − g1)λ1].

ϕ is a constant in space since we assume that the flow is incompressible. The gravity constants g1, g2 of the phases are
proportional to their density.

To Eq. (4) we add the initial condition

(s(x, 0), c(x, 0)) = (s0(x), c0(x)). (7)

Since the case when f is monotone was already studied in [24,25], we concentrate on the nonmonotone case which is
more complicated and corresponds to taking into account gravity. Here we assume that ϕ = 0 for the nonlinearities of the
system (4). We will assume also that phase 1 is heavier than phase 2 (g1 > g2) so we can assume the following properties:

(i) f (s, c) ≥ 0, f (0, c) = f (1, c) = 0 for all c ∈ I .
(ii) The function s → f (s, c) has exactly one global maximum in I and no other local minima in the interior of I with

θ = argmax(f ).
(iii) fc(s, c) < 0∀ s ∈ (0, 1) and for all c ∈ I
(iv) The adsorption term a = a(c) satisfies

a(0) = 0, h(c) =
da
dc

(c) > 0,
d2a
dc2

(c) < 0 for all c ∈ I.

Typical shapes of functions f and a are shown in Fig. 1.
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We expand the derivatives in Eq. (4) and we plug the resulting first equation into the second one. Then we obtain the
system in nonconservative form

st + fs(s, c)sx + fc(s, c)cx = 0,
(s + a′(c))ct + f (s, c)cx = 0.

Let U denote the state vector U = (s, c) and introduce the upper triangular matrix

A(U) =

fs fc

0
f

s + a′(c)


and the system (4) can be read in matrix form as

Ut + A(U)Ux = 0.

The eigenvalues of A are λs
= fs and λc

=
f

s+a′ , with corresponding eigenvectors es = (1, 0), ec = (fc, λc
− λs) if

0 < s < 1 and ec = (0, 1) if s = 0, 1. The eigenvalue λs may change sign whereas the eigenvalue λc is always positive. One
can observe that for each c ∈ I there exists a unique s∗ = s∗(c) ∈ (0, 1) such that

λc(s∗, c) = λs(s∗, c)

(see Fig. 2). For this couple (s∗, c), λc
= λs, hence eigenvectors are not linearly independent and the problem is nonstrictly

hyperbolic.
Any weak solution of (4) has to satisfy the Rankine–Hugoniot jump conditions given by

f (sR, cR) − f (sL, cL) = σ(sR − sL),
cRf (sR, cR) − cLf (sL, cL) = σ(sRcR + a(cR) − sLcL − a(cL)),

(8)

where (sL, cL), (sR, cR) denote the left and right values of the couple (s, c) at a certain point of discontinuity.
When cR = cL, the second equation reduces to the first equation and the speed of the discontinuity σ is given by the first

equation only. Now we are interested in the case cR ≠ cL. By combining the two Eqs. (8) we may write

(cR − cL)f (sL, cL) = σ(cR − cL)sL + σ(a(cR) − a(cL))

where

σ =
f (sL, cL)

sL + āL(cR)
, āL(c) =


a(c) − a(cL)

c − cL
if c ≠ cL,

a′(c) if c = cL.

Plugging this into first equation of (8), we obtain

σ(sR + āL(cR)) = σ(sL + āL(cR)) + f (sR, cR) − f (sL, cL) = f (sR, cR).

Hence when cL ≠ cR the Rankine–Hugoniot condition (8) reduces to

f (sR, cR)
sR + āL(cR)

=
f (sL, cL)

sL + āL(cR)
= σ . (9)

In the absence of the adsorption term, i.e. a = a(c) = 0, Eq. (4) is studied in [30] by using the equivalence of the Euler
and Lagrangian formulations and converting it into a scalar conservation law with a discontinuous flux function. In the
presence of the adsorption term, this transformation fails to convert it into a scalar conservation law with a discontinuous
flux function.

3. Riemann problems

In this section we solve the Riemann problems associated with our system, that we solve system (4) with the initial
condition

s(x, 0) =


sL if x < 0,
sR if x > 0, c(x, 0) =


cL if x < 0,
cR if x > 0. (10)

Solution to (10) is constructed by using elementary waves associated with the system. There are two families of waves,
referred to as the s and c families. s waves consist of rarefaction and shocks (or contact discontinuity) across which s
changes continuously and discontinuously respectively, but across which c remains constant. c waves consist solely of
contact discontinuities, across which both s and c changes such that f (s,c)

s+a′(c) remains constant in the sense of (9).
We will restrict to the case cL > cR. The case cL < cR can be treated similarly. When cL > cR the flux functions for the

first Eq. (4) s → f (s, cL) and s → f (s, cR) are as represented in Fig. 2, that is f (s, cL) ≤ f (s, cR) ∀s ∈ (0, 1). Let θL and θR be
the points at which f (., cL) and f (., cR) reach their maxima respectively.
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Fig. 2. Two flux functions f (s, cL) and f (s, cR) with cL > cR .

Let s∗ ∈ (0, 1) be a point atwhich fs(s∗, cL) =
f (s∗,cL)

s∗+āL(cR)
. Nowdraw a line through the points (−āL(cR), 0) and (s∗, f (s∗, cL))

which intersects the curve f (s, cR) at a point A ≥ s∗ (see Fig. 2).
Our study of Riemann problems separates into two cases sL < s∗ and sL ≥ s∗ which themselves separate into several

subcases.

• Case 1: sL < s∗.
Draw a line passing through the points (sL, f (sL, cL)) and (−āL(cR), 0). This line intersects the curve f (s, cR) at points

s and B (see Fig. 3). Now we divide this into two subcases.
• Case 1a: sR < B

(a) Connect (sL, cL) to (s, cR) by c-wave with a speed

σc =
f (sL, cL)

sL + āL(cR)
=

f (s, cR)
s + āL(cR)

.

(b) Next connect (s, cR) to (sR, cR) by a s-wave, along the curve f (s, cR) (see Fig. 3).
For example if sR ≥ s and f (s, cL) and f (s, cR) are concave functions then the solution of the Riemann problem is

given by

(s(x, t), c(x, t)) =


(sL, cL) if x < σc t,
(s, cR) if σc t < x < σst,
(sR, cR) if x > σst,

(11)

where

σc =
f (sL, cL)

sL + āL(cR)
=

f (s, cR)
s + āL(cR)

, σs =
f (s, cR) − f (sR, cR)

s − sR
.

Note that 0 < σc < σs.
• Case 1b: sR ≥ B.

Draw a line passing through the points (sR, f (sR, cR)) and (−āL(cR), 0). This line intersects the curve f (s, cL) at a point
s (see Fig. 4).
(a) Connect (sL, cL) to (s, cL) by a s-wave along the curve f (s, cL).
(b) Next connect (s, cL) to (sR, cR) by a c-wave with a speed

σc =
f (sR, cR)

sR + āL(cR)
=

f (s, cL)
s + āL(cR)

.

For example if f (s, cL) and f (s, cR) are concave functions then the solution is given by

(s(x, t), c(x, t)) =


(sL, cL) if x < σst,
(s, cL) if σst < x < σc t
(sR, cR) if x > σc t

(12)

where

σc =
f (sR, cR)

sR + āL(cR)
=

f (s, cL)
s + āL(cR)

, σs =
f (s, cL) − f (sL, cL)

s − sL
.

Note that σs < σc and (sL, cL) is connected to (s, cL) by a s-shock wave and (s, cL) is connected to (sR, cR) by a c-shock
wave.

• Case 2: sL ≥ s∗.
• Case 2a: sR ≤ A.

(a) Connect (sL, cL) to (s∗, cL) by a s-wave along the curve f (s, cL).
(b) Connect (s∗, cL) to (s, cR) by a c-wave.
(c) Connect (s, cR) to (sR, cR) by a s-wave along the curve f (s, cR) (see Fig. 5).
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Fig. 3. Solution of Riemann problem (10) with sL < s∗ and sR < B.

Fig. 4. Solution of Riemann problem (10) with sL < s∗ and sR ≥ B.

Fig. 5. Solution of Riemann problem (10) with sL ≥ s∗ and sR < A.

For example if sR ≤ s and f (s, cL) and f (s, cR) are concave functions, then the solution is given by

(s(x, t), c(x, t)) =



(sL, cL) if x < σ1t,
(fs)−1

x
t
, cL


, cL


if σ1t < x < σ2t,

(s, cR) if σ2t < x < σ3t,
(fs)−1

x
t
, cR


, cR


if σ3t < x < σ4t,

(sR, cR) if x > σ4t,

where

σ1 = fs(sL, cL), σ2 = fs(s∗, cL) =
f (s∗, cL)

s∗ + āL(cR)
, σ3 = fs(s, cR), σ4 = fs(sR, cR).

Here (sL, cL) is connected to (s∗, cL) by a s-rarefaction wave, (s∗, cL) is connected to (s, cR) by a c-shock wave and
(s, cR) is connected to (sR, cR) by a rarefaction wave (see Fig. 5). If sR > s then (s, cR) would be connected to (sR, cR) by a
s-chock wave.

• Case 2b: sR ≥ A.
Draw a line passing through the points (sR, f (sR, cR)) and (−āL(cR), 0). This line intersects the curve f (s, cL) at a point

s (see Fig. 6).
(a) Connect (sL, cL) to (s, cL) by a s-wave along the curve f (s, cL),
(b) Next connect (s, cL) to (sR, cR) by a c-wave with a speed

σc =
f (sR, cR)

sR + āL(cR)
=

f (s, cL)
s + āL(cR)

.
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Fig. 6. Solution of Riemann problem (10) with sL < s∗ and sR ≥ A.

For example if sL < s and f (s, cL) and f (s, cR) are concave functions, then the solution is given by

(s(x, t), c(x, t)) =


(sL, cL) if x < σst,
(s, cL) if σst < x < σc t,
(sR, cR) if x > σc t,

(13)

where

σc =
f (sR, cR)

sR + āL(cR)
=

f (s, cL)
s + āL(cR)

, σs =
f (s, cL) − f (sL, cL)

s − sL
.

Note that σs < σc and (sL, cL) is connected to (s, cL) by a s-shock wave and (s, cL) is connected to (sR, cR) by a c-shock
wave.

4. Conservative finite volume schemes for the system of polymer flooding

Let h > 0 and define the space grid points xi+1/2 = ih, i ∈ Z and for ∆t > 0 define the time discretization points
tn = n∆t for all non-negative integer n. Let λ =

∆t
h . A numerical schemewhich is in conservative form for Eq. (4) is given by

(sn+1
i − sni ) + λ(F n

i+1/2 − F n
i−1/2) = 0,

(cn+1
i sn+1

i + a(cn+1
i ) − cni s

n
i − a(cni )) + λ(Gn

i+1/2 − Gn
i−1/2) = 0

(14)

where the numerical flux F n
i+1/2 and Gn

i+1/2 are associated with the flux functions f (s, c) and g(s, c) = cf (s, c), and are
functions of the left and right values of the saturation s and the concentration c at xi+1/2:

F n
i+1/2 = F(sni , c

n
i , s

n
i+1, c

n
i+1), Gn

i+1/2 = G(sni , c
n
i , s

n
i+1, c

n
i+1).

The choice of the functions F and G determines the numerical scheme. To recover cn+1
i from the second equation of (14) one

has to use an iterative method, like Newton–Raphson. We first present the new flux that we call DFLU, which is constructed
as presented in the introduction. We compare it with the exact Riemann solver and show L∞ estimates for the associate
scheme. Then we recall three other schemes to which to compare: the upstream mobility flux and two centered schemes,
Lax–Friedrichs’s and FORCE.

4.1. The DFLU numerical flux

The DFLU flux is an extension of the Godunov scheme that we proposed and analyze in [19] for scalar conservations laws
with a flux function discontinuous in space. As the second eigenvalue λc of the system is always non-negative we define

Gn
i+1/2 = cni F n

i+1/2. (15)

Now the choice of the numerical scheme depends on the choice of F n
i+1/2. To do so we treat c(x, t) in f (s, c) as a

known function which may be discontinuous at the space discretization points. Therefore on the border of each rectangle
(xi−1/2, xi+1/2) × (tn, tn+1), we consider the conservation law:

st + f (s, cni )x = 0 (16)

with initial condition s(x, 0) = s0i for xi−1/2 < x < xi+1/2 (see Fig. 7).
Extending the idea of [19], we define the DFLU flux as

F n
i+1/2 = FDFLU(sni , c

n
i , s

n
i+1, c

n
i+1)

= min{f (min{sni , θ
n
i }, cni ), f (max{sni+1, θ

n
i+1}, c

n
i+1)}, (17)

where θn
i = argmax f (·, cni ).
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Fig. 7. The flux function f (·, c) is discontinuous in c at the discretization points.

Remarks. (1) Suppose cni = c0, a constant for all i,then it is easy to see that cn+1
i = c0 for all i.

(2) Suppose s → f (s, c) is an increasing function (case without gravity) then θn
i = 1 for all i and from (17) we have

F n
i+1/2 = f (sni , c

n
i ) and the finite difference scheme (14) becomes

sn+1
i = sni − λ(f (sni , c

n
i ) − f (sni−1, c

n
i−1))

cn+1
i sn+1

i + a(cn+1
i ) = cni s

n
i + a(cni ) − λ(cni f (sni , c

n
i ) − cni−1 f (s

n
i−1, c

n
i−1))

(18)

which is nothing but the standard upwind scheme.

4.2. Comparison of the DFLU flux with the flux given by an exact Riemann solver

Nowwewould like to compare the exact Godunov flux FG
i+1/2 with our DFLU flux FDFLU

i+1/2 defined by (17). For sake of brevity
we considered only the case cni ≥ cni+1. The opposite case can be considered similarly. We discuss the cases considered in
Section 3.
Case 1a: si < s∗, si+1 < B. See Fig. 3. In this case FG

i+1/2 = f (si, ci) = FDFLU
i+1/2.

Case 1b: si < s∗, si+1 ≥ B. See Fig. 4.

Then FG
i+1/2 =


f (s, ci) if σs < 0
f (si, ci) if σs ≥ 0 where σs =

f (s,ci)−f (si,ci)
s−si

. On the other hand the DFLU flux gives FDFLU
i+1/2 = min

{f (si, ci), f (max{si+1, θi+1}, ci+1)}. Therefore in this case the Godunov flux may not be same as the DFLU flux.
Case 2a: si ≥ s∗, si+1 ≤ A. See Fig. 5. Then

FG
i+1/2 =


f (θi, ci) if si > θi
f (si, ci) if si ≤ θi

= f (min{si, θi}, ci) = FDFLU
i+1/2.

Case 2b: si ≥ s∗, si+1 > A. See Fig. 6.

Then FG
i+1/2 =


f (s, ci) if σs < 0
f (si, ci) if σs ≥ 0 where σs =

f (s,ci)−f (si,ci)
s−si

.

The DFLU flux is FDFLU
i+1/2 = min{f (min{si, θi}, ci), f (max{si+1, θi+1}, ci+1)}. In this case these two fluxes are not equal, for

example when σs < 0.
One can actually observe that the Godunov flux can actually be calculated with the following compact formula:

Case 1: si < s∗i .

FG
i+1/2 =

f (si, ci) if fs(si+1, ci+1) ≥ 0 or
f (si+1, ci+1)

si+1 + āL(ci+1)
≥

f (si, ci)
si + āL(ci+1)

,

min(f (si, ci), f (si, ci)) otherwise,

where si is given by f (si+1,ci+1)
si+1+āL(ci+1)

=
f (si,ci)

si+āL(ci+1)
.

Case 2: si ≥ s∗i .

FG
i+1/2 =

f (min(si, θi), ci) if fs(si+1, ci+1) ≥ 0 or
f (si+1, ci+1)

si+1 + āL(ci+1)
≥

f (s∗i , ci)
s∗i + āL(ci+1)

,

min(f (si, ci), f (si, ci)) otherwise,

where si is given by f (si+1,ci+1)
si+1+āL(ci+1)

=
f (si,ci)

si+āL(ci+1)
.

4.3. L∞, TV bounds and convergence analysis for the DFLU scheme

We show first L∞ bounds, and TVD bounds will follow immediately. LetM = sups,c{|fs(s, c)|,
f (s,c)
s+a′(c) }.
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Lemma 4.1. Let s0 and c0 ∈ L∞(R, [0, 1]) be the initial data and let {sni } and {cni } be the corresponding solution calculated by
the finite volume scheme (14) using the DFLU flux (15), (17). When λM ≤ 1 then

0 ≤ sni ≤ 1 for all i, n,

∥cn∥∞ ≤ ∥cn−1
∥∞ where ∥cn∥∞ = sup

i
|cni |.

(19)

Proof. Since 0 ≤ s0 ≤ 1 and hence for all i, 0 ≤ s0i ≤ 1. By induction, assume that (19) holds for all n. Let

sn+1
i = sni − λ(F n

i+1/2 − F n
i−1/2)

= H(sni−1, s
n
i , s

n
i+1, c

n
i−1, c

n
i , c

n
i+1).

By (17), it is easy to check that if λM ≤ 1, then H = H(s1, s2, s3, c1, c2, c3) is an increasing function in s1, s2, s3 and by the
hypothesis on f , H(0, 0, 0, c1, c2, c3) = 0,H(1, 1, 1, c1, c2, c3) = 1. Therefore

0 = H(0, 0, 0, cni−1, c
n
i , c

n
i+1)

≤ H(sni−1, s
n
i , s

n
i+1, c

n
i−1, c

n
i , c

n
i+1) = sn+1

i

≤ H(1, 1, 1, cni−1, c
n
i , c

n
i+1) = 1.

This proves 0 ≤ sn+1
i ≤ 1.

To prove bounds for c , consider

(cn+1
i sn+1

i + a(cn+1
i ) − cni s

n
i − a(cni )) + λ(Gn

i+1/2 − Gn
i−1/2) = 0.

Add and subtract the term cni s
n+1
i to the above equation, then we have

cn+1
i (sn+1

i + a′(ξ
n+1/2
i )) − cni (s

n+1
i + a′(ξ

n+1/2
i )) + cni (s

n+1
i − sni ) + λ(Gn

i+1/2 − Gn
i−1/2) = 0

where a(cn+1
i ) − a(cni ) = a′(ξ

n+1/2
i )(cn+1

i − cni ) for some ξ
n+1/2
i between cn+1

i and cni . Then substituting for (sn+1
i − sni ) from

the first equation of (14), since cni F
n
i+1/2 = Gi+1/2, we have

cn+1
i (sn+1

i + a′(ξ
n+1/2
i )) − cni (s

n+1
i + a′(ξ

n+1/2
i )) + λF n

i−1/2(c
n
i − cni−1) = 0.

This is equivalent to

cn+1
i = cni − λ

F n
i−1/2

(sn+1
i + a′(ξ

n+1/2
i ))

(cni − cni−1) (20)

which is the scheme written in the nonconservative form. Let bni = λ
Fni−1/2

(sn+1
i +a′(ξn+1/2

i ))
then

cn+1
i = (1 − bni )c

n
i + bni c

n
i−1 ≤ max{cni , c

n
i−1} if bni ≤ 1.

This proves the second inequality. �

Since cn+1
i is a convex combination of cni and cni−1 if λM ≤ 1, then we obtain the following total variation diminishing

property for cni :

Lemma 4.2. Let {cni } be the solution calculated by the finite volume scheme (14), (15), (17). When λM ≤ 1 then
i

|cn+1
i − cn+1

i−1 | ≤


i

|cni − cni−1| for all n.

Also we have from (20) for λM ≤ 1,
i

|cn+1
i − cni | ≤


i

|cni − cni−1| for all n. (21)

Note that the saturation s need not be of total variation bounded because of f = f (s, c) and c = c(x, t) is discontinuous
(see [31]). The singular mapping technique as in [19] to prove the convergence of {sni } looks very difficult to apply.
However by using the method of compensated compactness, Karlsen, Mishra and Risebro [6] showed the convergence of an
approximated solution in the case of a triangular system. Now we use their results to prove the convergence of {sni }. Their
method of proof of compensated compactness shows that actually they have proved the following.
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Assume that the flux f (v, α) and the function k(x, t) satisfies the following hypothesis:

(1) f (0, α) = f (1, α) = 0 for all α in I .
(2) fvv(v, α) ≠ 0 for all α in I and a.e v in I
(3) There existsM > 0 and a discretization {kni } of k(x, t) exist such that for a subsequence h

(a) {kni } → k in L1loc as h → 0,
(b)


i |k

n+1
i − kn+1

i−1 | ≤ M for all n,

(c)


i |k
n+1
i − kni | ≤ M for all n.

Next we describe the discretization {vn
i } of v corresponding to {kni } as follows:

Let vn
∆(x, t) be a function defined on the strip R × (n∆t, (n + 1)∆t) such that
(vn

∆)t + f (vn
∆, kni )x = 0, (x, t) ∈ (xi− 1

2
, xi+ 1

2
) × (n∆t, (n + 1)∆t),

vn
∆(x, n∆t) = vn

i if x ∈ (xi− 1
2
, xi+ 1

2
),

(22)

f (vn
∆(x−

i+ 1
2
, t), kni ) = f (vn

∆(x+

i+ 1
2
, t), kni ) for t ∈ (n∆t, (n + 1)∆t)

and

vn+1
i =

1
h

 x
i+ 1

2

x
i− 1

2

vn
∆(ξ , (n + 1)∆t) dξ .

Then we have the following result from [6] (see Section 5.2).

Lemma 4.3. Assume that vn
∆ satisfies

(1) 0 ≤ supi |v
n
i | ≤ 1.

(2) vn
∆ satisfies ‘‘minimal jump condition’’ at each interface xi+ 1

2
.

Then there exists subsequences of {kni } and {vn
i } converges respectively to k and v a.e and these limits are the solution of

vt + f (v, k)x = 0
v(x, 0) = v0(x).

(23)

Proof of convergence of sni : Assume further that c0 and f satisfies the following.

(i) c(x, 0) = c0(x) is of bounded variation.
(ii) c → f (s, c) is a non-increasing function.
(iii) fss(s, c) ≠ 0 for all c and a.e s.

Let {cni } be as in Lemma 4.2 and sni be the corresponding solution obtained from DFLU flux (17). Then it follows from the
above hypothesis (ii), sni satisfies the ‘‘minimal jump condition’’ across the interface. Hence by taking

cni = kni and sni = vn
i ,

it follows from (21) and Lemmas 4.2 and 4.3, there exists subsequences of cni and sni converges respectively to c and s. Further
s satisfies

st + f (s, c)x = 0.

Remark. As Eq. (20) for c is in nonconservative form, though the sequence {cni } is L
∞ stable and TVD, it is difficult to prove

the convergence {sni c
n
i } to a weak solution of (sc + a(c))t + (cf (s, c))x = 0 unless, like in [32,33], the concentration c

is Lipschitz continuous or like in [34] fluxes are in the special form. In the presence of viscosity, the convergence of the
Lax–Friedrichs scheme for the polymer flooding model was proved in [35].

4.4. The upstream mobility flux

Petroleum engineers have designed, from physical considerations, another numerical flux called the upstream mobility
flux. It is an ad-hoc flux for two-phase flow in porous media which corresponds to an approximate solution to the Riemann
problem. For this flux Gn

i+1/2 is given again by (15) and F n
i+ 1

2
is given by

F n
i+ 1

2
= FUM(sni , c

n
i , s

n
i+1, c

n
i+1) =

λ∗

1

λ∗

1 + λ∗

2
[ϕ + (g1 − g2)λ∗

2],

λ∗

ℓ =


λℓ(sni , c

n
i ) if ϕ + (gℓ − gi)λ∗

i > 0, i = 1, 2, i ≠ ℓ,
λℓ(sni+1, c

n
i+1) if ϕ + (gℓ − gi)λ∗

i ≤ 0, i = 1, 2, i ≠ ℓ,
ℓ = 1, 2.
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Fig. 8. Comparison with the exact solution of Riemann problem (24), (25): s (left) and c (right) at t = .5 for h = 1/100, λ = 1/4.

4.5. The Lax–Friedrichs flux

In this case fluxes are given by

F n
i+1/2 =

1
2


f (sni+1, c

n
i+1) + f (sni , c

n
i ) −

(sni+1 − sni )
λ


Gn
i+1/2 =

1
2


cni+1f (s

n
i+1, c

n
i+1) + cni f (s

n
i , c

n
i ) −

(cni+1s
n
i+1 + a(cni+1) − cni s

n
i − a(cni ))

λ


.

4.6. The FORCE flux

This flux [3,5], introduced by E.F. Toro, is an average of the Lax–Friedrichs and Lax–Wendroff flux. It is defined by

F n
i+1/2 =

1
4


f (sni+1, c

n
i+1) + f (sni , c

n
i ) + 2f (sn+1/2

i , cn+1/2
i ) −

(sni+1 − sni )
λ


Gn
i+1/2 =

1
4


cni+1f (s

n
i+1, c

n
i+1) + cni f (s

n
i , c

n
i ) + 2cn+1/2

i f (sn+1/2
i , cn+1/2

i ) −
(cni+1s

n
i+1 + a(cni+1) − cni s

n
i − a(cni ))

λ


where

sn+1/2
i =

(sni+1 + sni )
2

−
λ

2
(f (sni+1, c

n
i+1) − f (sni , c

n
i ))

and

sn+1/2
i cn+1/2

i + a(cn+1/2
i ) =

(sni+1c
n
i+1 + sni c

n
i )

2
+

(a(cni+1) + a(cni ))
2

−
λ

2
(cni+1f (s

n
i+1, c

n
i+1) − cni f (s

n
i , c

n
i )).

5. Numerical experiments

To evaluate the performance of the DFLU scheme we first compare its results to an exact solution and evaluate
convergence rates, and then compare it with other standard numerical schemes already mentioned in the previous section,
that are the Godunov, upstream mobility, Lax–Friedrichs and FORCE schemes.

5.1. Comparison with an exact solution

In this section we compare the calculated and exact solutions of two Riemann problems. We consider the following
functions

f (s, c) = s(4 − s)/(1 + c), a(c) = c. (24)

Note that f (0, c) = f (4, c) = 0 for all c and the interval for s is [0, 4] instead of [0, 1]. This choice of f , which does not
correspond to any physical reality, was done in order to try to have a large difference between the Godunov and the DFLU
flux (see second experiment below).
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Fig. 9. Comparison with the exact solution of Riemann problem (24), (25): s (left) and c (right) at t = .5 for h = 1/800, λ = 1/4.

Fig. 10. Comparison with the exact solution of Riemann problem (24), (27): s (left) and c (right) at t = .5 for h = 1/100, λ = 1/4.

Fig. 11. Comparison with the exact solution of Riemann problem (24), (27): s (left) and c (right) at t = .5 for h = 1/800, λ = 1/4.

In a first experiment the initial condition is

s(x, 0) =


2.5 if x < .5,
1 if x > .5 , c(x, 0) =


.5 if x < .5,
0 if x > .5. (25)
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Fig. 12. s (left) and c (right) 2D plot for data (28)–(30).

Table 1
Riemann problem (24), (25): L1-errors between exact and calculated solutions at t = .5.

h Godunov, ∥s − sh∥L1 α DFLU, ∥s − sh∥L1 α

1/50 .2373 .2372
1/100 0.15134 0.6489 0.1506 0.655
1/200 9.6868 × 10−2 0.6437 9.6868 × 10−2 0.6366
1/400 6.4228 × 10−2 0.5928 6.4228 × 10−2 0.5928
1/800 4.2198 × 10−2 0.606 4.2197 × 10−2 0.606

h Godunov, ∥c − ch∥L1 α DFLU, ∥c − ch∥L1 α

1/50 6.3796 × 10−2 6.3796 × 10−2

1/100 4.1630 × 10−2 0.6158 4.1630 × 10−2 0.6158
1/200 2.6669 × 10−2 0.6424 2.6669 × 10−2 0.6424
1/400 1.7398 × 10−2 0.6162 1.7398 × 10−2 0.6162
1/800 1.1522 × 10−2 0.5945 1.1522 × 10−2 0.5945

These f and initial data correspond to the case 2a in Sections 3 and 4.2where the DFLU flux coincideswith the Godunov flux:
FDFLU(sL, sR, cL, cR) = FG(sL, sR, cL, cR) with s∗ = 1.236, A = 2.587, s = .394. The exact solution of the Riemann problem at
a time t is given by

s(x, t) =


2.5 if x < .5 + σ1t
1
2


4 − 1.5


x − .5

t


if .5 + σ1t < x < .5 + σc t

s = .394 if .5 + σc t < x < .5 + σ2t
1. if x > σ2t + .5

, c(x, t) =


.5 if x < .5 + σc t,
0. if x > .5 + σc t

(26)

where σ1 = fs(sL, cL) = −2/3, σc = fs(s∗, cL) =
f (s∗,cL)

s∗+āL(cR)
=

f (s,cR)

s+āL(cR)
= 1.018 and σ2 =

f (s,cR)−f (sR,cR)

s−sR
= 2.606.

Figs. 8 and 9 verify that the DFLU andGodunov schemes give coinciding results. As expected both schemes are diffusive at
c-shocks as well as at s-shocks but as the mesh size goes to zero calculated solutions are getting closer to the exact solution
(see Fig. 9). Table 1 shows L1 errors for s and c and the convergence rate α. Calculations are done with λ =

1
4 (M = 4), that

is the largest time step allowed by the CFL condition.
Nowwewant to have an experiment where the DFLU flux differs from the Godunov flux. Therefore we now consider the

Riemann problem with initial data

s(x, 0) =


2.3 if x < .5,
3.2 if x > .5, c(x, 0) =


.5 if x < .5,
0 if x > .5. (27)

This initial data corresponds to case 2b of Sections 3 and 4.2 with cR = 0, s∗ = 1.236. In this case, the exact solution of the
Riemann problem at a time t is given by

s(x, t) =

sL = 2.3 if x < .5 + σs t
s = 2.7536 if .5 + σs t < x < .5 + σc t,
sR = 3.2 if x > σc t + .5

, c(x, 0) =


.5 if x < .5 + σc t,
0. if x > .5 + σc t,

where σs =
f (sL,cL)−f (s,cL)

sL−s = −.702, and σc =
f (sR,cR)

sR+āL(cR)
= 0.609.
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Fig. 13. s (left) and c (right) calculated at t = 0, t = 1 and t = 1.5 for data (28)–(30).

Figs. 10 and 11 show the comparison of the results obtained with the DFLU and Godunov fluxes with the exact solution.
The solution obtained with the DFLU and Godunov flux are very close even if they do not coincide actually. Table 2 shows
L1 errors for s and c and the convergence rate α. Calculations are done with λ =

1
4 (M = 4), that is the largest time step

allowed by the CFL condition.
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Table 2
Riemann problem (24), (27): L1-errors between exact and calculated solutions at t = .5.

h Godunov, ∥s − sh∥L1 α DFLU, ∥s − sh∥L1 α

1/50 0.10246 0.10373
1/100 5.7861 × 10−2 0.8243 5.8731 × 10−2 0.8206
1/200 3.2849 × 10−2 0.81674 3.3259 × 10−2 0.8203
1/400 1.9152 × 10−2 0.7785 1.9353 × 10−2 0.7811
1/800 1.1489 × 10−2 0.7370 1.1571 × 10−2 0.7420

h Godunov, ∥c − ch∥L1 α DFLU, ∥c − ch∥L1 α

1/50 4.8407 × 10−2 4.8486 × 10−2

1/100 3.0161 × 10−2 0.6825 3.0201 × 10−2 0.6829
1/200 1.9307 × 10−2 0.6435 1.9328 × 10−2 0.6439
1/400 1.2618 × 10−2 0.6136 1.2628 × 10−2 0.6140
1/800 8.4125 × 10−3 0.5848 8.4173 × 10−3 0.5851

5.2. Comparison of the DFLU, upstream mobility, FORCE and Lax–Friedrichs fluxes

In the previous section, we have seen that Godunov and DFLU fluxes give schemes with very close performances. In this
section we compare the DFLU flux with the other fluxes that we mentioned in Section 4 which are the upstream mobility,
FORCE and Lax–Friedrichs fluxes. We take now

f (s, c) = ϕ1 =
λ1(s, c)

λ1(s, c) + λ2(s, c)
[ϕ + (g1 − g2)λ2(s, c)],

λ1(s, c) =
s2

.5 + c
, λ2(s, c) = (1 − s)2, g1 = 2, g2 = 1, ϕ = 0,

a(c) = .25c.

(28)

In all following experiments the discretization is such that ∆t = 1/125 and h = 1/100.

Remark. Even for a total Darcy velocity ϕ ≠ 0, the DFLU scheme works. For the DFLU scheme to work, what one needs is
f (0, c) = c1 for all c ∈ I and f (1, c) = c2 for all c ∈ I , for some constants c1 and c2.

We first consider a pure initial value problem. Initial condition (see top of Fig. 13) is given by

s(x, 0) =


.9 if x < .5,
.1 if x > .5, c(x, 0) =


.9 if x < .5,
.3 if x > .5. (29)

With this initial condition we have FDFLU(sL, sR, cL, cR) = FG(sL, sR, cR, cL) with sL = .9, sR = .1, cL = 1. and cR = .3.
Boundary data are such that

s(0, t) = .9, s(2, t) = .1, c(0, t) = .9, c(2, t) = .3 ∀ t ≥ 0. (30)

In Fig. 12, two dimensional plot in space and time for saturation and concentration is presented for DFLU flux and in
Fig. 13 comparison of DFLU with other fluxes are given at time levels t = 1 and t = 1.5. They show that, as expected,

Fig. 14. s (left) and c (right) 2D plot for data (28), (29) and (31).
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Fig. 15. s (left) and c (right) calculated at t = 1, t = 2 and t = 3 for data (28), (29) and (31).

the DFLU flux, which is the closest to a Godunov scheme, performs better than the other schemes. The upstream mobility
flux, which is an upwind scheme, performs better than the two central difference schemes, the FORCE and Lax–Friedrichs
schemes. Here, in Fig. 13, Fig. 15 and Fig. 16 reference(exact) solution is calculated from DFLU with finer meshes for the
comparison of various schemes.
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Fig. 16. s calculated at t = 1 and t = 3 for same data as in Fig. 15 but without polymer injection.

To confirm these first observationswe consider now a boundary value problem.We just changed the boundary functions,
so instead of boundary conditions (30) we consider now a problem with closed boundaries, that is fluxes are zero at the
boundary:

f ≡ 0 at x = 0 and x = 2 for all t ≥ 0. (31)

They show that, as expected, the DFLU scheme, which is the closest to a Godunov scheme, performs better than the
upstreammobility, the FORCE or the Lax–Friedrichs schemes. The corresponding two dimensional plot in space and time is
presented for DFLU flux in Fig. 14.

The purpose of the last experiment whose results are shown in Fig. 16 is to show the effect of polymer flooding. In
this experiment we remove polymer flooding and take c ≡ 0 at all time. By comparing with the solution shown in Fig. 15
bottom left we observe that as expected the saturation front ismoving faster since there is no retardation due to the increase
of viscosity of the wetting fluid caused by the polymer injection. We also observe that the structure of the solution is
less complex. In the absence of concentration FORCE scheme is closer to Upstream that is it has less diffusion, compare
Figs. 15 and 16. In the presence of concentration, it is diffusive particularly more at the points where concentration c is
discontinuous.

6. Polymer flood model with flux function discontinuous in the space variable

In this section, we extend the previous results to the case where the polymer flooding model has a flux function
discontinuous in the space variable:

st + f (s, c, x)x = 0
(sc + a(c))t + (cf (s, c, x))x = 0

(32)

where x → f (s, c, x) is discontinuous. For simplicity we assume that f has a single discontinuity at x = 0.i.e.,

f (s, c, x) = H(x)fl(s, c) + (1 − H(x))fr(s, c)

where H is a Heaviside function and fl and fr as in Section 1, satisfies the following conditions, for p = l, r

(i) fp(s, c) ≥ 0, fp(0, c) = fp(1, c) = 0 for all c ∈ I .
(ii) The function s → fp(s, c) has exactly one global maximum in I with θp = argmax(fp).
(iii) ∂ fp

∂c (s, c) < 0∀s ∈ (0, 1) and for all c ∈ I .

Equations of type (32) arise while dealing with polymer flooding of oil reservoirs which are heterogeneous [36].

Remark. Since f is discontinuous at x = 0, then the Rankine–Hugoniot condition for system (32) gives

fl(s−, c−) = fr(s+, c+)

c−fl(s−, c−) = c+fr(s+, c+)
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Fig. 17. Flux functions fl(s, cL), and fr (s, cL).

where (s−, c−) and (s+, c+) denotes the left and right values of (s, c) across the line x = 0. This implies

c−
= c+ (33)

so c cannot have a discontinuity across the line x = 0.

The solution to the Riemann problem corresponding to (32) is given in the Appendix. We now present a numerical
experiment to compare the DFLU, the upstream mobility, the FORCE and the Lax–Friedrichs fluxes in the case where the
flux function f is discontinuous in space:

f (s, c, x) = H(x)fl(s, c) + (1 − H(x))fr(s, c)

where H is the Heaviside function and fl and fr are given by

fr(s, c) =
λ1(s, c)

λ1(s, c) + λ2(s, c)
[ϕ + (g1 − g2)λ2(s, c)],

fl(s, c) =
µ1(s, c)

µ1(s, c) + µ2(s, c)
[ϕ + (g1 − g2)µ2(s, c)]

a(c) = .25c

(34)

where

λ1(s, c) =
10s2

.5 + c
, λ2(s, c) = 20(1 − s)2,

µ1(s, c) =
50s2

.5 + c
, µ2(s, c) = 5(1 − s)2, g1 = 2, g2 = 1 and ϕ = 0

(see Fig. 17), with the initial condition

s(x, 0) =


.9 if x < 0,
.1 if x > 0, c(x, 0) =


.9 if x < 0,
.3 if x > 0.

Following [19] the DFLU flux at the interface is given by

F̄(sn
−1, c

n
−1, s

n
1, c

n
1 ) = min{fl(min{sn

−1, θ
n
−1}, c

n
−1), fr(max{sn1, θ

n
1 }, cn1 )}, (35)

where θn
−1 = argmax fl(·, cn−1) and θn

1 = argmax fr(·, cn1 ).
Here we considered the case where the flux functions fl(s, cL) and fr(s, cL) intersect at a point α where ∂ fl(s,cL)

∂s < 0 and
∂ fr (s,cL)

∂s > 0. At θlL and θrL, fl(s, cL) and fr(s, cL) attains their respective maxima. Let θ∗

lL be a point such that fl(θlL, cL) =

fr(θ∗

lL, cL). For the above fl(s, cL) and fr(s, cL), α = .464, sL = .9, sR = .1, cL = .9, cR = .3, θlL = .342 and θ∗

lL = .57
(see Fig. 17). This is an undercompressive intersection as in [19]. As the Lax–Friedrichs and the FORCE schemes are obtained
from a linear parabolic regularization, solutions obtained from them differ from solutions obtained from the upstream
mobility and theDFLU schemes for an undercompressive initial data (see Fig. 18). The Lax–Friedrichs and the FORCE schemes
converge to the weak solution with a (A, B) entropy condition [37] at the interface with A = B = α and the DFLU scheme
and the upstream mobility flux schemes converge to the weak solution with a (A, B) entropy condition at the interface
A = θlL, B = θ∗

lL . In these numerical experiments here, the discretization is such that ∆t = 1/600 and h = 1/50.
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Fig. 18. s (left) and c (right) at t = 1 and t = 2.

7. Conclusion

The DFLU flux defined in [19] for scalar conservation laws was used to construct a new scheme for a class of system
of conservation laws such as systems modeling polymer flooding in oil reservoir engineering. The resulting DFLU flux is
based on Godunov type flux for single conservation laws but with discontinuous coefficients. It is easy to implement as it
is not using detailed information of eigenstructure of the full system. It is very close to the flux given by an exact Riemann
solver and the corresponding finite volume scheme compares favorably to other schemes using the upstream mobility, the
Lax–Friedrichs and the FORCE fluxes. The extension to the case with a change of rock type is straightforward since the DFLU
flux was built to solve this case. It will work even in cases where the upstream mobility fails [20]. Here we assumed, flux
f = f (s, c) is not changing the sign which is equivalent to saying that second eigenvalue in (4) is not allowed to change the
sign. The sign changing case and the extension to system of polymer flooding in multidimensional case will be taken up in
a forth coming paper.
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Appendix. Riemann problem for a polymer flooding model with a discontinuous flux

In this Appendix we briefly describe the construction of the solution to a Riemann problem associated to the system (32)
with the initial condition

s(x, 0) =


sL if x < 0,
sR if x > 0, c(x, 0) =


cL if x < 0,
cR if x > 0. (A.1)

When cL > cR, the flux functions fl and fr satisfy fl(s, cL) ≤ fl(s, cR) and fr(s, cL) ≤ fr(s, cR) for all s in (0, 1). Let θlL, θlR, θrL
and θrR be the points where fl(s, cL), fl(s, cR), fr(s, cL) and fr(s, cR) attain their maxima respectively (see Fig. 19). As there is
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Fig. 19. Flux functions fr (s, cL), fr (s, cR), fl(s, cL) and fl(s, cR) with cL > cR .

no discontinuity in c = c(x, t) across the line x = 0 (see Eq. (33)) and as σ , the speed corresponding to the c-shock, is
strictly positive, in Riemann problems we have

c(0, t) = cL ∀ t > 0.

Here we restrict ourselves to the case cL > cR. The case cL < cR can be treated similarly. To study the Riemann problem,
we split the problem (32) into two problems, one for a scalar conservation law with a discontinuous flux and another for
polymer flooding.

Problem-I:

st + fl(s, cL)x = 0 if x > 0
st + fr(s, cL)x = 0 if x < 0.

(A.2)

The Riemann problem for this equation can be solved as in [38,19].

Problem-II:

st + fr(s, c)x = 0
(sc + a(c))t + (cfr(s, c))x = 0.

(A.3)

The Riemann problem for this system can be solved as in Section 3.
We assume without loss of generality that fl(θlL, cL) ≤ fr(θrL, cL). Let θ∗

lL be a point such that fl(θlL, cL) = fr(θ∗

lL, cL) and let
s∗ ∈ (0, 1) be a point where ∂

∂s fr(s
∗, cL) =

fr (s∗,cL)
s∗+āL(cR)

, with āL(c) defined as in Section 3. Now draw a line through the points
(−āL(cR), 0) and (s∗, fr(s∗, cL)) which intersects the curve fr(s, cR) at a point A ≥ s∗ (see Fig. 19).

• Case 1: sL ≥ θlL
Draw a line through the points (−āL(cR), 0) and (min(s∗, θ∗

lL), fr(min(s∗, θ∗

lL), cL)) which intersects the curve fr(s, cR)
at a point B̄ ≥ s∗. For example if θ∗

lL > s∗ then B̄ = A.
• Case 1a: sR ≤ B̄

Step-1: Let s1(x, t) be the solution of Eq. (A.2) with initial condition

s(x, 0) =


sL if x < 0,
θ∗

lL if x > 0.

Step-2: Let (s2(x, t), c2(x, t)) be the solution of Eq. (A.3) with initial condition

s(x, 0) =


θ∗

lL if x < 0,
sR if x > 0, c(x, 0) =


cL if x < 0,
cR if x > 0.

Then the solution to the Riemann problem (32), (A.1) is given by

(s(x, t), c(x, t)) =


(s1(x, t), cL) if x < 0,
(s2(x, t), c2(x, t)) if x > 0.
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• Case 1b: sR > B̄
Draw a line through the points (−āL(cR), 0) and (sR, , fr(sR, cR)) which intersects the curve fr(s, cL) at a point s̄.
Step-1: Let s1(x, t) be the solution of Eq. (A.2) with initial condition

s(x, 0) =


sL if x < 0,
s̄ if x > 0.

Step-2: Let (s2(x, t), c2(x, t)) be the solution of Eq. (A.3) with initial condition

s(x, 0) =


s̄ if x < 0,
sR if x > 0, c(x, 0) =


cL if x < 0,
cR if x > 0.

Then the solution to the Riemann problem (32), (A.1) is given by

(s(x, t), c(x, t)) =


(s1(x, t), cL) if x < 0,
(s2(x, t), c2(x, t)) if x > 0.

• Case 2: sL < θlL.
Let s∗L be a point such that fr(s∗L , cL) = fl(sL, cL) and ∂

∂s fr(s, cL) at s = s∗L ≥ 0. Draw a line through the points (−āL(cR), 0)
and (min(s∗, s∗L ), fr(min(s∗, s∗L ), cL)) which intersects the curve fr(s, cR) at a point B̄.

• Case 2a: sR ≤ B̄
Step-1: Let s1(x, t) be the solution of Eq. (A.2) with initial condition

s(x, 0) =


sL if x < 0,
s∗L if x > 0.

Step-2: Let (s2(x, t), c2(x, t)) be the solution of Eq. (A.3) with initial condition

s(x, 0) =


s∗L if x < 0,
sR if x > 0, c(x, 0) =


cL if x < 0,
cR if x > 0.

Then the solution to the Riemann problem (32), (A.1) is given by

(s(x, t), c(x, t)) =


(s1(x, t), cL) if x < 0,
(s2(x, t), c2(x, t)) if x > 0.

• Case 2b: sR > B̄.
Draw a line through the points (−āL(cR), 0) and (sR, fr(sR, cR)) which intersects the curve fr(s, cL) at a point s̄.

Step-1: Let s1(x, t) be the solution of Eq. (A.2) with initial condition

s(x, 0) =


sL if x < 0,
s̄ if x > 0.

Step-2: Let (s2(x, t), c2(x, t)) be the solution of Eq. (A.3) with initial condition

s(x, 0) =


s̄ if x < 0,
sR if x > 0, c(x, 0) =


cL if x < 0,
cR if x > 0.

Then the solution to the Riemann problem (32), (A.1) is given by

(s(x, t), c(x, t)) =


(s1(x, t), cL) if x < 0,
(s2(x, t), c2(x, t)) if x > 0.
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