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Abstract

A block matrix analysis is proposed to justify, and modify, a known algorithm
for computing in O(n) time the determinant of a nonsingular n×n pentadiag-
onal matrix (n ≥ 6) having nonzero entries on its second subdiagonal. Also,
we describe a procedure for computing the inverse matrix with acceptable
accuracy in O(n2) time. In the general nonsingular case, for n ≥ 5, proper
decompositions of the pentadiagonal matrix, as a product of two structured
matrices, allow us to obtain both the determinant and the inverse matrix by
exploiting low rank structures.
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1. Introduction

A nonsingular n × n matrix P = {pij}1≤i,j≤n is pentadiagonal if pi,j = 0
for |i − j| > 2. These play an important role in contemporary numerical
analysis. They arise frequently in numerical methods for solving ordinary
and partial differential equations, interpolation schemes, and spline problems,
[1]. Also, pentadiagonal matrices appear in fine approximations of second
order derivatives, and in boundary value problems involving fourth order
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derivatives. Gaussian methods with partial pivoting are usually used for
the inversion of such matrices. However, these methods can destroy the
low rank structure and sparsity of pentadiagonal matrices; e.g. by row-
interchange operations. Therefore, specialized techniques adapted to the low
rank structure of pentadiagonal matrices are of interest.

Some specific parallel and sequential algorithms for the inversion of pen-
tadiagonal matrices are already known. A recursive procedure for calculating
in O(n2) time the inverse matrix P−1 of a pentadiagonal matrix P having
nonzero entries on its second superdiagonal, pi,j ̸= 0 for j − i = 2, was given
in [2]. In [3] there was proposed a different sequential procedure, having
computational complexity O(n2), for pentadiagonal matrices having an LU
(Doolittle) factorization.

Fast numerical algorithms for computing the determinants of pentadiag-
onal matrices are also needed to test efficiently for the existence of unique
solutions of partial differential equations, and for solving the inverse problem
of constructing symmetric pentadiagonal Toeplitz matrices. Some methods
having complexity O(n) have been obtained; see e.g. [4, 5, 6, 7, 8]. Building
upon such results, in Section 2 we introduce a block matrix analysis to justify,
in terms of matrix cofactors, the algorithm given in [6] for computing with
complexity O(n) the determinant, detP, of a pentadiagonal matrix having
nonzero entries on its second subdiagonal. This kind of matrix is currently
used in numerical methods. Since it is not hard to do, we find it convenient
subsequently to adapt this algorithm to compute in O(n2) time the entire
inverse matrix P−1, up to an acceptable accuracy. Analogous results can also
be obtained for pentadiagonal matrices with nonzero entries on their second
superdiagonals.

A specific procedure for computing both the determinant and the inverse
of any nonsingular pentadiagonal matrix P, taking advantage of its low rank
structure, with no further conditions on its entries, remains an open question.
In Section 3 we propose factorizations appropriate for the general nonsingu-
lar case where the pentadiagonal matrix P is decomposable as a product of
two structured matrices; e.g. upper Hessenberg matrices (see also [9]). This
enables us to exploit the low rank structure of (sparse) structured matri-
ces, including triangular, tridiagonal, and Hessenberg matrices, to compute
both the determinant, detP, and the inverse P−1. Illustrative comparisons,
examples, and remarks are also presented.
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2. Pentadiagonal matrices having nonzero entries on their second
subdiagonals.

For an n × n (n ≥ 6) nonsingular pentadiagonal matrix with nonzero
entries on its second subdiagonal we assume the 2× 2 block structure,

P =

(
P11 02

U P22

)
. (1)

The submatrices P11 and P22 have dimensions 2 × n − 2 and n − 2 × 2,
respectively. The matrix 02 is the 2 × 2 zero matrix. The n − 2 × n − 2
nonsingular matrix U is upper triangular. The transposed partition,

P−1 =

(
−U−1P22M21 U−1 + U−1P22M21P11U

−1

M21 −M21P11U
−1

)
, (2)

of its inverse is well known; see e.g. [10]. Here, M21 = 1
detP

(
C1,n−1 C2,n−1

C1,n C2,n

)

is calculated using the classical Cayley cofactor formula for the inverse. The
Ci,j are cofactors of P. Therefore, the inverse matrix

P−1 =

(
−U−1P22

I2

)
M21

(
I2 −P11U

−1
)

+

(
0n,2 U−1

02 02,n

)
, (3)

can be seen as a rank two perturbation of a strictly upper triangular matrix,
[10]. All the information required for the inversion of P is contained in the
submatrices M21 and U−1. As a result, we can calculate P−1 using simple
matrix products as in (3).

2.1. Computing the determinant in O(n) time

A compact expression for calculating the determinant of a nonsingular
pentadiagonal matrix having nonzero entries on its second superdiagonal was
given in [6]. It also applies to a matrix having nonzero entries on its second
subdiagonal. A sequential algorithm for computing detP with complexity
O(n) was also given. In order to justify, in terms of a computation using
matrix cofactors, the formula for detP given in [6], we introduce a second
pentadiagonal matrix, P∗, associated with P and having ones on its second
subdiagonal. A variant of this related algorithm, together with (3), allows
us to compute the full inverse matrix P−1.
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Proposition 1. Let P be an n×n (n ≥ 6) nonsingular pentadiagonal matrix
having nonzero entries on its second subdiagonal. With P we associate the

matrix P∗ = P · diag
(

1
p31

, 1
p42

, · · · , 1
pn,n−2

, 1, 1
)
. The determinant of P is

given by

detP =

(
n−2∏

k=1

pk+2,k

)
det

(
C∗

1,n−1 C∗
2,n−1

C∗
1n C∗

2n

)
, (4)

where the C∗
ji are cofactors of the matrix P∗. Moreover, detP can be com-

puted in O(n) time.

Proof. First, we note that detP =
(∏n−2

k=1 pk+2,k

)
detP∗. Then we must

demonstrate that detP∗ = det

(
C∗

1,n−1 C∗
2,n−1

C∗
1n C∗

2n

)
. The matrix P∗ is pen-

tadiagonal, with ones on its second subdiagonal.
Partitioning P∗ as in (1) and P∗−1 as in (2), we obtain a partition of the

identity matrix In, where (P∗P∗−1)11 = I2. That is, −P∗
11U

∗−1P22M
∗
21 = I2.

Since the matrix U∗ in (1) is upper triangular with ones on its main diagonal,
applying the nullity theorem [11], we conclude that the 2 × 2 matrix entry
M∗

21, in the transposed partition of P∗−1, is nonsingular. Therefore, we have

1

detP∗

(
C∗

1,n−1 C∗
2,n−1

C∗
1n C∗

2n

)
= M∗

21 =
(
−P∗

11U
∗−1P22

)−1
. (5)

Furthermore, we have detP∗ = det

(
P∗

11 02

U∗ P22

)
. Although the combina-

torial Laplace formula for computing determinants can be used to calculate
detP∗, we give a simpler proof using the Schur complement of a matrix.
Since (

P∗
11 02

U∗ P22

)
=

(
0 I2

In−2 0

)(
U∗ P22

P∗
11 02

)
,

we have detP∗ = det

(
U∗ P22

P∗
11 02

)
. The calculation of this determinant

is immediate using the Schur complement P∗/U∗ = 02 − P∗
11U

∗−1P22 =
−P∗

11U
∗−1P22, of the matrix P∗ with respect to U∗. There results

detP∗ = detU∗ det
(
−P∗

11U
∗−1P22

)
= det

(
P∗

11U
∗−1P22

)
. (6)

Taking determinants in (5), and using (6), detP∗ = det

(
C∗

1,n−1 C∗
2,n−1

C∗
1n C∗

2n

)
.
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Order Matlabr ET AHE ET Matlabr AHE Sogabe
27 0.96e-04 0.68e-04 0 0 NaN
34 2.33e-04 1.22e-04 0 0 NaN
41 1.75e-04 0.90e-04 1 1 NaN
48 2.57e-04 1.22e-04 0 0 NaN
55 2.03e-04 0.89e-04 1 1 NaN

Table 1: Comparison of the time elapsed ET (in seconds) using the different algorithms
for the computation of the determinant of a pentadiagonal matrix P with entries pij = 1,
for |i− j| ≤ 2, and pij = 0 otherwise.

The given cofactors of the matrix P∗ are related with determinants of
sparse upper Hessenberg matrices with ones on their subdiagonal entries. In
addition, the involved cofactors are co-recurrent; i.e. they can be computed
with the same 5-th order linear recurrence relation. Therefore, we can use a
well-known recursive relation to compute such determinants with complexity
O(n).

Remark 1. The determinantal formula for P can be derived directly using
(1) and P/U, the Schur complement of P with respect to U, i.e. detP =

detU det (P/U) =
(∏n−2

k=1 pk+2,k

)
det

(
C1,n−1 C2,n−1

C1n C2n

)
. Nevertheless, the

equivalent expression (4), with the cofactors of the matrix P∗, is better for
further computations.

Given P, we must compute 13n quotients and products (plus 6n sums) to
obtain detP; 4n quotients to obtain P∗, n products to obtain the entries on
the second subdiagonal, and 8n products (plus 6n sums) to compute the co-
factors from (4). The adapted Hadj-Elouafi algorithm (AHE) for computing
detP is described in Appendix A.

Example 1. We compare the performance of the AHE algorithm with that
of the built-in Matlabr function det() and the commonly used Sogabe algo-
rithm [7], in the computation of the determinant of a pentadiagonal matrix
P with entries pij = 1, for |i − j| ≤ 2, and pij = 0 otherwise. The Sogabe
algorithm breaks down because some principal submatrices are singular. The
AHE procedure also works for singular pentadiagonal matrices with nonzero
entries on their second subdiagonals. The numerical results are summarized
in Table 1.
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Order Matlabr ET AHE ET Sogabe ET Value Sogabe
27 1.04e-04 1.25e-04 1.17e-04 1.44e+12 NaN
34 1.71e-04 1.42e-04 0.61e-04 3.85e+13 3.85e+13
41 1.97e-04 1.59e-04 1.12e-04 3.50e+17 NaN
48 2.34e-04 1.61e-04 0.63e-04 1.71e+21 1.71e+21
55 2.96e-04 1.37e-04 0.61e-04 -4.83e+23 -4.83e+23

Table 2: Numerical values given by the algorithms for the times elapsed ET (in seconds)
in the computation of the determinant of a pentadiagonal matrix P with random integer
entries pij for |i− j| ≤ 2 (and with nonzero entries on its second subdiagonal), and pij = 0
otherwise. Although the Sogabe algorithm is faster, it fails frequently.

Example 2. We make another comparison by computing the determinant
of a pentadiagonal matrix P, with entries pij that are random integers in
the interval [−3 , 3] for |i − j| ≤ 2 (and with nonzero entries on its second
subdiagonal), and pij = 0 otherwise. The Sogabe algorithm is faster, but it
fails frequently. The Matlabr and AHE algorithms always work, and yield
equivalent outcomes. The numerical results are summarized in Table 2.

2.2. Computing the inverse in O(n2) time

A fast recursive algorithm for computing with complexity O(n2) the in-
verse matrices of this kind of nonsingular pentadiagonal matrices was pro-
posed in [2]. When the matrix size increases, the accuracy of such an algo-
rithm might be inadequate because of the recurrence formulas involved; see
e.g. [12].

We can propose an alternative procedure building a new recursive algo-
rithm for obtaining M21 and P∗ using the algorithm from Appendix A (which
is based on Proposition 1). Then, we can compute the remaining entries of
the inverse matrix via recurrence formulas, using a procedure similar to that
used in [2]. Indeed, we calculate M21 and P∗ in order to compute the first and
second columns of the inverse matrix P−1 using recurrence formulas. The
remaining columns are obtained in a recursive way, as in the algorithm in
[2]. Nevertheless, this alternative procedure suffers from the same drawback
regarding the accuracy of the outcomes as the algorithm from [2].

Example 3. This difficulty is illustrated in Table 3 which records the mean
values, over 100 trials, for the times elapsed and the norms related with
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Matrix Hadj-Elouafi Proposed Hadj-Elouafi Proposed
order Elapsed time Elapsed time ||P·P−1 − In||2 ||P·P−1 − In||2
24 1.69e-04 1.99e-04 1.46e-08 2.96e-07
30 1.70e-04 2.33e-04 1.73e-06 7.32e-07
36 2.28e-04 3.32e-04 1.76e-02 1.50e-05
42 2.28e-04 2.31e-04 1.10e-01 6.26e-04
48 2.44e-04 2.38e-04 1.54e-02 2.78e-02
54 2.89e-04 2.70e-04 4.32e+01 1.08e+00

Table 3: Mean values of the times elapsed (in seconds) and norms
∣∣|P·P−1 − In

∣∣|2, over
100 trials, of the two procedures from Example 3 for inverting a pentadiagonal matrix P
with random integer entries pij from the interval [−2 , 3] for |i− j| ≤ 2 (and with nonzero
entries on its second subdiagonal), and pij = 0 otherwise. Although both procedures are
fast, the lack of accuracy is remarkable.

the largest singular value of the matrices P·P−1 − In, the matrix 2-norm
||P·P−1 − In||2. We have compared both the Hadj-Elouafi algorithm and the
alternative procedure proposed above for the inversion of a pentadiagonal ma-
trix P with random integer entries pij from the interval [−2 , 3] for |i−j| ≤ 2
(and with nonzero entries on its second subdiagonal), and pij = 0 otherwise.

The procedure for computing detP given in Appendix A, and justified in
Proposition 1, can also be used to compute the submatrices M21 and U−1

in (3) in a more accurate way. Recall that such matrices provide complete
information about the inverse P−1. It is not difficult to see that M21 =

1
detP

(
C1,n−1 C2,n−1

C1n C2n

)
= 1

detP∗

(
C∗

1,n−1 C∗
2,n−1

C∗
1n C∗

2n

)
. Consequently, we can

compute M21 with complexity O(n) by using the algorithm from Appendix
A. In addition, we can obtain the unit upper triangular submatrix P∗(3 :
n, 1 : n−2) (consisting of the rows 3, 4, · · · , n and the columns 1, 2, · · · , n−2
of P∗) using the same algorithm. This sparse matrix is useful for computing
the matrix U−1 by forward substitution; see e.g. [13, 14]. We can compute
U−1 in O(n2) time. That is, given that the matrix P∗(3 : n, 1 : n−2) has been
computed in O(n) time, the main cost in determining U−1 with enhanced
accuracy is 2n2 + O(n) flop counts for the products, plus 3

2
n2 + O(n) flop

counts for the sums. Therefore, the inverse matrix can be computed from
M21 and U−1 in O(n2) time using (3). However, when the size of the matrix
grows, the accumulated round-off errors of the products of matrices in (3)
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Order 24 30 36 42 48 54
ET 1.71e-04 1.83e-04 2.26e-04 2.15e-04 2.66e-04 2.77e-04

Norm 9.05e-13 3.33e-12 5.76e-11 1.38e-10 1.34e-09 6.53e-08

Table 4: Mean values of the time elapsed ET (in seconds) and norm =
∣∣|U·U−1 − In−2

∣∣|2,
over 100 trials, using the algorithm from Appendix B to obtain more accurate information
about the full inverse of a random pentadiagonal matrix P, as in Example 3.

need to be controlled; see e.g. [12].

Example 4. The performance of the algorithm from Appendix B is recorded
in Table 4, which gives us the mean values of the time elapsed (in seconds) and
norm ||U·U−1 − In−2||2, over 100 trials, in the computation of the inverse
of a pentadiagonal matrix, as in Example 3. The outcomes are now more
accurate.

Remark 2. The procedure detailed in Appendix B for computing the ma-
trices M21 and U−1 helps explain the motivation for introducing the AHE
algorithm. The sparse matrix P∗(3 : n, 1 : n − 2) is unit upper triangular.
Hence, the matrix U−1 is obtained by a simple forward substitution scheme.

3. Nonsingular pentadiagonal matrices. The general setting.

In a general situation specific procedures are required to compute the
inverse of a nonsingular pentadiagonal matrix P for which no further con-
ditions are imposed on its entries, e.g. when the low rank structure of the
pentadiagonal matrix is broken by using LU methods with row-interchange
operations. Such a general procedure for computing both the determinant
and the inverse of a general nonsingular pentadiagonal matrix P is not yet
available. We propose here appropriate factorizations of P as a product
of two nonsingular structured matrices with ranks lower than P. Such de-
compositions allow us to use well-known methods for preserving low rank
structures in the inversion of the involved matrices; see e.g. [15, 16, 17].

The subdiagonal rank of an n × n matrix M is defined as sr(M) =
max rank {M(i : n , 1 : i− 1) : i = 2, 3, · · · , n}; see [9] and references therein.
In an analogous way, the superdiagonal rank of an n × n matrix M is de-
fined as Sr(M) = max rank {M(1 : i , i + 1 : n) : i = 1, 2, · · · , n− 1}. For a
pentadiagonal matrix P the subdiagonal rank sr(P) is at most 2. The case
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sr(P) = 1 implies that P is also a generalized Hessenberg matrix. This case
has been considered in [9]. The structured matrices involved in the factor-
izations of P will be chosen in such a way that their subdiagonal ranks are 1.
This is also true for the transposed factorization of the inverse matrix P−1,
[9].

Furthermore, we assume that a general n× n (n ≥ 5) nonsingular penta-
diagonal matrix P has the 2× 2 block matrix partition

P =

(
R 0
H C

)
. (7)

Here R is a 1× n− 1 row matrix, C is an n− 1× 1 column matrix, and the
n− 1× n− 1 matrix H = P(2 : n, 1 : n− 1) is upper Hessenberg.

3.1. Submatrix H having an LHUH (Doolittle) factorization
Before the introduction of the general case, we consider the important

special case when the submatrix H in (7) has an LHUH factorization.

Proposition 2. Let P be an n×n (n ≥ 5) nonsingular pentadiagonal matrix.
We assume that, in the block partition (7), the submatrix H has an LHUH

factorization. Then, there exists a decomposition of P of the form

P = LHU =

(
1 0T

n−1

0n−1 LH

)(
R 0
UH LH

−1C

)
, (8)

with L a unit lower triangular matrix such that sr(L) = 1, and HU an upper
Hessenberg matrix with sr(HU) = 1.

Proof. With the given assumptions, the existence of the factorization (8) is
immediate. If we take the product of matrices, we obtain the block matrix P
as in (7). Note that the LHUH factorization of the sparse upper Hessenberg
matrix H can be obtained trivially.

The matrices L and HU are nonsingular because we assume that the
matrix P is nonsingular. Since HU is upper Hessenberg, sr(HU) = 1. Fur-
thermore, it is not difficult to check that sr(L) = sr(LH) = sr(H) = 1.

When the Hessenberg submatrix H is nonsingular, the LHUH factoriza-
tion has a unit lower triangular matrix LH. The matrix L is also unit and
the upper Hessenberg matrix HU is unreduced; i.e. with nonzero entries on
its first subdiagonal. When H is singular, with an LHUH factorization that
need not be unique, the lower triangular matrix LH can be taken to be non-
singular, with unit determinant. Hence, the matrix L is also unit, but now
the matrix HU is reduced.
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3.1.1. Nonsingular submatrix H

If the submatrix H in (7) is nonsingular and has nonzero entries on its
main diagonal, we can obtain a factorization equivalent to (8), without using
the LHUH factorization of H. Indeed, we define H = L∗HU∗

H , where L∗H
is lower triangular with diagonal and subdiagonal entries equal to those of
H. The matrix U∗

H is upper triangular, for U∗
H = L∗−1

H H. Here the inverse
matrix L∗−1

H is easy to compute.

Example 5. Suppose given the pentadiagonal matrix

P=




1 1 0 0 0
1 1 1 1 0
−1 1 1 1 1
0 0 1 1 1
0 0 −1 1 1




=




1 0 0 0 0
0 1 0 0 0
0 −1 1 0 0
0 0 0 1 0
0 0 0 −1 1







1 1 0 0 0
1 1 1 1 0
0 2 2 2 1
0 0 1 1 1
0 0 0 2 2




,

which admits no LU factorization. Here, the submatrix H in (7) is non-
singular, and has an LHUH factorization. Instead of the LHUH factoriza-
tion of H, we have used the matrices defined above. The determinant is
detP = detHU = 4. The transposed factorization of the inverse matrix P−1

is

P−1=




1
2

1
2

−1
2

1
2

0
1
2

−1
2

1
2

−1
2

0
0 0 0 1 −1

2

−1 1 0 −1 1
2

1 −1 0 1 0







1 0 0 0 0
0 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 1 1




.

Remark 3. When the nonsingular submatrix H in (7) has nonzero entries on
its main diagonal, the LHUH factorization of H is crucial for the existence of
a factorization of the pentadiagonal matrix P = LHU . The reader can easily

check that the matrix P=




1 1 0 0 0
1 1 1 −1 0
1 1 2 −1 1
0 1 1 1 1
0 0 0 1 −1




has neither a factorization

as in Example 5 nor as in Proposition 2, because the nonsingular submatrix
H has no LHUH factorization.
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3.1.2. Singular submatrix H

An n× n matrix M in the algebra of square matrices, Mn(K) (K = R or
C), has a unique LU factorization if and only if its k×k principal submatrices
have full rank; k = 1, 2, · · · , n − 1. Applying this fact when the submatrix
H in (7) is singular, it follows that its LHUH factorization (if it exists) is
not necessarily unique. Furthermore, when the singular submatrix H has
a unique LHUH factorization, we cannot decompose H as a product H =
L∗HU∗

H because H does not have full rank. Hence, if H is singular, with an
LHUH factorization, we use the decomposition (8).

Example 6.

P=




1 1 0 0 0
1 1 1 0 0
0 2 1 1 1
0 1 1 1 2
0 0 1 1 1




=




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 1

2
1 0

0 0 0 2 1







1 1 0 0 0
1 1 1 0 0
0 2 1 1 1
0 0 1

2
1
2

3
2

0 0 0 0 −2




.

Note that we cannot obtain a factorization, with H = L∗HU∗
H as in Example

5.

3.2. The general setting

When the partitioned pentadiagonal matrix P from (7) does not ad-
mit the decomposition (8), its submatrix H has rank deficiency; i.e. H
does not satisfy the known n − 1 conditions, rank {H(1 : i, 1 : i)} + i ≥
rank {H(1 : i, 1 : n− 1)}+rank {H(1 : n− 1, 1 : i)}, and i = 1, 2, · · · , n−1.
That is, H has no LHUH factorization. To overcome this nontrivial difficulty,
and taking into account that H is upper Hessenberg, we propose a general
factorization H = H∗U∗, where the nonsingular matrix H∗ is upper Hes-
senberg, and the matrix U∗ is upper triangular. This factorization covers
all possible rank deficiency situations and gives rise to the following general
decomposition (as a product of two matrices with subdiagonal rank 1) for a
fully general pentadiagonal matrix.

Theorem 1. Let P be a general n × n (n ≥ 5) nonsingular pentadiagonal
matrix partitioned as in (7). Then, P has a decomposition

P =

(
1 0T

n−1

0n−1 H∗

)(
R 0
U∗ H∗−1C

)
, (9)

as a product of two upper Hessenberg matrices, where

11



a) H∗ = H and U∗ = In−1, for nonsingular H.

b) H∗U∗ = H, for singular H .

Proof. In case a), when the submatrix H is nonsingular, the claim is trivial.
In case b), when H is singular, the existence of such a factorization follows
from the fact that we can find a nonsingular upper Hessenberg matrix H∗,
with the same subdiagonal and diagonal entries than H. The upper half of
H∗ can be chosen in such a way as to give the factorization H∗U∗ = H. The
upper triangular matrix U∗ = H∗−1H is singular. The subdiagonal rank of
the upper Hessenberg matrix is obviously 1.

Although alternative procedures have been proposed, this factorization
also applies to a nonsingular pentadiagonal matrix having nonzero entries
on its second subdiagonal, or having a submatrix H admitting an LHUH

factorization.

3.2.1. Nonsingular submatrix H

The factorization for the pentadiagonal matrix P given in (9) when the
matrix H = P(2 : n, 1 : n− 1) is nonsingular (case a)) yields

P =

(
1 0T

n−1

0n−1 H

)(
R 0

In−1 H−1C

)
. (10)

For convenience, we assume that H is reduced; i.e. H has some null entries on
its subdiagonal. The method is also applicable when H is unreduced, but see
also the methods described in Section 2. The determinant of the Hessenberg
matrix on the left of (10) is detH. For computing the determinant of the
Hessenberg matrix on the right of (10) we define a column vector, X = H−1C,
of size n−1. We obtain the value (−1)n(r1x1+r2x2+r3x3), e.g. by expanding
the determinant along the last column of the matrix. Therefore, we have

detP = (−1)ndetH· (r1x1 + r2x2 + r3x3) . (11)

There is no difficulty in obtaining the transposed factorization

P−1 =

(
αX In−1 − αXR
−α αR

)(
1 0T

n−1

0n−1 H−1

)
, (12)

for the inverse matrix, where we defined α = 1
r1x1+r2x2+r3x3

.
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A simple matrix product allows us to decompose the inverse matrix

P−1 = −α

(
−H−1C

1

)(
1 −RH−1

)
+

(
0n−1 H−1

0 0T
n−1

)
(13)

as a rank one perturbation of a (singular) block upper triangular matrix; see
also (3). In this way we obtain the needed information about the inverse
matrix P−1 by inverting the (sparse) upper Hessenberg matrix H.

Example 7. We illustrate the preceding with the pentadiagonal matrix P
admitting no LU factorization, described in Remark 3. Its submatrix H is
nonsingular and admits no LHUH factorization. We have α = −1

2
. Its

determinant is detP = (−1)5·detH·(−2) = −2, by (11). The decomposition
(13) for the inverse matrix yields

P−1 =
1

2




3
−1
−1
1
1



(

1 −2 1 0 −1
)

+




0 1 0 −1 2
0 1 −1 1 −1
0 −1 1 0 0
0 0 0 0 1
0 0 0 0 0




.

3.2.2. Singular submatrix H

When the submatrix H = P(2 : n, 1 : n− 1) is singular, the factorization
of the pentadiagonal matrix P from (9) (case b)) yields

P =

(
1 0T

n−1

0n−1 H∗

)(
R 0
U∗ H∗−1C

)
. (14)

The upper Hessenberg matrix H∗ can be taken to be nonsingular, with the
same subdiagonal and diagonal entries as H. Its related upper triangular
matrix U∗ must be singular. Note that in general such a factorization is not
unique. Sometimes the matrix H∗ can be taken tridiagonal. Then as a rule,
we include in the superdiagonal as many zeros as possible, while preserving
the nonsingularity of the matrix H∗. This simplifies the inversion of the
tridiagonal matrix; see e.g. [17].

The matrices involved in the factorization (14) are block (diagonal and up-
per triangular) matrices, with triangular, tridiagonal, or Hessenberg matrix
entries on their diagonals. The determinants of such structured matrices are
easily obtained using well-known recurrence relations. Consequently, detP
can be computed as a product of determinants.
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Remark 4. In the general case, the nonsingular submatrix H∗ must be taken
to be upper Hessenberg. This necessity is related to the superdiagonal rank of
the submatrix H, Sr(H), as we observe in the next example.

Example 8. First, we illustrate (14) by factoring a pentadiagonal matrix P
admitting no LU factorization,

P =




2 1 1 0 0
0 1 1 0 0
1 1 1 1 1
0 0 1 1 2
0 0 1 1 1




=




1 0 0 0 0
0 0 1 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 1 1







2 1 1 0 0
1 0 0 1 1
0 1 1 0 0
0 0 1 1 2
0 0 0 0 −1




.

Note that Sr(H) = 2. The nonsingular matrix H∗ can be taken to be tridi-
agonal and reduced. We have detP = (1·(−1)·1) (2·(−1)) = 2 using the
block diagonal entries. The transposed factorization for the inverse P−1 is
straightforward. However, for the pentadiagonal matrix,

P =




2 1 1 0 0
1 1 1 1 0
1 1 1 1 1
0 1 1 1 1
0 0 1 1 2




=




1 0 0 0 0
0 1 1 1 0
0 1 1 1 1
0 0 1 1 1
0 0 0 1 1







2 1 1 0 0
1 0 0 0 0
0 1 0 0 −1
0 0 1 1 1
0 0 0 0 1




,

with Sr(H) = 1, the factorization (14) does not admit a nonsingular tridiag-
onal matrix on the left. We can compute easily both detP and the transposed
factorization of the inverse matrix P−1 by exploiting low rank structures.

Remark 5. Various procedures can be proposed for computing the deter-
minants and inverse matrices of nonsingular pentadiagonal matrices having
factorizations as in (8) or (9). This can be useful in the inversion of pen-
tadiagonal matrices admitting no LU factorization, where row-interchange
operations are compulsory and the low rank structure of the pentadiagonal
matrices is destroyed.
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Appendix A. The adapted Hadj-Elouafi algorithm

Algorithm 1. The adapted Hadj-Elouafi algorithm, AHE, for computing
the determinant of a pentadiagonal matrix P having nonzero entries on its
second subdiagonal.

Input: The matrix P and its order n.

Output: The determinant, detP.

Step 1: Obtain P∗ and the product =
(∏n−2

k=1 pk+2,k

)
.

product = 1;
for j = 1 : n− 2
product = pj+2,j·product;

for i = j − 2 : j + 1
p∗ij =

pij

pj+2,j
;

end
end

Step 2: Obtain the involved cofactors and detP∗ using recurrences.

C∗
0,1 = 1; C∗

0,2 = 1; C∗
1,1 = p∗21; C∗

1,2 = p∗11;

Compute C∗
j,1 and C∗

j,2, 2 ≤ j ≤ 4, using recurrences.

for j = 5 : n− 2

C∗
j,1 = p∗j+1,j·C∗

j−1,1−p∗jj·C∗
j−2,1+p∗j−1,j·C∗

j−3,1−p∗j−2,j·C∗
j−4,1;

C∗
j,2 = p∗j+1,j·C∗

j−1,2−p∗jj·C∗
j−2,2+p∗j−1,j·C∗

j−3,2−p∗j−2,j·C∗
j−4,2;

end

Compute C∗
j,1 and C∗

j,2, n− 1 ≤ j ≤ n;

detP∗ = C∗
n−1,1·C∗

n,2 − C∗
n,1·C∗

n−1,2;

Step 3: Obtain detP using expression (4).

detP = product· detP∗.

Appendix B. Algorithm for computing the matrices M21 and U−1.

Algorithm 2. To compute the matrices M21 and U−1 from (3). These
matrices supply the information necessary for inverting a nonsingular penta-
diagonal matrix P having nonzero entries on its second subdiagonal.
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Input: The matrix P and its order n.

Output: The matrices M21 and U−1.

Step 1: Compute the matrices M21 and P∗(3 : n, 1 : n− 2).

Step 2: Compute the matrix U−1 using a forward substitution scheme.

for i = 1 : n− 2

u−1
ii = p∗i+2,i;

end

u−1
12 = −u−1

11 ·p∗32;

u−1
13 = −u−1

11 ·p∗33 − u−1
12 ·p∗43; u−1

23 = −u−1
21 ·p∗33 − u−1

22 ·p∗43;

for i = 1 : 3

u−1
i4 = −u−1

i1 ·p∗34 − u−1
i2 ·p∗44 − u−1

i3 ·p∗54;

end

for j = 5 : n− 2, for i = 1 : j − 1, u−1
ij = 0;

for k = j − 4 : j − 1

u−1
ij = u−1

i,k ·p∗k+2,j + u−1
ij ;

end, u−1
ij = −u−1

ij ;

end, end
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