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Estimating the Gerber-Shiu function in a Lévy risk model by Laguerre

series expansion

Zhimin Zhang∗, Wen Su

April 27, 2018

Abstract

In this paper, we provide a new method for estimating the Gerber-Shiu function in a pure jump
Lévy risk model. First, we show that the Gerber-Shiu function can be expressed on the Laguerre basis
and the Laguerre coefficients can be easily obtained by solving a linear system. Next, based on a
high-frequency observation of the aggregate claims process, we estimate the Laguerre coefficients and
this leads a new estimator of the Gerber-Shiu function. We derive the consistency property of this
estimator when the sample size is large. Finally, we do some simulation studies to illustrate the finite
sample size performance.

Keywords: Gerber-Shiu function, Estimate, Lévy risk model, Laguerre series.

1 Introduction

In this paper, we suppose that the surplus flow of an insurance company evolves as a Lévy process

Ut = u+ ct−Xt, t ≥ 0, (1.1)

where u ≥ 0 is the initial surplus level, and c > 0 is the constant premium rate. The process X =
{Xt}t≥0 with X0 = 0, representing the aggregate claims up to time t, is a pure-jump Lévy process. The
characteristics of X are uniquely determined by the Laplace exponent which is defined by

ψ(s) :=
1

t
ln E[e−sXt ] =

∫ ∞

0

(
e−sx − 1

)
ν(x)dx, s ≥ 0, (1.2)

where ν is a Lévy density supported on (0,∞) satisfying the usual condition
∫∞
0 (1 ∧ x2)ν(x)dx < ∞.

For k = 1, 2, . . ., define µk =
∫∞
0 xkν(x)dx, provided that these integrals are finite. In order to ensure

that the surplus process has a positive drift with probability one, we suppose the following condition.
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Condition A.1 (net profit condition)

The premium rate c > µ1. (1.3)

It is known that Condition A.1 ensures that the surplus process {Ut} has a positive drift w.r.t. t,
however, it is also possible that the surplus level becomes negative sometimes due to some large claim
sizes. We define the ruin time by

τ = inf{t > 0 : Ut < 0}
with the convention inf ∅ = ∞. The widely used risk measure to study ruin related quantities is the
Gerber-Shiu discounted penalty function (Gerber and Shiu (1998)),

ϕ(u) = E[e−δτw(Uτ−, |Uτ |)1(τ<∞)|U0 = u], u ≥ 0, (1.4)

where δ ≥ 0 is the interest force, 1(A) is the indicator function of an event A, and w is a nonnegative
function defined on [0,∞) × (0,∞).

The Gerber-Shiu function is an important tool for studying ruin related quantities, such as the time
to ruin, the surplus before and after ruin. Recently, a lot of contributions to the Gerber-Shiu function
and its generalization have been made in various risk models. See e.g. Asmussen and Albrecher (2010).
In risk theory, the Lévy process is a popular class of stochastic processes to model the surplus flow of the
insurance company. See e.g. Yin and Wang (2009), Zhao and Yin (2010a), Yuen and Yin (2011), Shen
et al. (2013), Yin and Wen (2013) and Li et al. (2017). In particular, for the study of the Gerber-Shiu
function in Lévy risk model, we refer the interested readers to Zhao and Yin(2010b) and Kyprianou
(2013). In the analysis of the Gerber-Shiu function, theoretical results are dependent on the information
on the aggregate claims process, for example, the probability characteristics of the claim sizes and claim
number process. However, such distributional information often includes some unknown parameters and
quantities that have to be estimated from the historical data of the surplus process. Hence, statistical
estimation of the Gerber-Shiu function is also very important. In particular, we remark that statistical
estimation does not depend heavily on the specific models, and it can be applied as long as the historical
sample is available.

Recently, statistical estimation of ruin probability has been studied by many authors. See, e.g. Politis
(2003), Mnatsakanov et al. (2008), Shimizu (2009), Masiello (2014) and Zhang et al. (2014), Zhang
(2016, 2017). In the Lévy risk model, Zhang and Yang (2013) proposed a nonparametric estimate of
the ruin probability based on high-frequency observation of the surplus process; Zhang and Yang (2014)
studied how to estimate the ruin probability via low-frequency sampling of the surplus process. Here,
high frequency means that the sampling interval tends to zero as the sample size tends to infinity, while
low frequency means that the sampling interval is a constant. For the Gerber-Shiu function, Shimizu
(2011, 2012) considered its estimation in the Lévy risk model and perturbed compound Poisson model
respectively, where the Laplace inversion method is used for constructing the estimate. However, the
Laplace transform inversion method is not good, since it not only results in slow convergence rate, but
also needs very long time for computation. To overcome these two drawbacks, Shimizu and Zhang (2017)
estimate the Gerber-Shiu function by Fourier transform method, where the FFT algorithm is used to
compute the estimator.

In this paper, we study how to estimate the Gerber-Shiu function by the Laguerre series expansion
based on a random sample of the aggregate claims process. The motivation of this paper comes from
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Comte et al. (2017), in which a Laplace deconvolution problem is solved by Laguerre series expansion
method. Suppose that the premium rate c is known, but the Lévy density is unknown. Furthermore,
suppose that the aggregate claims process X can be observed at a sequence of discrete time points so
that the following sample is available

Xn := {Xk∆ : k = 1, 2, . . . , n},

where ∆ := ∆n > 0 is a sampling step. We estimate the Gerber-Shiu function under high-frequency
observation assumption. More precisely, we shall consider the following condition.

Condition A.2 (High-frequency observation in a long term)

lim
n→∞

∆ = 0, lim
n→∞

n∆ = ∞.

The above condition is also considered in Zhang and Yang (2013) and Shimizu and Zhang (2017). This
condition is used to study the consistency property under the large sample size setting. In the simulation
study, we find that the estimator behaves well even if ∆ is not very small and n∆ is not very large.

The remainder of this paper is organized as follows. In Section 2, we introduce the Laguerre poly-
nomials and express the Gerber-Shiu function on the Laguerre basis. In Section 3, we present a new
Gerber-Shiu estimator based on Laguerre series expansion, and in Section 4 we study the convergence
rate of our estimator. Finally, some simulation studies are given in Section 5 to illustrate the performance
of our estimator when the sample size is finite.

2 Laguerre series expansion

Let L2(R+) denote the class of square integrable functions on the positive half-line, and denote the scalar
product and L2−norm on L2(R+) by

⟨p, q⟩ =

∫ ∞

0
p(x)q(x)dx, ∥p∥2 =

∫ ∞

0
p(x)2dx, ∀ p, q ∈ L2(R+).

The Laguerre functions are defined by

φk(x) =
√

2Lk(2x)e
−x, x ≥ 0, k = 0, 1, 2, . . . , (2.1)

where {Lk(x)} are the Laguerre polynomials given by

Lk(x) =
k∑

j=0

(−1)j

(
k

j

)
xj

j!
, x ≥ 0.

The Laguerre functions are uniformly bounded, i.e.

sup
x∈R+

|φk(x)| = ∥φk∥∞ ≤
√

2, ∀ k ≥ 0. (2.2)

We also note that the following convolution relation holds true,
∫ x

0
φk(x− y)φj(y)dy =

1√
2
[φk+j(x) − φk+j+1(x)]. (2.3)
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The above results can be found in Abramowitz and Stegun (1964).

It is known that the collection {φk}k≥0 is a complete orthonormal basis of L2(R+) satisfying

∥φk∥ = 1; ⟨φk, φj⟩ = 0 for k ̸= j. (2.4)

Hence, for every f ∈ L2(R+), we can develop it on the Laguerre basis, i.e.

f(x) =
∞∑

k=0

af,kφk(x), (2.5)

where af,k = ⟨f, φk⟩ =
∫∞
0 f(x)φk(x)dx for k = 0, 1, 2, . . .. Furthermore, we introduce the space Sm =

Span{φ0, . . . , φm−1}, and for any function f ∈ L2(R+) we define its projection onto Sm by

fm(x) =
m−1∑

k=0

af,kφk(x).

To evaluate the series truncation error in the above projection approximation, we introduce the
Sobolev-Laguerre space that is defined by

W (R+, r, B) =

{
f : R+ 7→ R, f ∈ L2(R+),

∞∑

k=0

kra2
f,k ≤ B < ∞

}
,

where 0 < r,B < ∞. Suppose that f ∈ W (R+, r, B). Because of the orthonormal property of the
Laguerre basis {φk}, we have the following approximation error,

∥f − fm∥2 =

∞∑

k=m

a2
f,k ≤ m−r

∞∑

k=0

kra2
f,k ≤ Bm−r. (2.6)

Remark 2.1 The Sobolev-Laguerre space was introduced by Bongioanni and Torrea (2009), and the link
with the coefficients of a function on the Laguerre basis was studied by Comte and Genon-Catalet (2015).
Suppose that f ∈ L2(R+) and r is a positive integer. Then the condition

∑∞
k=0 k

ra2
f,k < ∞ is equivalent

to the property that f admits derivatives up to order r − 1, with f (r−1) absolutely continuous and for
k = 0, 1, . . . , r − 1, the functions

x
k+1
2 (fex)(k+1)e−x = x

k+1
2

k+1∑

j=0

(
k + 1

j

)
f (j)

belong to L2(R+), where f (r) is the Random-Nikodym derivative of f (r−1) w.r.t. the Lebesgue measure.
We also know from Comte and Genon-Catalet (2015) and Zhang and Su (2018) that if f is a finite
mixture of Erlang functions, then the bias in (2.6) has exponential decay rate.
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Remark 2.2 If f ∈ W (R+, r, B) with r > 1, we can show that the infinite series in (2.5) is absolutely
convergent uniformly for x ≥ 0 as follows. Suppose that f ∈ W (R+, r, B), then using Cauchy-Schwarz
inequality we obtain

∞∑

k=0

|af,k| · |φk(x)| ≤
√

2
∞∑

k=0

|af,k| =
√

2|af,0| + +
√

2
∞∑

k=1

kr/2|af,k|k−r/2

≤
√

2|af,0| + +
√

2

( ∞∑

k=1

kra2
f,k

)1/2( ∞∑

k=1

k−r

)1/2

≤
√

2|af,0| + +
√

2B

( ∞∑

k=1

k−r

)1/2

.

Since the infinite series
∑∞

k=1 k
−r is convergent for r > 1, then the infinite series

∑∞
k=0 af,kφk(x) is

absolutely convergent uniformly for x ≥ 0.

We shall present a Laguerre series expansion of the Gerber-Shiu function, which plays an important
role in estimating the Gerber-Shiu function. It follows from Garrido and Morales (2006) and Shimizu
and Zhang (2017) that the Gerber-Shiu function satisfies the following renewal equation

ϕ(u) =

∫ u

0
ϕ(u− x)g(x)dx+ h(u), u ≥ 0, (2.7)

where the functions g and h in (2.7) are defined by

g(x) =
1

c

∫ ∞

x
e−ρ(y−x)ν(y)dy,

h(u) =
1

c

∫ ∞

u
e−ρ(x−u)

∫ ∞

x
w(x, y − x)ν(y)dydx,

where ρ is the unique positive root of equation (in s)

cs+ ψ(s) = δ. (2.8)

Note that ρ = 0 as δ = 0. It is known that equation (2.7) is defective since
∫∞
0 g(x)dx < 1 under

condition δ > 0 or Condition A.1.

In order to use the Laguerre series expansion method, we need to check the square integrability of
the functions ϕ, g and h. To this end, we need the following conditions.

Condition A.3 (Integrability for w) For the penalty function w,

∫ ∞

0

∫ ∞

0
(1 + x)w(x, y)ν(x+ y)dydx < ∞. (2.9)

Lemma 1 Under conditions A.1 and A.3, we have ϕ, g, h ∈ L2(R+).
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Proof. This follows from the same arguments used in Section 2 in Zhang and Su (2018).

In the sequel, suppose that ϕ, g, h ∈ L2(R+). Furthermore, we suppose that the following condition
on ϕ and g holds, which is easily satisfied due to Remark 2.1.

Condition A.4 ϕ, g ∈ W (R+, r, B) for some r > 1 and 0 < B < ∞.

Now we develop ϕ, g and h on the Laguerre basis, i.e.

ϕ(u) =
∞∑

k=0

aϕ,kφk(u), g(x) =
∞∑

k=0

ag,kφk(x), h(u) =
∞∑

k=0

ah,kφk(u), u, x ≥ 0. (2.10)

We can use the projection ϕm to approximate ϕ. Furthermore, for ϕ ∈ W (R+, r, B), we have

∥ϕ− ϕm∥2 ≤ Bm−r (2.11)

due to (2.6).

Now we study how to determine the constants aϕ,k in the projection function ϕm. Under Condition
A.4 and using Remark 2.2, we know that the following two infinite series are absolutely convergent
uniformly for x ≥ 0,

∞∑

k=0

aϕ,kφk(x),
∞∑

k=0

ag,kφk(x).

Hence, using the convolution formula (2.3) and changing the order of summation and integration we have

∫ u

0
ϕ(u− x)g(x)dx =

∞∑

k=0

∞∑

j=0

aϕ,kag,j

∫ u

0
φk(u− x)φj(x)dx

=

∞∑

k=0

∞∑

j=0

2−1/2aϕ,kag,j [φk+j(u) − φk+j+1(u)]

=
∞∑

k=0

k∑

j=0

2−1/2[ag,k−j − ag,k−j−1]aϕ,jφk(u), (2.12)

where we have used the convention ag,−1 = 0. Plugging the formulas in (2.10) and (2.12) into the integral
equation (2.7) gives

∞∑

k=0

aϕ,kφk(u) =

∞∑

k=0

k∑

j=0

2−1/2[ag,k−j − ag,k−j−1]aj,ϕφk(u) +

∞∑

k=0

ah,kφk(u). (2.13)

Comparing the coefficients of φk in (2.13) gives for k = 0, 1, 2, . . .

aϕ,k =

k∑

j=0

2−1/2[ag,k−j − ag,k−j−1]aϕ,j + ah,k.

This yields an infinite linear triangular system

A∞a⃗ϕ,∞ = a⃗h,∞, (2.14)
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where a⃗ϕ,∞ = (aϕ,0, aϕ,1, aϕ,2, . . .)
T , a⃗h,∞ = (ah,0, ah,1, ah,2, . . .)

T , and the elements in A∞ are given by

[A∞]k,j =





1 − 2−1/2ag,0, if k = j,

2−1/2[ag,k−j−1 − ag,k−j ], if k > j,
0, otherwise.

We consider the truncate version of (2.14),

Ama⃗ϕ,m = a⃗h,m, (2.15)

where a⃗ϕ,m = (aϕ,0, aϕ,1, . . . , aϕ,m−1)
T , a⃗h,m = (ah,0, ah,1, . . . , ah,m−1)

T , and Am is the sub-block of
A∞. Note that Am is a lower triangular Toeplitz matrix, and all the diagonal elements in it equal to
1 − 2−1/2ag,0 and

1 − 2−1/2ag,0 = 1 − 2−1/2

∫ ∞

0
g(x)φ0(x)dx = 1 −

∫ ∞

0
e−xg(x)dx > 1 −

∫ ∞

0
g(x)dx > 0,

since g is a defective density function. As a result, the matrix Am is invertible, and we can solve equation
(2.15) to obtain a⃗ϕ,m = A−1

m a⃗h,m.

3 The estimator

By the definition of ϕm, it suffices to estimate the coefficients aϕ,k for k = 0, 1, . . . ,m− 1, or the vector
a⃗ϕ,m. Furthermore, due to a⃗ϕ,m = A−1

m a⃗h,m and the definitions of Am and a⃗h,m, we have to estimate
the following quantities

ag,k, ah,k, k = 0, 1, . . . ,m− 1.

For ag,k, we have

ag,k =

∫ ∞

0
g(x)φk(x)dx =

1

c

∫ ∞

0

∫ ∞

x
e−ρ(y−x)ν(y)dyφk(x)dx

=

∫ ∞

0
Qk(y, ρ)ν(y)dy, (3.1)

where by changing the order of integrals,

Qk(y, ρ) =
1

c

∫ y

0
e−ρ(y−x)φk(x)dx, y > 0.

Moreover, by some careful calculations we have for ρ ̸= 1

Qk(y, ρ) =

√
2

c
eρy

k∑

j=0

(−2)j

(
k

j

)∫ y

0

xj

j!
e−(1−ρ)xdx

=
1

c

√
2

1 − ρ

k∑

j=0

(
2

ρ− 1

)j (k
j

)(
e−ρy −

j∑

l=0

[(1 − ρ)y]l

l!
e−y

)
. (3.2)
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For ah,k we have

ah,k =

∫ ∞

0
h(u)φk(u)du =

1

c

∫ ∞

0

∫ ∞

u
e−ρ(x−u)

∫ ∞

x
w(x, y − x)ν(y)dydxφk(u)du

=

∫ ∞

0
Rk(y, ρ)ν(y)dy, (3.3)

where by changing the order of integrals,

Rk(y, ρ) =
1

c

∫ y

0

∫ y

u
e−ρ(x−u)w(x, y − x)φk(u)dxdu, y > 0. (3.4)

We remark that for most of the interesting penalty functions used in ruin theory, we can compute the
double integrals in (3.4) to obtain closed-form expressions for Rk(y, ρ).

Now we use formulas (3.1) and (3.3) to estimate ag,k and ah,k. First, we estimate the Lundberg
exponent ρ. Recall that we have the sample {Xk∆ : k = 0, 1, . . . , n}. For convenience, we put

Zk = Xk∆ −X(k−1)∆, k = 1, . . . , n.

As in Shimizu and Zhang (2017), the estimate of ρ, denoted by ρ̂, is defined to be the positive root of
the following equation (in s)

cs+
1

n∆

n∑

j=1

[e−sZj − 1] = δ.

Further, we put ρ̂ = 0 as δ = 0, since ρ = 0 in this case. The following lemma gives the consistency
property of ρ̂. See Shimizu and Zhang (2017).

Lemma 2 Suppose that Conditions A.1, A.2 and µ2 < ∞ hold. Then for δ > 0 we have

ρ̂− ρ = Op((n∆)− 1
2 + ∆).

It is known that under the high-frequency condition A.2 that 1
n∆

∑n
j=1 δZj (dx) converges weakly to

the measure ν(x)dx, where δx denotes the Dirac measure at x. Then by formulae (3.1) and (3.3) we can
estimate ag,k and ah,k by

âg,k =
1

n∆

n∑

j=1

Qk(Zj , ρ̂), âh,k =
1

n∆

n∑

j=1

Rk(Zj , ρ̂).

We define the estimates of Am and a⃗h,m by replacing ag,k and ah,k by âg,k and âh,k, and denote them by

Âm and ⃗̂ah,m, i.e.

[Âm]k,j =





1 − 2−1/2âg,0, if k = j,

2−1/2[âg,k−j−1 − âg,k−j ], if k > j,
0, otherwise,

and ⃗̂am,h = (âh,0, âh,1, . . . , âh,m−1)
T . Finally, we estimate ϕm by

ϕ̂m(u) =
m−1∑

k=0

âϕ,kφk(u), u ≥ 0, (3.5)

where
⃗̂aϕ,m = (âϕ,0, âϕ,1, . . . , âϕ,m−1)

T = Â−1
m
⃗̂ah,m.
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4 Consistency property

In the sequel, we use C to denote a generic positive constant that may take different values at different
steps. For two positive sequences (an) and (bn), we use an . bn to mean an 6 C·bn uniformly in n ∈ N+ for
some C > 0. Similarly, for two positive functions f1, f2 on R+, we use f1 . f2 to denote f1(x) ≤ Cf2(x)
uniformly in x ∈ R+. For any vector x⃗, its Euchidean norm ∥x⃗∥2 is defined by ∥x⃗∥2 = x⃗T x⃗. For a matrix
B, its operator norm is defined by

∥B∥op = max
∥x⃗∥2=1

∥Bx⃗∥2 =
√
λmax(BT B),

where λmax(BT B) is the largest eigenvalue of BT B. The Frobenius norm of matrix B is defined by

∥B∥F =
√∑

ij b
2
ij , where bij are elements of B. For two matrices B1 and B2, we have

∥B1B2∥F ≤ ∥B1∥F ∥B2∥op and ∥B1B2∥F ≤ ∥B1∥op∥B2∥F . (4.1)

If B is a square matrix of dimension m, we have

1√
m

∥B∥F ≤ ∥B∥op ≤ ∥B∥F . (4.2)

Now we derive the asymptotic properties of our estimate ϕ̂m(u). First, by Pythagoras principle we
have

∥ϕ− ϕ̂m∥2 = ∥ϕ− ϕm∥2 + ∥ϕm − ϕ̂m∥2. (4.3)

The first term on the right hand side of (4.3) can be bounded by (2.11) if ϕ ∈ W (R+, r, B). Let us consider
the second term on the right hand size of (4.3). Using triangle inequality and Jensen’s inequality we have

∥ϕm − ϕ̂m∥2 = ∥A−1
m a⃗h,m − Â−1

m
⃗̂ah,m∥2

2

= ∥A−1
m (a⃗h,m − ⃗̂ah,m) + (A−1

m − Â−1
m )(⃗̂ah,m − a⃗h,m) + (A−1

m − Â−1
m )a⃗h,m∥2

2

≤ 3∥A−1
m (a⃗h,m − ⃗̂ah,m)∥2

2 + 3∥(A−1
m − Â−1

m )(⃗̂ah,m − a⃗h,m)∥2
2 + 3∥(A−1

m − Â−1
m )a⃗h,m∥2

2

≤ 3∥A−1
m ∥2

op · ∥a⃗h,m − ⃗̂ah,m∥2
2 + 3∥A−1

m − Â−1
m ∥2

op · ∥⃗̂ah,m − a⃗h,m∥2
2

+3∥A−1
m − Â−1

m ∥2
op · ∥a⃗h,m∥2

2. (4.4)

To continue with, we need some conditions and lemmas to show the consistency property.

Condition B.1 For some α1, α2 > 0,

w(x1, x2) ≤ C(1 + x1)
α1(1 + x2)

α2 ,

∣∣∣∣
d

dx2
w(x1, x2)

∣∣∣∣ ≤ C(1 + x1)
α1(1 + x2)

α2 .

Condition B.2(k) For some integer k ≥ 1, µk < ∞.

Condition B.3 The Lévy density ν is continuous on (0,∞), and for some α ∈ (0, 1),

lim
∆→0

∆2−αν(∆) = 0.
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Remark 4.1 Condition B.1 is not very restrictive. For example, it is satisfied by the penalty functions
used in ruin probability, the expected claim size causing ruin and the joint moments (or Laplace trans-
form) of the deficit at ruin and the deficit at ruin. Condition B.3 is not very restrictive too, and it is
satisfied by many widely used subordintors in ruin theory, e.g. compound Poisson, Lévy-Gamma and NIG
subordinators.

Lemma 3 Under Condition A.1, we have for all m ≥ 1

∥A−1
m ∥op ≤ 2c

c− µ1
.

Proof. This can be easily obtained by using the same arguments as in Zhang and Su (2017).

Lemma 4 Under Condition A.3, we have ∥a⃗h,m∥2
2 ≤ ∥h∥2 < ∞.

Proof. This holds since

∥a⃗h,m∥2
2 =

m−1∑

k=0

a2
h,k ≤

∞∑

k=0

a2
h,k = ∥h∥2 < ∞.

This completes the proof.

Lemma 5 Under Conditions A.2, B.1, B.2(2(α1 + α2 + 2)) and B.3, we have

∥a⃗h,m − ⃗̂ah,m∥2
2 = Op(m((n∆)−1 + ∆2)) + o(m∆2α). (4.5)

Proof. For each k we have
ah,k − âh,k = Ik,1 + Ik,2 + Ik,3,

where

Ik,1 =
1

n∆

n∑

j=1

(Rk(Zj , ρ) −Rk(Zj , ρ̂)),

Ik,2 =
1

n∆

n∑

j=1

(E[Rk(Zj , ρ)] −Rk(Zj , ρ)) ,

Ik,3 =

∫ ∞

0
Rk(y, ρ)ν(y)dy − 1

∆
E[Rk(Z1, ρ)].

Then using Jensen’s inequality we have

∥a⃗h,m − ⃗̂ah,m∥2
2 =

m−1∑

k=0

(ah,k − âh,k)
2 =

m−1∑

k=0

(Ik,1 + Ik,2 + Ik,3)
2
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≤ 3

m−1∑

k=0

(I2k,1 + I2k,2 + I2k,3). (4.6)

First, we consider the sum
∑m−1

k=0 I2k,1. Recall that ρ = ρ̂ = 0 as δ = 0. Hence, we have Ik,1 = 0 as

δ = 0, and this leads to
∑m−1

k=0 I2k,1 = 0. When δ > 0, by the mean value theory we know that there exists
a random number ρ∗ ≥ δ/c (due to ρ̂, ρ ≥ δ/c. See e.g. Shimizu and Zhang (2017)) such that for x ≥ u

|e−ρ(x−u) − e−ρ̂(x−u)| = |e−ρ∗(x−u)(x− u)(ρ− ρ̂)| ≤ e−
δ
c
(x−u)(x− u)|ρ− ρ̂| ≤ c

eδ
|ρ̂− ρ|. (4.7)

As a result, by the uniform upper bound (2.2) and Condition B.1 we have

sup
k≥0

|Ik,1| ≤ 1

c

1

n∆

n∑

j=1

∫ Zj

0

∫ Zj

u
|e−ρ(x−u) − e−ρ̂(x−u)|w(x,Zj − x) sup

k≥0
|φk(u)|dxdu

. 1

n∆

n∑

j=1

∫ Zj

0

∫ Zj

u
w(x,Zj − x)dxdu · |ρ− ρ̂|

. 1

n∆

n∑

j=1

∫ Zj

0

∫ Zj

u
(1 + x)α1(1 + Zj − x)α2dxdu · |ρ− ρ̂|

. 1

n∆

n∑

j=1

Z2
j (1 + Zj)

α1+α2 · |ρ− ρ̂|. (4.8)

Under Condition B.2(α1 + α2 + 2), we have

1

n∆

n∑

j=1

E[Z2
j (1 + Zj)

α1+α2 ] . 1

n∆

n∑

j=1

E[Z2
j + Zα1+α2+2

j ] < ∞

due to Lemma 8, then Markov’s inequality gives 1
n∆

∑n
j=1[Z

2
j (1+Zj)

α1+α2 ] = Op(1). This together with
Lemma 2 and (4.8) gives

sup
k≥0

|Ik,1| = Op(1) ·Op((n∆)− 1
2 + ∆) = Op((n∆)− 1

2 + ∆),

which yields
m−1∑

k=0

I2k,1 = Op

(
m((n∆)−1 + ∆2)

)
. (4.9)

Next, by the uniform upper bound (2.2) and Condition B.1 we have

E

(
m−1∑

k=0

I2k,2

)
=

m−1∑

k=0

V ar(Ik,2) =

m−1∑

k=0

1

c2
1

n∆2
V ar

(∫ Z1

0

∫ Z1

u
e−ρ(x−u)w(x,Z1 − x)dxφk(u)du

)

≤
m−1∑

k=0

1

c2
1

n∆2
E
(∫ Z1

0

∫ Z1

u
e−ρ(x−u)w(x,Z1 − x)dxφk(u)du

)2
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≤
m−1∑

k=0

1

c2
2

n∆2
E
(∫ Z1

0

∫ Z1

u
w(x,Z1 − x)dxdu

)2

.
m−1∑

k=0

1

n∆2
E
(∫ Z1

0

∫ Z1

u
(1 + x)α1(1 + Z1 − x)α2dxdu

)2

.
m−1∑

k=0

1

n∆2
E[Z4

1 (1 + Z1)
2(α1+α2)] . m

n∆
,

where the last step holds under Condition B.2(2(α1 + α2 + 2)) due to Lemma 8. Then we have

m−1∑

k=0

I2k,2 = Op

(
m(n∆)−1

)
(4.10)

thanks to Markov’s inequality.

Third, we consider Ik,3. By the uniform upper bound (2.2) and Condition B.1 we have

sup
k≥0

|Rk(y, ρ)| ≤ 1

c

∫ y

0

∣∣∣∣
∫ y

u
e−ρ(x−u)w(x, y − x)dx

∣∣∣∣ · sup
k≥0

|φk(u)|du

≤
√

2

c

∫ y

0

∣∣∣∣
∫ y

u
e−ρ(x−u)w(x, y − x)dx

∣∣∣∣ du

.
∫ y

0

∫ y

u
(1 + x)α1(1 + y − x)α2dxdu

.
∫ y

0
(y − u)(1 + y)α1+α2du

. y2(1 + y)α1+α2

and

sup
k≥0

∣∣∣∣
d

dy
Rk(y, ρ)

∣∣∣∣ ≤ 1

c

∫ y

0

∣∣∣∣
d

dy

∫ y

u
e−ρ(x−u)w(x, y − x)dx

∣∣∣∣ · sup
k≥0

|φk(u)|du

≤
√

2

c

∫ y

0

∣∣∣∣e−ρ(y−u)w(y, 0) +

∫ y

u
e−ρ(x−u) d

dy
w(x, y − x)dx

∣∣∣∣ du

.
∫ y

0

(
(1 + y)α1 +

∫ y

u
(1 + x)α1(1 + y − x)α2dx

)
du

≤ y(1 + y)α1 + y2(1 + y)α1+α2 .

Then using Lemma 9 we obtain sup
k≥0

|Ik,3| = o(∆α) due to µα1+α2+2 < ∞. As a result, we have

m∑

k=0

I2k,3 = o(m∆2α). (4.11)

Finally, plugging (4.9)-(4.11) into (4.6) we obtain (4.5). This completes the proof.
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Lemma 6 Under Conditions A.2, B.2(2) and B.3, we have

∥Am − Âm∥2
F = Op(m

2((n∆)−1 + ∆2)) + o(m2∆2α). (4.12)

Proof. Note that

[Am − Âm]k,j =





2−1/2[âg,0 − ag,0], if k = j,

2−1/2[âg,k−j − ag,k−j ] − 2−1/2[âg,k−j−1 − ag,k−j−1], if k > j,
0, otherwise.

Then we have

∥Am − Âm∥2
F =

m∑

k=1

k∑

j=1

[Am − Âm]2k,j

=

m∑

k=1

k∑

j=1

2−1 ([âg,k−j − ag,k−1] + [âg,k−j−1 − ag,k−j−1])
2

≤
m∑

k=1

k∑

j=1

(
[âg,k−j − ag,k−j ]

2 + [âg,k−j−1 − ag,k−j−1]
2
)
, (4.13)

with the understanding that ag,−1 = âg,−1 = 0. Furthermore, for each k we have

âg,k − ag,k = IIk,1 + IIk,2 + IIk,3,

where

IIk,1 =
1

n∆

n∑

j=1

[Qk(Zj , ρ̂) −Qk(Zj , ρ)],

IIk,2 =
1

n∆

n∑

j=1

(Qk(Zj , ρ) − E[Qk(Zj , ρ)]) ,

IIk,3 =
1

n∆

n∑

j=1

E[Qk(Zj , ρ)] −
∫ ∞

0
Qk(y, ρ)ν(y)dy.

Then (4.13) together with Jensen’s inequality yields

∥Am − Âm∥2
F ≤

m∑

k=1

k∑

j=1

(
[IIk−j,1 + IIk−j,2 + IIk−j,3]

2 + [IIk−j−1,1 + IIk−j−1,2 + IIk−j−1,3]
2
)

≤ 6

m∑

k=1

k∑

j=1

(
II2k−j,1 + II2k−j,2 + II2k−j,3

)

≤ 6m
m−1∑

k=0

(II2k,1 + II2k,2 + II2k,3). (4.14)

First, we consider the sum
∑m−1

k=0 II2k,1. Note that we have
∑m−1

k=0 II2k,1 = 0 as δ = 0 since ρ = ρ̂ = 0.
Let us consider the case δ > 0. By inequalities (2.2) and (4.7) we have

sup
k≥0

|IIk,1| ≤ 1

c

1

n∆

n∑

j=1

∫ Zj

0
|e−ρ̂(Zj−x) − e−ρ(Zj−x)| · sup

k≥0
|φk(x)|dx
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≤
√

2

c

1

n∆

n∑

j=1

∫ Zj

0
(Zj − x)dx · |ρ̂− ρ|

=

√
2

2c

1

n∆

n∑

j=1

Z2
j · |ρ̂− ρ|,

which together with Markov’s inequality and Lemmas 2 and 8 gives

sup
k≥0

|IIk,1| = Op(1) ·Op((n∆)− 1
2 + ∆) = Op((n∆)− 1

2 + ∆).

Then we have
m−1∑

k=0

II2k,1 = Op(m((n∆)−1 + ∆2)). (4.15)

Next, we consider the sum
∑m−1

k=0 II2k,2. We have

E

(
m−1∑

k=0

II2k,2

)
=

1

n∆2

m−1∑

k=0

V ar(Qk(Z1, ρ)) ≤ 1

n∆2

m−1∑

k=0

E|Qk(Z1, ρ)|2

≤ 1

c2n∆2

m−1∑

k=0

E
(∫ Z1

0
e−ρ(Z1−x)|φk(x)|dx

)2

≤ 2m

c2n∆2
EZ2

1

=
2m

c2n∆
(µ2 + ∆µ2

1),

where the last equality follows from Lemma 8. Then by Markov’s inequality we obtain

m−1∑

k=0

II2k,2 = Op(m(n∆)−1). (4.16)

Third, for IIk,3 we can prove (see Appendix B)

sup
k≥0

|IIk,3| = o(∆α), (4.17)

which yields
m−1∑

k=0

II2k,3 = o(m∆2α). (4.18)

Finally, substituting (4.15), (4.16) and (4.18) into (4.14) we complete the proof.

Lemma 7 Suppose that m2(n∆)−1 = o(1) and m2∆2α = o(1). Then under Conditions A.1, A.2,
B.2(2) and B.3, we have

∥A−1
m − Â−1

m ∥2
op = Op(m

2((n∆)−1 + ∆2)) + o(m2∆2α).
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Proof. By Lemma 10 in Appendix A we have

∥A−1
m − Â−1

m ∥op = ∥A−1
m − (Âm − Am + Am)−1∥op

≤
∥Âm − Am∥op · ∥A−1

m ∥2
op

1 − ∥A−1
m (Âm − Am)∥op

≤ 4c2

(c− µ1)2
∥Âm − Am∥op

1 − ∥A−1
m (Âm − Am)∥op

≤ 4c2

(c− µ1)2
∥Âm − Am∥F

1 − ∥A−1
m (Âm − Am)∥op

. (4.19)

Furthermore, under conditions m2(n∆)−1 = o(1) and m2∆2α = o(1), we have

∥A−1
m (Âm − Am)∥op ≤ ∥A−1

m ∥op · ∥Âm − Am∥op ≤ 2c

c− µ1
∥Âm − Am∥op = op(1).

This together with (4.19) and Lemma 6 completes the proof.

Theorem 4.1 Suppose that m2(n∆)−1 = o(1) and m2∆2α = o(1). Then under Conditions A.1-A.4,
B.1, B.2(2(α1 + α2 + 2)) and B.3, we have

∥ϕ− ϕ̂m∥2 = ∥ϕ− ϕm∥2 +Op(m
2((n∆)−1 + ∆2)) + o(m2∆2α). (4.20)

Proof. By Lemmas 3-6 we have

∥A−1
m ∥2

op · ∥a⃗h,m − ⃗̂ah,m∥2
2 = Op(m((n∆)−1 + ∆2)) + o(m∆2α),

∥A−1
m − Â−1

m ∥2
op · ∥a⃗h,m∥2

2 = Op(m
2((n∆)−1 + ∆2)) + o(m2∆2α),

and
∥A−1

m − Â−1
m ∥2

op · ∥⃗̂ah,m − a⃗h,m∥2
2 = op

(
∥A−1

m ∥2
op · ∥a⃗h,m − ⃗̂ah,m∥2

2

)
.

Substituting the above results back into (4.4) and comparing the convergence rates we can complete the
proof.

Remark 4.2 Suppose the conditions in Theorem 4.1. Then by (2.11) and (4.20) we have

∥ϕ− ϕ̂m∥2 = O(m−r) +Op(m
2((n∆)−1 + ∆2)) + o(m2∆2α). (4.21)

Omitting the term o(m2∆2α) and minimizing the order O(m−r) + Op(m
2((n∆)−1 + ∆2)) w.r.t. m we

find that the optimal truncate parameter, say mop, has order O(((n∆)−1 + ∆2)− 1
r+2 ).

5 Simulation studies

In this section, let us present some simulation examples to illustrate the performance of our estimator
under finite sample setting. We consider the following two Lévy risk models.

15



(1) The compound Poisson risk model with premium rate c = 30, Poisson intensity λ = 20 and
exponential jumps with mean µ = 2/3. In this case, the Levy density ν(x) = λ/µe−x/µ, x > 0.

(2) The Lévy-Gamma risk model with premium rate c = 1.5 and Gamma-type density ν(x) = x−1e−x,
x > 0.

As in Shimizu and Zhang (2017), we estimate the following three classes of Gerber-Shiu functions:

• ruin probability (RP): ϕ(u) = P(τ < ∞|U0 = u) with δ = 0 and w(x, y) ≡ 1;

• expected claim size causing ruin (ECS): ϕ(u) = E
[
(Uτ− + |Uτ |)1(τ<∞)|U0 = u

]
with δ = 0 and

w(x, y) = x+ y;

• Laplace transform of ruin time (LT): ϕ(u) = E
[
e−δτ1(τ<∞)|U0 = u

]
with δ = 0.1 and w(x, y) ≡ 1.

For the compound Poisson model with exponential claims, true value of the Gerber-Shiu functions
can be computed based on the following formulae that are provided in Shimizu and Zhang (2017),

• ϕ(u) = λµ
c e

−(1/µ−λ/c)u;

• ϕ(u) = µ(1 + 2λµ
c )e−(1/µ−λ/c)u − µe−u/µ;

• ϕ(u) = λµ
c(1+ρµ)e

−(ρ+1/µ−(λ+δ)/c)u.

For the Lévy-Gamma risk model, explicit formulae for these Gerber-Shiu functions do not exist. However,
we can use ϕm to approximate the true value. On the other hand, we can also use the FFT algorithm
proposed in Shimizu and Zhang (2017) to approximate the true value. In Figure 1, we illustrate these
two methods for comparison. In the Laguerre series expansion method, we set the truncate parameter
m = 20, while for the FFT method, we use formula (4.1) in Shimizu and Zhang (2017) with m = 50
and K = 213. It follows from Figure 1 that the approximate curves nearly coincide, but when u is small
the Laguerre series expansion can result in smoother curves than the FFT algorithm. In the sequel of
this section we shall use the Laguerre series expansion with truncate parameter m = 20 to compute the
reference value for the Lévy-Gamma risk model.

We shall consider (n,∆) = (400, 0.05), (1000, 0.02), (2500, 0.01), (5000, 0.01), where n∆ = 20, 20, 25, 50,
respectively. For the truncate parameter m it is hard to find a data driven method for selection.
By Remark 4.2 we know that when ϕ ∈ W (R+, r, B), the optimal truncate parameter mop has order

O(((n∆)−1 + ∆2)− 1
r+2 ). In the sequel we set m = ⌊5((n∆)−1 + ∆2)− 1

10 ⌋, where ⌊·⌋ denotes the integer
part.

To show the performance of the estimate, we perform 1000 experiments and analyze mean value, the
integrated mean square error (IMSE) and mean relative error, which are computed by

1

1000

1000∑

j=1

ϕ̂m,j(u),
1

1000

1000∑

j=1

∫ 30

0
|ϕ̂m,j(u) − ϕ(u)|2du, 1

1000

1000∑

j=1

∣∣∣∣∣
ϕ̂m,j(u)

ϕ(u)
− 1

∣∣∣∣∣ ,
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where ϕ̂m,j(u) denotes the estimated Gerber-Shiu function in the j-th experiment. Note that we compute
the integral on a finite domain [0, 30], because both the reference value and the estimator are very close
to zero as u increase.

First, we display the mean value curves of the estimated Gerber-Shiu functions based on 1000 sample
paths and compare them with the reference value curves in Figures 2 and 3. We observe that the mean
value curves converge to the reference value curves as n∆ increases. Furthermore, when the initial surplus
u is large, it is hard to distinguish the mean value curves and the reference value curves. Next, we provide
some values of IMSEs in Table 1, where we easily observe that the IMSEs decrease as n∆ increases for
each Gerber-Shiu function and each Lévy risk model. Finally, we present some results on mean relative
error curves in Figures 4 and 5. Again, we find that the mean relative errors decrease as n∆ increases,
but we also find that the mean relative error curves increase as the initial surplus value becomes large,
which is due to that the denominator ϕ(u) in the definition of mean relative error converges to zero when
u becomes large.

Now we compare Laguerre series expansion method with FFT method used in Shimizu and Zhang
(2017). For the FFT method, we use formula (4.2) in Shimizu and Zhang (2017) to compute the estimate
and we use the same parameter setting as in Shimizu and Zhang (2017). First, in Table 1 we provide the
IMSE values for both methods, and by comparison we find that the Laguerre series expansion method
can lead to smaller IMSEs. Next, in Figures 6 and 7 we compare these two methods in terms of mean
relative errors. where we find the Laguerre series expansion method can yield smaller mean relative errors
compared with the FFT method.

Table 1: IMSEs for the estimation of Gerber-Shiu function.

(n, ∆)
Laguerre FFT

RP ECS LT RP ECS LT

Compound Poisson

(400, 0.05) 0.016810 0.34640 0.015880 0.017340 0.35390 0.016730
(1000, 0.02) 0.005424 0.07218 0.004641 0.006139 0.07571 0.005827
(2500, 0.01) 0.002317 0.02792 0.002303 0.003528 0.02795 0.003597
(5000, 0.01) 0.000604 0.01147 0.000863 0.002282 0.02150 0.002311

Lévy-Gamma

(400, 0.05) 0.231650 2.71708 0.052180 0.386713 3.39299 0.076717
(1000, 0.02) 0.190217 2.31552 0.050884 0.314151 2.96768 0.061428
(2500, 0.01) 0.139269 1.43479 0.038353 0.300377 2.13981 0.053417
(5000, 0.01) 0.066753 0.36252 0.019565 0.131593 1.12507 0.025959
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Figure 1: Comparing with FFT method for Lévy-Gamma risk model: reference value curves. (a) Ruin
probability; (b) Expected claim size causing ruin; (c) Laplace transform of ruin time.
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Figure 2: Estimating the Gerber-Shiu function for compound Poisson risk model: mean value curves. (a)
Ruin probability; (b) Expected claim size causing ruin; (c) Laplace transform of ruin time.
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Figure 3: Estimating the Gerber-Shiu function for Lévy-Gamma risk model: mean value curves. (a)
Ruin probability; (b) Expected claim size causing ruin; (c) Laplace transform of ruin time.
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Figure 4: Estimating the Gerber-Shiu function for compound Poisson risk model: mean relative error
curves. (a) Ruin probability; (b) Expected claim size causing ruin; (c) Laplace transform of ruin time.
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Figure 5: Estimating the Gerber-Shiu function for Lévy-Gamma risk model: mean relative error curves.
(a) Ruin probability; (b) Expected claim size causing ruin; (c) Laplace transform of ruin time.
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Figure 6: Comparing with FFT method for compound Poisson risk model: mean relative error curves.
(a) Ruin probability; (b) Expected claim size causing ruin; (c) Laplace transform of ruin time.
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Figure 7: Comparing with FFT method for Lévy-Gamma risk model: mean relative error curves. (a)
Ruin probability; (b) Expected claim size causing ruin; (c) Laplace transform of ruin time.
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Appendix

A Some useful lemmas

Lemma 8 (Proposition 2.2 in Comte and Genon-Catalot (2009)) Let k ≥ 1 be an integer. If µk < ∞,
then EZk

1 < ∞, and for 1 ≤ l ≤ k,
EZ l

1 = ∆µl + o(∆).

In particular, if µ2 < ∞, then
EZ1 = ∆µ1, EZ2

1 = ∆µ2 + ∆2µ2
1.

Lemma 9 (Shimizu and Zhang (2017)) Let {fk(x)}k≥0 be a sequence of differentiable functions on (0,∞)
such that for some positive integers κ0, κ1

sup
k≥0

|fk(x)| . xκ0 , sup
k≥0

|f ′
k(x)| . xκ1 .

Assume that µκ0 , µκ1 < ∞, and lim
∆→0

∆2−αν(∆) = 0 for some 0 < α < 1. Then we have

lim
∆→0

sup
k≥0

∣∣∣∣
1

∆α

(
1

∆
E[fk(X∆)] −

∫ ∞

0
fk(x)ν(x)dx

)∣∣∣∣ = 0.

Proof. This can be proved after a minor revision of Lemma B.1 in Shimizu and Zhang (2017).

Lemma 10 (Stewart and Sun (1990)) Let A and B be two matrices with dimension m. If A is invertible
and ∥A−1B∥op < 1, then Ã := A + B is invertible and it holds

∥Ã−1 − A−1∥op ≤
∥B∥op∥A−1∥2

op

1 − ∥A−1B∥op
.

B Proof of (4.17)

We cannot use Lemma 9 to prove (4.17) since we cannot find a positive integer κ such that

sup
k≥0

∣∣∣∣
d

dy
Qk(y, ρ)

∣∣∣∣ . yκ.

We shall follow the same approach adopted in Shimizu and Zhang (2017) to prove (4.17) under Conditions
B.2(1) and B.3.

For every fixed ∆ > 0, we split the subordinator X into one part (X∆
t ) with jumps smaller than ∆,

and another part (X̃∆
t ) which is a compound Poisson process with intensity of jumps λ∆ =

∫
{x≥∆} ν(x)dx
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and jump density function 1
λ∆
ν(x)1(x≥∆). For the compound Poisson process, we have X̃∆

t =
∑N∆

t
j=1 ξ

∆
j ,

where (N∆
t )t≥0 is a homogeneous Poisson process with intensity λ∆ and {ξ∆j } are i.i.d. with density

function 1
λ∆
ν(x)1(x≥∆). Hence, we have

1

∆α
IIk,3 =

1

∆α

{
1

∆
E[Qk(X

∆
∆ + X̃∆

∆ , ρ)] −
∫ ∞

0
Qk(y, ρ)ν(y)dy

}

=
1

∆α+1
e−λ∆∆E[Qk(X

∆
∆ , ρ)] − 1

∆α

∫ ∆

0
Qk(y, ρ)ν(y)dy

+
1

∆α

{
λ∆e

−λ∆∆E[Qk(X
∆
∆ + ξ∆1 , ρ)] −

∫ ∞

∆
Qk(y, ρ)ν(y)dy

}

+
1

∆α+1

∞∑

n=2

λn
∆∆n

n!
e−λ∆∆E


Qk


X∆

∆ +

n∑

j=1

ξ∆j , ρ




 .

The proof is completed if we can prove the following limits,

lim
∆→0

sup
k≥0

∣∣∣∣
1

∆α+1
e−λ∆∆E[Qk(X

∆
∆ , ρ)]

∣∣∣∣ = 0, (B.1)

lim
∆→0

sup
k≥0

∣∣∣∣
1

∆α

∫ ∆

0
Qk(y, ρ)ν(y)dy

∣∣∣∣ = 0, (B.2)

lim
∆→0

sup
k≥0

∣∣∣∣
1

∆α

{
λ∆e

−λ∆∆E[Qk(X
∆
∆ + ξ∆1 , ρ)] −

∫ ∞

∆
Qk(y, ρ)ν(y)dy

}∣∣∣∣ = 0, (B.3)

lim
∆→0

sup
k≥0

∣∣∣∣∣∣
1

∆α+1

∞∑

n=2

λn
∆∆n

n!
e−λ∆∆E


Qk


X∆

∆ +

n∑

j=1

ξ∆j , ρ





∣∣∣∣∣∣
= 0. (B.4)

First, we consider (B.1). Note that

sup
k≥0

|Qk(y, ρ)| ≤ 1

c

∫ y

0
e−ρ(y−x) · sup

k≥0
|φk(x)|dx ≤

√
2

c
y (B.5)

due to the uniform upper bound (2.2). Then we have

sup
k≥0

∣∣∣∣
1

∆α+1
e−λ∆∆E[Qk(X

∆
∆ , ρ)]

∣∣∣∣ ≤ 1

∆α+1
E[sup

k≥0
|Qk(X

∆
∆ , ρ)|] ≤

√
2

c

1

∆α+1
E[X∆

∆ ]

=

√
2

c

∆
∫ ∆
0 xν(x)dx

∆α+1
=

√
2

c

∫ ∆
0 xν(x)dx

∆α
, (B.6)

where the equality follows from Lemma 8. Hence, by L’Hôpital’s rule and Conditions B.2(1) and B.3
we have

lim
∆→0

sup
k≥0

∣∣∣∣
1

∆α+1
e−λ∆∆E[Qk(X

∆
∆ , ρ)]

∣∣∣∣ ≤ lim
∆→0

√
2

c

∫ ∆
0 xν(x)dx

∆α
=

√
2

αc
lim
∆→0

∆2−αν(∆) = 0,

which proves (B.1).
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Second, we consider (B.2). Using (B.5) we obtain

sup
k≥0

∣∣∣∣
1

∆α

∫ ∆

0
Qk(y, ρ)ν(y)dy

∣∣∣∣ ≤
√

2

c

∫ ∆
0 yν(y)dy

∆α
→ 0 as ∆ → 0,

where the last step is due to L’Hôpital’s rule and Conditions B.2(1) and B.3.

Third, we consider (B.3). Note that

sup
k≥0

∣∣∣∣
1

∆α

{
λ∆e

−λ∆∆E[Qk(X
∆
∆ + ξ∆1 , ρ)] −

∫ ∞

∆
Qk(y, ρ)ν(y)dy

}∣∣∣∣

= sup
k≥0

∣∣∣∣
e−λ∆∆ − 1

∆α

∫ ∞

∆
Qk(y, ρ)ν(y)dy +

e−λ∆∆

∆α

∫ ∞

∆
(E[Qk(X

∆
∆ + y, ρ)] −Qk(y, ρ))ν(y)dy

∣∣∣∣

=
1 − e−λ∆∆

∆α

∫ ∞

∆
sup
k≥0

|Qk(y, ρ)|ν(y)dy +
e−λ∆∆

∆α

∫ ∞

∆
sup
k≥0

|E[Qk(X
∆
∆ + y, ρ) −Qk(y, ρ)]|ν(y)dy.

By (B.5) we have

1 − e−λ∆∆

∆α

∫ ∞

∆
sup
k≥0

|Qk(y, ρ)|ν(y)dy ≤
√

2µ1

c

1 − e−λ∆∆

∆α
→ 0 as ∆ → 0,

where the limit is due to L’Hôpital’s rule and Conditions B.2(1) and B.3. See Appendix B of Shimizu
and Zhang (2017). By the uniform upper bound (2.2) we have

sup
k≥0

|Qk(X
∆
∆ + y, ρ)] −Qk(y, ρ)|

= sup
k≥0

∣∣∣∣∣
1

c

∫ X∆
∆+y

y
e−ρ(X∆

∆+y−x)φk(x)dx+
1

c

∫ y

0
[e−ρ(X∆

∆+y−x) − e−ρ(y−x)]φk(x)dx

∣∣∣∣∣

≤ 1

c

∫ X∆
∆+y

y
e−ρ(X∆

∆+y−x) · sup
k≥0

|φk(x)|dx+
1

c

∫ y

0
|e−ρ(X∆

∆+y−x) − e−ρ(y−x)| · sup
k≥0

|φk(x)|dx

≤
√

2

c
X∆

∆ +

√
2

c

∫ y

0
|e−ρ(X∆

∆+y−x) − e−ρ(y−x)|dx.

Furthermore, using the mean value theory we have

|e−ρ(X∆
∆+y−x) − e−ρ(y−x)| = | −X∆

∆ρe
−ρx∗ | ≤ ρX∆

∆ ,

where x∗ > 0 is a random number between y − x and X∆
∆ + y − x. Then we have

sup
k≥0

|Qk(X
∆
∆ + y, ρ)] −Qk(y, ρ)| ≤

√
2

c
X∆

∆ +

√
2

c
ρX∆

∆y.

Using this upper bound we have

e−λ∆∆

∆α

∫ ∞

∆
sup
k≥0

|E[Qk(X
∆
∆ + y, ρ) −Qk(y, ρ)]|ν(y)dy

≤
√

2

c

EX∆
∆

∆α

∫ ∞

∆
ν(y)dy +

√
2

c
ρ

EX∆
∆

∆α

∫ ∞

∆
yν(y)dy
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=

√
2

c

∆
∫ ∆
0 yν(y)dy

∆α

∫ ∞

∆
ν(y)dy +

√
2

c
ρ
∆
∫ ∆
0 yν(y)dy

∆α

∫ ∞

∆
yν(y)dy

≤
√

2

c
µ1

∫ ∆
0 yν(y)dy

∆α
+

√
2

c
ρµ1∆

1−α

∫ ∆

0
yν(y)dy

→ 0 as ∆ → 0,

thanks to L’Hôpital’s rule and Conditions B.2(1) and B.3.

Finally, we consider (B.4). By (B.5) we have

sup
k≥0

∣∣∣∣∣∣
1

∆α+1

∞∑

n=2

λn
∆∆n

n!
e−λ∆∆E


Qk


X∆

∆ +

n∑

j=1

ξ∆j , ρ





∣∣∣∣∣∣

≤ 1

∆α+1

∞∑

n=2

λn
∆∆n

n!
e−λ∆∆E


sup

k≥0

∣∣∣∣∣∣
Qk


X∆

∆ +

n∑

j=1

ξ∆j , ρ



∣∣∣∣∣∣




≤
√

2

c

1

∆α+1

∞∑

n=2

λn
∆∆n

n!
e−λ∆∆E


X∆

∆ +
n∑

j=1

ξ∆j


 .

Then using the same arguments as in the proof of Lemma B.1 in Shimizu and Zhang (2017) can prove
(B.4). This completes the proof.
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