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• A new conservative fourth-order stable finite difference scheme is proposed.
• The scheme is convergent with O(τ 2

+ h4) and unconditionally stable.
• The scheme is mass and energy conserved.
• The scheme can be applied to study the solitary wave traveling in a long time.
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a b s t r a c t

In the presentwork, a conservative fourth-order stable finite difference scheme is proposed
to solve the generalized Rosenau–KdV equation in both 1D and 2D. The existence, unique-
ness, and mass and energy conservations of the numerical solution are proved using the
discrete energymethod. Thenewscheme is convergentwithO(τ 2

+h4) andunconditionally
stable. Numerical experiments are carried out to show that the scheme is efficient and
reliable.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The well-known Korteweg–de Vries (KdV) equation is [1–4]

ut + uux + uxxx = 0,

which has been used to study nonlinear wave phenomena, such as magnetic fluid wave, ion sound wave, and longitudinal
astigmatic wave [5–12]. However, in the study of the dynamics of dense discrete systems, the case of wave–wave andwave–
wall interactions cannot be properly described using the well-known KdV equation. To overcome this drawback, Rosenau
proposed a modified equation, so-called the Rosenau equation [13–15]

ut + ux + uux + uxxxxt = 0.

The existence and uniqueness of the solution for the Rosenau equation were proved by Park [16]. For the further consid-
eration of nonlinear waves, it was suggested that the viscous term uxxx should be included in the Rosenau equation. This
equation is usually called the Rosenau–KdV equation [17–20]

ut + ux + uxxx + uxxxxt + uux = 0.
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Zuo [21] discussed the solitary wave solutions and periodic solutions for the Rosenau–KdV equation.
The 1D initial–boundary value problem of generalized Rosenau–KdV equation has the following form [22]

ut + ux + uxxx + uxxxxt + (up)x = 0, x ∈ Ω, t ∈ [0, T ], (1)

with an initial condition

u(x, 0) = u0(x), x ∈ Ω, (2)

and boundary conditions

u(α, t) = u(β, t) = 0, ux(α, t) = ux(β, t) = 0, t ∈ [0, T ], (3)

where p ≥ 2 is a positive integer, Ω = [α, β], u0(x) is a given smooth function. Here, u(x, t) is the nonlinear wave profile,
and x and t are the spatial and temporal variables, respectively. Since u0(x) tends to zero when α ≪ 0 and β ≫ 0 in most
cases, it is reasonable to assume that u(α, t) = u(β, t) = 0 and ux(α, t) = ux(β, t) = 0, so that the initial condition in Eq. (2)
and the boundary conditions in Eq. (3) are consistent with each other.

We define the following Sobolev space [23]

Hk(Ω) =

{
u(x) :

∫
Ω

[u(j)
]
2dx < +∞, j = 0, 1, 2, . . . , k − 1, k

}
,

Hk
0(Ω) =

{
u(x) ∈ Hk(Ω) :

∂ iu
∂xi

⏐⏐⏐
∂Ω

= 0, i = 0, 1, 2, . . . , k − 1
}
,

where u(j) is the jth order derivative. The initial–boundary value problem in Eqs. (1)–(3) has the following conservative
properties.

Theorem 1.1 (See [24]). Suppose u0(x) ∈ H2
0 ([α, β]), then the solution of the problem in Eqs. (1)–(3) satisfies

Q (t) =

∫ β

α

u(x, t)dx =

∫ β

α

u(x, 0)dx =

∫ β

α

u0(x)dx = Q (0).

Theorem 1.2. Suppose u0(x) ∈ H2
0 ([α, β]), then the solution of the problem in Eqs. (1)–(3) satisfies

E(t) =

∫ β

α

(u2
+ u2

xx)dx = ∥u∥2
L2 + ∥uxx∥

2
L2 = E(0),

where ∥ · ∥L2 denotes L2-norm.

Proof. Rewriting Eq. (1) as

ut + uxxxxt = −ux − uxxx − (up)x,

and considering the boundary conditions in Eq. (3), we have

dE(t)
dt

= 2
∫ β

α

(uut + uxxuxxt )dx = 2
∫ β

α

(uut − uxuxxxt )dx + 2uxuxxt

⏐⏐⏐β
α

= 2
∫ β

α

u(ut + uxxxxt )dx = −2
∫ β

α

u
[
ux + uxxx + (up)x

]
dx

= −

[
u2

+
2p

p + 1
up+1

+ 2uuxx − (ux)2
]⏐⏐⏐β

α
= 0.

Therefore, E(t) is a constant function only depending on the initial data. This completes the proof.

Theorem 1.3. Suppose u0(x) ∈ H2
0 ([α, β]), then the solution of the problem in Eqs. (1)–(3) satisfies ∥u∥L2 ≤ C, ∥ux∥L2 ≤ C,

∥uxx∥L2 ≤ C, and hence ∥u∥L∞ ≤ C, ∥ux∥L∞ ≤ C, where ∥ · ∥L∞ denotes L∞-norm.

Proof. From Theorem 1.2, we know that ∥u∥L2 ≤ C , ∥uxx∥L2 ≤ C . Using the Hölder inequality and the Schwartz
inequality [24], we get

∥ux∥
2
L2 =

∫ β

α

uxuxdx = −

∫ β

α

uuxxdx ≤ ∥u∥L2∥uxx∥L2 ≤
1
2

[
∥u∥2

L2 + ∥uxx∥
2
L2

]
≤ C .

Furthermore, using the Sobolev inequality [25], we obtain

∥u∥L∞ ≤ C1∥u∥L2 + C2∥ux∥L2 ≤ C, ∥ux∥L∞ ≤ C1∥ux∥L2 + C2∥uxx∥L2 ≤ C .

This completes the proof.
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Because of the nonlinearity in Eq. (1), the above problem has to be solved numerically. Up to date, Razborova et al.
[26] discussed the solitary solutions for the generalized Rosenau–KdV equation using the common solitary ansatz method.
Hu et al. [27] proposed a conservative three-level in time linear finite difference scheme with second-order convergence
for the initial–boundary value problem of the Rosenau–KdV equation. Zheng et al. [24] developed an average linear finite
difference scheme for the numerical solution of the generalized Rosenau–KdV equation, inwhich the scheme is second-order
convergent in both time and space variables and unconditionally stable.

On the other hand, as pointed out in [28], the overall accuracy of a specific numerical method is affected by not only
the order of accuracy of the numerical method but also the conservative approximation property. Recently, numerical
schemes that inherit conservation properties have attracted much attention [29,30]. Conservation laws play a very crucial
role in the solution and reduction of partial differential equations [31]. Pan et al. [32] pointed out that the non-conservative
difference schemes may easily show non-linear blow-up and the conservative finite difference schemes are better than
the non-conservative ones. And these conservative properties are advantageous because the conservation of mass should
contribute to stability, and the conservation of energy indicates that the scheme inherits the physical background and should
yield better solutions in a physical point of view [33]. Thus, higher-order accurate and conservative numerical schemes have
developed [15,20,34,35]. In particular, Ghiloufi and Omrani [35] developed fourth-order accurate and conservative finite
difference schemes for the generalized Rosenau–KdV equations. However, these schemes were developed only for 1D cases.
The motivation of this research is to develop a fourth-order accurate, conservative, and stable finite difference scheme for
the initial–boundary value problem of the generalized Rosenau–KdV equation in both 1D and 2D, in order to provide more
accurate solutions.

The rest of this article are organized as follows: Section 2 gives the detailed description of the three-level linearly
implicit finite difference method and its numerical analysis for 1D generalized Rosenau–KdV equation. Section 3 extends
the numerical method and theoretical analysis to the 2D generalized Rosenau–KdV equation case. In Section 4, we give
some numerical simulations to test the accuracy of the obtained schemes and verify our theoretical analysis. Finally, we
wrap up our paper by concluding remarks in Section 5.

2. Numerical method and analysis in 1D

2.1. Fourth-order finite difference scheme and its conservation

In this section, we propose a fourth-order accurate and conservative stable finite difference scheme for the initial–
boundary value problem in Eqs. (1)–(3). To this end, we first describe our solution domain and its grids. The solution domain
is defined to be {(x, t)|α ≤ x ≤ β , 0 ≤ t ≤ T }. Let h = (β − α)/J and τ = T/N be the uniform step sizes in the
spatial and temporal directions, respectively. Denote xj = α + jh, tn = nτ , 0 ≤ j ≤ J , 0 ≤ n ≤ N , un

j ≈ u(xj, tn), and
Z0
h = {u = (uj)|u−1 = u0 = uJ = uJ+1 = 0, −1 ≤ j ≤ J + 1}. We use the following notations, the inner product, l2-norm and

l∞-norm as

(un
j )x̃ =

1
h
(un

j+1 − un
j ), (un

j )x̄ =
1
h
(un

j − un
j−1), (un

j )x̂ =
1
2h

(un
j+1 − un

j−1),

u
n+ 1

2
j =

1
2
(un+1

j + un
j ), (un

j )t̂ =
1
2τ

(un+1
j − un−1

j ), ūn
j =

1
2
(un+1

j + un−1
j ),

⟨un, vn
⟩ = h

J−1∑
j=1

un
j v

n
j , ∥un

∥
2

= ⟨un, un
⟩, ∥un

∥∞ = max
1≤j≤J−1

|un
j |.

For the third-order derivative uxxx (u(3) for simplicity) in Eq. (1), we design a finite difference operator as follows

(uj)ˆ̇xẋẋ = a1(uj+3 − uj−3) + a2(uj+2 − uj−2) + a3(uj+1 − uj−1)

= u(3)
j +

h2

6
u(5)
j + O(h4), (4)

where a1, a2, a3 are constants to be determined. Expanding each term in Eq. (4) using a Taylor series at xj and thenmatching
both sides, we obtain a system of equations for solving a1, a2, a3 as follows:

3a1 + 2a2 + a3 = 0,
h3

3!

(
33a1 + 23a2 + a3

)
=

1
2
,

h3

5!

(
35a1 + 25a2 + a3

)
=

1
12

,

which gives

a1 = −
1

24h3 , a2 =
2

3h3 , a5 = −
29

24h3 . (5)

Substituting Eq. (5) into Eq. (4) gives the following fourth-order approximation for u(3)
j +

h2
6 u(5)

j as

(un
j )ˆ̇xẋẋ =

1
24h3 [un

j−3 − un
j+3 − 16(un

j−2 − un
j+2) + 29(un

j−1 − un
j+1)]. (6)
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By setting

w = −ux − uxxx − uxxxxt − (up)x, (7)

Eq. (1) can be written as w = ut . Using the Taylor series expansion at (xj, tn), we obtain

wn
j = −

[
(un

j )x̂ −
h2

6
(∂3

x u)
n
j

]
−

[
(un

j )ˆ̇xẋẋ −
h2

6
(∂5

x u)
n
j

]
−

[
[(un

j )
p
]x̂ −

h2

6
(∂3

x u
p)nj

]
−

[
(un

j )x̃x̃x̄x̄t̂ −
h2

6
(∂6

x ∂tu)
n
j

]
+ O(h4). (8)

By taking the second-order derivative with respect to x to Eq. (7), we obtain

(∂6
x ∂tu)

n
j = −(∂3

x u)
n
j − (∂5

x u)
n
j − (∂3

x u
p)nj − (∂2

x w)nj . (9)

Substituting Eq. (9) into Eq. (8) gives

wn
j = −(un

j )x̂ − (un
j )ˆ̇xẋẋ − [(un

j )
p
]x̂ − (un

j )x̃x̃x̄x̄t̂ −
h2

6
(∂2

x w)nj + O(h4).

Using the second-order accurate approximations as follows:

wn
j = (∂tu)nj = (un

j )t̂ + O(τ 2), (∂2
x w)nj = (wn

j )x̃x̄ + O(h2), ūn
j = un

j + O(τ 2),

we then obtain a fourth-order accurate finite difference scheme for solving the problem in Eqs. (1)–(3) as follows

(un
j )t̂ +

h2

6
(un

j )x̃x̄t̂ + (un
j )x̂ + (ūn

j )ˆ̇xẋẋ + (un
j )x̃x̃x̄x̄t̂ + [(un

j )
p
]x̂ = 0, (10)

where 2 ≤ j ≤ J − 2, 2 ≤ n ≤ N , and the discrete initial–boundary value conditions are

u0
j = u0(xj), 0 ≤ j ≤ J, (11)

un
0 = un

J = 0, un
−1 = un

1 = 0, un
J−1 = un

J+1 = 0, 1 ≤ n ≤ N. (12)

It should be pointed out that since un
0 = 0 and (ux)n0 = 0 based on Eq. (3), we may assume un

−1 = un
1 = 0 for simplicity.

Similarly, we assume un
J−1 = un

J = un
J+1 = 0, where j = −1 and J +1 are ghost points, 1 ≤ n ≤ N . Since a three-level in time

method is used for the time discretization in the above obtained scheme, we employ a two-level in timemethod to estimate
the solution u1 by

(u0
j )t̃ +

h2

6
(u0

j )x̃x̄t̃ + (u0.5
j )x̂ + (u0.5

j )ˆ̇xẋẋ + (u0
j )x̃x̃x̄x̄t̃ + (u0

j )
p
x̂ = 0, (13)

where (u0
j )t̃ = (u1

j − u0
j )/τ , u

0.5
j = (u0

j + u1
j )/2, j = 2, . . . , J − 2. The matrix system of the scheme in Eqs. (10)–(13) is

symmetric and diagonal dominated, which can be solved effectively by the Thomas algorithm. The nonlinear term of Eq. (1)
has been handled by using the linear implicit approximation. Therefore, the algebraic system of equations is solved easily
by using the presented method since it does not require extra effort to deal with the nonlinear term in the Rosenau–KdV
equation.

Furthermore, it should be pointed out that in [35], a three-level linearized and fourth-order finite difference scheme was
presented. Although there are some similarities, the derivatives are different. In particular, their schemewas obtained based
on taking a weighted average on each derivative term and then discretizing them. Our method discretizes the differential
equation as a whole without any weighted average. As such, our scheme looks much concise as compared with Scheme D
in [35].

The following lemmas and theorems give some properties of the above finite difference scheme in Eqs. (10)–(13).

Lemma 2.1 (See [15,32,34,36]). For any two mesh functions, u, v ∈ Z0
h , we have

⟨ux̃, v⟩ = −⟨u, vx̄⟩, ⟨ux̂, v⟩ = −⟨u, vx̂⟩,

⟨ux̃x̄, v⟩ = −⟨ux̃, vx̃⟩, ⟨ux̃x̄, u⟩ = −∥ux̃∥
2.

Furthermore, if (un
0)x̃x̄ = (un

J )x̃x̄ = 0, then ⟨u, ux̃x̃x̄x̄⟩ = ∥ux̃x̄∥
2.

Theorem 2.2. Suppose u0(x) ∈ H2
0 ([α, β]), then the scheme in Eqs. (10)–(13) is conservative for discrete mass under the

assumption u ∈ Z0
h ; that is, Q

n
= Q n−1

= · · · = Q 0, where

Q n
=

h
2

J−1∑
j=1

(un+1
j + un

j ).
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Proof. By multiplying Eq. (10) by h, summing up for j from 1 to J − 1, we obtain
J−1∑
j=1

[
(un

j )t̂ +
h2

6
(un

j )x̃x̄t̂ + (un
j )x̂ + (ūn

j )ˆ̇xẋẋ + (un
j )x̃x̃x̄x̄t̂ + (un

j )
p
x̂

]
h = 0.

Based on the discrete boundary conditions in Eq. (12) together with Lemma 2.1, we obtain

h
2

J−1∑
j=1

(un+1
j − un−1

j ) = 0,

and hence
J−1∑
j=1

un+1
j =

J−1∑
j=1

un−1
j .

Thus, this gives

Q n
=

h
2

J−1∑
j=1

(un+1
j + un

j ) =
h
2

J−1∑
j=1

(un−1
j + un

j ) = Q n−1
= · · · = Q 0,

hence, we complete the proof.

Lemma 2.3 (Discrete Sobolev’s Inequality [37]). For any discrete function un
j on the finite interval [α, β], j = 0, 1, 2, . . . , J ,

n = 0, 1, 2, . . . ,N, there exist two positive constants C1 and C2 such that

∥un
∥∞ ≤ C1∥un

∥ + C2∥un
x̃∥.

Lemma 2.4 (See [28]). For any mesh function u ∈ Z0
h , we have ⟨ux̂, u⟩ = 0.

Lemma 2.5. For any mesh function u ∈ Z0
h , we have ⟨uˆ̇xẋẋ, u⟩ = 0.

Proof. For any mesh function u ∈ Z0
h , we obtain

J−1∑
j=1

(un
j−1 − un

j+1)u
n
j =

J−1∑
j=1

un
j u

n
j−1 −

J∑
j=2

un
j u

n
j−1 = 0, (14)

J−1∑
j=1

(un
j−2 − un

j+2)u
n
j =

J−1∑
j=1

un
j u

n
j−2 −

J+1∑
j=3

un
j u

n
j−2 = 0, (15)

J−1∑
j=1

(un
j−3 − un

j+3)u
n
j =

J−1∑
j=1

un
j u

n
j−3 −

J+2∑
j=4

un
j u

n
j−3 = 0. (16)

Thus, from Eqs. (14)–(16) and the definition of uˆ̇xẋẋ, we obtain ⟨uˆ̇xẋẋ, u⟩ = 0. This completes the proof.

Lemma 2.6 (See [15]). For any discrete function un
j ∈ Z0

h , we have

∥un
x̂∥ ≤ ∥un

x̃∥, ∥un
x̃∥

2
≤

4
h2 ∥un

∥
2, j = 0, 1, 2, . . . , J, n = 0, 1, 2, . . . ,N.

Theorem 2.7. Suppose u0(x) ∈ H2
0 ([α, β]), then the solution un of the scheme in Eqs. (10)–(13) satisfies ∥un

∥ ≤ C, ∥un
x̃∥ ≤ C,

∥un
x̃x̄∥ ≤ C, which yield ∥un

∥∞ ≤ C, ∥un
x̃∥∞ ≤ C, ∥un

x̄∥∞ ≤ C, ∥un
x̂∥∞ ≤ C, n = 1, 2, 3, . . . ,N.

Proof. We use the mathematical induction method to prove it. It follows from the discrete initial condition in Eq. (11) that
∥u0

∥ ≤ C and ∥u0
∥∞ ≤ C . The first level {u1

j } (j = 0, 1, 2, . . . , J) is computed by the scheme in Eq. (13). Taking the inner
product of Eq. (13) with 2u0.5 (i.e., u1

+ u0), we obtain

⟨(u0)t̃ +
h2

6
(u0)x̃x̄t̃ + (u0.5)x̂ + (u0.5)ˆ̇xẋẋ + (u0)x̃x̃x̄x̄t̃ + (u0)px̂, 2u

0.5
⟩ = 0. (17)

By Lemma 2.1, we obtain

⟨(u0)t̃ , 2u
0.5

⟩ = ∥u0
∥
2
t̃ , ⟨(u0)x̃x̄t̃ , 2u

0.5
⟩ = −∥u0

x̃∥
2
t̃ , ⟨(u0)x̃x̃x̄x̄t̃ , 2u

0.5
⟩ = ∥u0

x̃x̄∥
2
t̃ . (18)
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By Lemmas 2.4 and 2.5, we obtain

⟨(u0.5)x̂, 2u0.5
⟩ = 0, ⟨(u0.5)ˆ̇xẋẋ, 2u0.5

⟩ = 0. (19)

Substituting Eqs. (18)–(19) into Eq. (17) gives

∥u0
∥
2
t̃ −

h2

6
∥u0

x̃∥
2
t̃ + ∥u0

x̃x̄∥
2
t̃ + ⟨(u0)px̂, 2u

0.5
⟩ = 0. (20)

According to the Cauchy–Schwarz inequality [15] and Lemma 2.1, we obtain

⟨(u0)px̂, 2u
0.5

⟩ = −h
J−1∑
j=1

[
(u0

j )
p(u1

j + u0
j )x̂

]
≤ C(∥u0

∥
2
+

1
2
∥u1

x̃∥
2
+

1
2
∥u0

x̃∥
2). (21)

Denoting

E0
≡ ∥u0

∥
2
−

h2

6
∥u0

x̃∥
2
+ ∥u0

x̃x̄∥
2, E1

≡ ∥u1
∥
2
−

h2

6
∥u1

x̃∥
2
+ ∥u1

x̃x̄∥
2, (22)

we obtain from Eqs. (20)–(22) that

E1
− E0

≤ Cτ (E1
+ E0). (23)

Thus, if τ is sufficiently small such that τ ≤
k−2
Ck when k > 2, then we have

E1
≤

1 + Cτ

1 − Cτ
E0

≤ (1 + Ckτ )E0
≤ exp(kCT )E0. (24)

Furthermore, from Lemma 2.6, we can obtain

∥u1
∥
2
−

h2

6
∥u1

x̃∥
2

≥ ∥u1
∥
2
−

h2

6
4
h2 ∥u1

∥
2

≥
1
3
∥u1

∥
2

≥ 0, (25)

implying that

E1
≥

1
3
∥u1

∥
2
+ ∥u1

x̃x̄∥
2

≥ 0. (26)

From Eqs. (25)–(26), we obtain ∥u1
∥ ≤ C , ∥u1

x̃x̄∥ ≤ C . By Lemma 2.1 and the Schwartz inequality [15], we obtain

∥u1
x̃∥

2
≤ ∥u1

∥∥u1
x̃x̄∥ ≤

1
2
(∥u1

∥
2
+ ∥u1

x̃x̄∥
2) ≤ C,

and hence ∥u1
∥∞ ≤ C according to Lemma 2.3.

We now assume that ∥uk
∥ ≤ C , ∥uk

∥∞ ≤ C , k = 0, 1, 2, . . . , n. Taking the inner product of Eq. (10) with 2ūn

(i.e. un+1
+ un−1), we obtain

⟨(un)t̂ +
h2

6
(un)x̃x̄t̂ + (un)x̂ + (ūn)ˆ̇xẋẋ + (un)x̃x̃x̄x̄t̂ + (un)px̂, 2ū

n
⟩ = 0. (27)

By Lemma 2.1, we obtain

⟨(un)t̂ , 2ū
n
⟩ = ∥un

∥
2
t̂ , ⟨(un)x̃x̄t̂ , 2ū

n
⟩ = −∥un

x̃∥
2
t̂ , ⟨(un)x̃x̃x̄x̄t̂ , 2ū

n
⟩ = ∥un

x̃x̄∥
2
t̂ . (28)

Substituting Eq. (28) into Eq. (27) gives

∥un+1
∥
2
− ∥un−1

∥
2
−

h2

6
(∥un+1

x̃ ∥
2
− ∥un−1

x̃ ∥
2) + ∥un+1

x̃x̄ ∥
2
− ∥un−1

x̃x̄ ∥
2

= −2τ [⟨(un)x̂, 2ūn
⟩ + ⟨(ūn)ˆ̇xẋẋ, 2ūn

⟩ + ⟨(un)px̂, 2ū
n
⟩]. (29)

According to the Cauchy–Schwarz inequality [15], Lemmas 2.1, 2.5, 2.6 and using some direct calculations, we obtain

⟨(ūn)ˆ̇xẋẋ, 2ūn
⟩ = 0, (30)

⟨(un)x̂, 2ūn
⟩ ≤ ∥un

x̃∥
2
+

1
2
(∥un+1

∥
2
+ ∥un−1

∥
2), (31)

⟨[(un)p]x̂, 2ūn
⟩ = −h

J−1∑
j=1

[
(un

j )
p
· (un+1

j + un−1
j )x̂

]
≤ C(∥un

∥
2
+

1
2
∥un+1

x̃ ∥
2
+

1
2
∥un−1

x̃ ∥
2). (32)
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Denoting

En
≡ ∥un+1

∥
2
+ ∥un

∥
2
−

h2

6
(∥un+1

x̃ ∥
2
+ ∥un

x̃∥
2) + ∥un+1

x̃x̄ ∥
2
+ ∥un

x̃x̄∥
2, n > 1, (33)

we obtain from Eqs. (29)–(33) that

En
− En−1

≤ Cτ (En
+ En−1), n > 1.

Thus, if τ is sufficiently small such that τ ≤
k−2
Ck when k > 2, then we have

En
≤

1 + Cτ

1 − Cτ
En−1

≤ (1 + Ckτ )En−1
≤ (1 + Ckτ )nE0

≤ exp(kCT )E0. (34)

Similarly, from Lemma 2.6, we can obtain

∥un
∥
2
−

h2

6
∥un

x̃∥
2

≥ ∥un
∥
2
−

h2

6
4
h2 ∥un

∥
2

≥
1
3
∥un

∥
2

≥ 0, n > 1,

implying that

En
≥

1
3
∥un+1

∥
2
+

1
3
∥un

∥
2
+ ∥un+1

x̃x̄ ∥
2
+ ∥un

x̃x̄∥
2

≥ 0, n > 1. (35)

From Eqs. (34)–(35), we obtain ∥un+1
∥ ≤ C , ∥un+1

x̃x̄ ∥ ≤ C , n > 1. By Lemma 2.1 and the Schwartz inequality, we obtain

∥un+1
x̃ ∥

2
≤ ∥un+1

∥∥un+1
x̃x̄ ∥ ≤

1
2
(∥un+1

∥
2
+ ∥un+1

x̃x̄ ∥
2) ≤ C, n > 1,

and hence ∥un+1
∥∞ ≤ C according to Lemma 2.3. This completes the proof.

2.2. Solvability, convergence and stability

Theorem 2.8. The finite difference scheme in Eqs. (10)–(13) is uniquely solvable.

Proof. We use the mathematical induction to prove it. First, we can determine u0 uniquely by the discrete initial condition
in Eq. (11) and then choose a fourth-order method, such as Eq. (13), to compute u1. Suppose that u0, u1, u2, . . . , un can be
solved uniquely. We consider the homogeneous form of Eq. (10) for un+1 as

1
2τ

un+1
j +

h2

6
1
2τ

(un+1
j )x̃x̄ +

1
2τ

(un+1
j )x̃x̃x̄x̄ +

1
2
(un+1

j )ˆ̇xẋẋ = 0. (36)

Taking the inner product of Eq. (36) with un+1, we obtain from the discrete boundary condition in Eq. (12) and Lemmas 2.1,
2.5 that

∥un+1
∥
2
−

h2

6
∥un+1

x̃ ∥
2
+ ∥un+1

x̃x̄ ∥
2

= 0. (37)

Based on the Cauchy–Schwarz inequality [15] and Eq. (37), we obtain

∥un+1
x̃ ∥

2
≤

1
2
(∥un+1

∥
2
+ ∥un+1

x̃x̄ ∥
2) =

h2

12
∥un+1

x̃ ∥
2, (38)

implying that ∥un+1
x̃ ∥

2
= 0 when h is small and ∥un+1

∥
2

+ ∥un+1
x̃x̄ ∥

2
= 0. By Lemma 2.3, we obtain ∥un+1

∥∞ = 0. Hence,
there uniquely admits a zero solution satisfying the scheme in Eqs. (10)–(13). Therefore, un+1 is uniquely solvable, and the
proof completes.

Lemma 2.9 (Discrete Gronwall’s Inequality [15,35]). Suppose that w(k) and ρ(k) are nonnegative functions and ρ(k) is
nondecreasing. If

w(k) ≤ ρ(k) + Cτ

k−1∑
l=0

w(l), C > 0,

then w(k) ≤ ρ(k)eCτk.
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Theorem 2.10. Supposing u0(x) ∈ H2
0 ([α, β]), then the solution un of the scheme in Eqs. (10)–(13) converges to the solution of

the problem in Eqs. (1)–(3) with the convergence rate of O(τ 2
+ h4) in both l2-norm and l∞-norm.

Proof. Let enj = vn
j − un

j , where vn
j and un

j are the solutions of the problem in Eqs. (1)–(3) and the scheme in Eqs. (10)–(13),
respectively. Then, we obtain the following error equation

Rn
j = (enj )t̂ +

h2

6
(enj )x̃x̄t̂ + (enj )x̂ + (ēnj )ˆ̇xẋẋ + (enj )x̃x̃x̄x̄t̂ + [(vn

j )
p
− (un

j )
p
]x̂, (39)

and en
−1 = en0 = en1 = 0, enJ−1 = enJ = enJ+1 = 0, where ēnj = (en+1

j + en−1
j )/2. Taking the inner product of Eq. (39) with 2ēn

(i.e., en+1
+ en−1), we have

1
2τ

{
∥en+1

∥
2
− ∥en−1

∥
2
−

h2

6
[∥en+1

x̃ ∥
2
− ∥en−1

x̃ ∥
2
] + ∥en+1

x̃x̄ ∥
2
− ∥en−1

x̃x̄ ∥
2
}

= ⟨Rn, 2ēn⟩ − ⟨(en)x̂, 2ēn⟩ − ⟨(ēn)ˆ̇xẋẋ, 2ēn⟩ + ⟨[(un)p − (vn)p]x̂, 2ēn⟩. (40)

By Lemma 2.1 and Theorem 2.7, we have

⟨[(un)p − (vn)p]x̂, 2ēn⟩

= −h
J−1∑
j=1

{[
(un

j )
p
− (vn

j )
p
]

· 2(ēnj )x̂
}

= −h
J−1∑
j=1

{p−1∑
k=1

[
(un

j )
p−k(vn

j )
k(ēnj )

]
· 2(ēnj )x̂

}
≤ C(∥en−1

∥
2
+ ∥en+1

∥
2
+ ∥en−1

x̃ ∥
2
+ ∥en+1

x̃ ∥
2). (41)

By the Cauchy–Schwarz inequality [15], Lemmas 2.1 and 2.5, we obtain

∥enx̂∥
2

≤ ∥enx̃∥
2

= −⟨en, enx̃x̄⟩ ≤
1
2
(∥en∥2

+ ∥enx̃x̄∥
2), (42)

⟨enx̂ , 2ē
n
⟩ ≤ ∥enx̂∥

2
+

1
2
(∥en+1

∥
2
+ ∥en−1

∥
2), (43)

⟨ēnˆ̇xẋẋ, 2ēn⟩ = 0, (44)

⟨Rn, 2ēn⟩ = ⟨Rn, en+1
+ en−1

⟩ ≤ ∥Rn
∥
2
+

1
2

(
∥en+1

∥
2
+ ∥en−1

∥
2
)
. (45)

Substituting Eqs. (41)–(45) into Eq. (40) gives

∥en+1
∥
2
− ∥en−1

∥
2
−

h2

6
(∥en+1

x̃ ∥
2
− ∥en−1

x̃ ∥
2) + ∥en+1

x̃x̄ ∥
2
− ∥en−1

x̃x̄ ∥
2

≤ 2τ∥Rn
∥
2
+ Cτ (∥en+1

x̃x̄ ∥
2
+ ∥en−1

x̃x̄ ∥
2
+ ∥en+1

∥
2
+ ∥en∥2

+ ∥en−1
∥
2). (46)

Denoting

Γ n
≡ ∥en+1

∥
2
+ ∥en∥2

−
h2

6
(∥en+1

x̃ ∥
2
+ ∥enx̃∥

2) + ∥en+1
x̃x̄ ∥

2
+ ∥enx̃x̄∥

2,

then we have from Lemma 2.6 that

Γ n
≥

1
3
∥en+1

∥
2
+

1
3
∥en∥2

+ ∥en+1
x̃x̄ ∥

2
+ ∥enx̃x̄∥

2
≥ 0,

and Eq. (46) can be simplified to

Γ n
− Γ n−1

≤ 2τ∥Rn
∥
2
+ Cτ (Γ n

+ Γ n−1).

Hence, we obtain

(1 − Cτ )(Γ n
− Γ n−1) ≤ 2τ∥Rn

∥
2
+ 2CτΓ n−1.

If τ is sufficiently small such that 1 − Cτ > 1/2, then

Γ n
− Γ n−1

≤ Cτ∥Rn
∥
2
+ CτΓ n−1. (47)
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Summarizing Eq. (47) from 1 to n, we obtain

Γ n
≤ Γ 0

+ Cτ

n∑
l=1

∥Rl
∥
2
+ Cτ

n∑
l=1

Γ l−1.

Note that

τ

n∑
l=1

∥Rl
∥
2

≤ nτ max
1≤l≤n

∥Rl
∥
2

≤ T · O(τ 2
+ h4)2,

if we use a fourth-order method such as Eq. (13) to compute u1 such that

e0 = 0, Γ 0
≤ O(τ 2

+ h4),

then we have

Γ n
≤ O(τ 2

+ h4)2 + Cτ

n∑
k=1

Γ k−1.

By Lemma 2.9, we obtain that Γ n
≤ O(τ 2

+ h4)2, implying

∥en+1
∥ ≤ O(τ 2

+ h4), ∥en+1
x̃x̄ ∥ ≤ O(τ 2

+ h4). (48)

Furthermore, by Lemma 2.1 and the Cauchy–Schwarz inequality [15], we have

∥en+1
x̃ ∥ ≤ ∥en+1

∥
1
2 ∥en+1

x̃x̄ ∥
1
2 ≤

1
2

[
∥en+1

∥ + ∥en+1
x̃x̄ ∥

]
≤ O(τ 2

+ h4),

andhence ∥en+1
∥∞ ≤ O(τ 2

+h4) according to Lemma2.3. Therefore, the solutionun of the scheme in Eqs. (10)–(13) converges
to the solution of the problem in Eqs. (1)–(3) in both l2-norm and l∞-norm with the convergence rate of O(τ 2

+ h4).
Using a similar argument as the proof for Theorem 2.10, one may obtain Theorem 2.11.

Theorem 2.11. Supposing u0(x) ∈ H2
0 ([α, β]), then the scheme in Eqs. (10)–(13) is unconditionally stable in the sense of l2-norm

and l∞-norm.

3. Numerical method and analysis in 2D

In this section, we would like to extend our scheme to a 2D case and consider the 2D generalized Rosenau–KdV equation
as

ut + ∇ · u + uxxx + uyyy + uxxxxt + uyyyyt + ∇ · up
= 0, (x, y, t) ∈ Ω × [0, T ], (49)

subject to the initial condition

u(x, y, 0) = u0(x, y), (x, y) ∈ Ω, (50)

and boundary conditions

u(α, y, t) = u(β, y, t) = 0, u(x, α, t) = u(x, β, t) = 0, (51)

ux(α, y, t) = ux(β, y, t) = 0, uy(x, α, t) = uy(x, β, t) = 0, t ∈ [0, T ], (52)

where ∇ · u = ∂u/∂x + ∂u/∂y, Ω = [α, β] × [α, β], p ≥ 2 is a positive integer, u0(x, y) is a given smooth function.
Here, the solution domain is defined as {(x, y, t)|α ≤ x ≤ β , α ≤ y ≤ β , 0 ≤ t ≤ T }, which is covered by a uniform mesh

{(xi, yj, tn)|xi = ih, yj = jh, tn = nτ , 0 ≤ i ≤ J, 0 ≤ j ≤ J, 0 ≤ n ≤ N},

with spacing h = (β − α)/J , τ = T/N . We denote un
i,j to be the numerical approximation of u(xi, yj, tn) and

Z0
h,h = {u = (ui,j)|u−1,j = u0,j = uJ,j = uJ+1,j = 0, ui,−1 = ui,0 = ui,J = ui,J+1 = 0},

where −1 ≤ i, j ≤ J + 1. Similar to the 1D case, the difference operators are defined as follows:

(un
i,j)x̃ =

un
i+1,j − un

i,j

h
, (un

i,j)x̄ =
un
i,j − un

i−1,j

h
, (un

i,j)x̂ =
un
i+1,j − un

i−1,j

2h
,

(un
i,j)ỹ =

un
i,j+1 − un

i,j

h
, (un

i,j)ȳ =
un
i,j − un

i,j−1

h
, (un

i,j)ŷ =
un
i,j+1 − un

i,j−1

2h
,

(un
i,j)t̂ =

un+1
i,j − un−1

i,j

2τ
, (un

i,j)t̃ =
un+1
i,j − un

i,j

τ
, ūn

i,j =
1
2
(un+1

i,j + un−1
i,j ),
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∇hun
i,j = (un

i,j)x̂ + (un
i,j)ŷ, ∆hun

i,j = (un
i,j)x̃x̄ + (un

i,j)ỹȳ.

Furthermore, for u, v ∈ Z0
h,h, the inner product and Sobolev norms (or seminorms) are defined as

⟨u, v⟩ = h2
J∑

i,j=1

ui,jvi,j, ∥u∥ =

√
⟨u, u⟩,

|u|1 =

√
∥ux̃∥

2 + ∥uỹ∥
2, ∥u∥∞ = max

1≤i,j≤J
|ui,j|,

∥∇hu∥ =

√h2
J∑

i,j=1

(
|(ui,j)x̂|2 + |(ui,j)ŷ|2

)
, ∥∆hu∥ =

√h2
J∑

i,j=1

|∆hui,j|
2.

Using the result in the 1D case, the third-order derivatives uxxx and uyyy on the left-hand side of Eq. (49) are approximated
by

(un
i,j)ˆ̇xẋẋ =

1
24h3 [un

i−3,j − un
i+3,j − 16(un

i−2,j − un
i+2,j) + 29(un

i−1,j − un
i+1,j)],

(un
i,j)ˆ̇yẏẏ =

1
24h3 [un

i,j−3 − un
i,j+3 − 16(un

i,j−2 − un
i,j+2) + 29(un

i,j−1 − un
i,j+1)],

with fourth-order truncation errors at (xi = ih, yj = jh, tn = nτ ).
Thus, the extended fourth-order accurate finite difference scheme for 2D generalized Rosenau–KdV equation can be

written as

(un
i,j)t̂ +

h2

6
∆h(un

i,j)t̂ + ∇hun
i,j + [(ūn

i,j)ˆ̇xẋẋ + (ūn
i,j)ˆ̇yẏẏ] + ∇h(un

i,j)
p

+
h2

6
[(un

i,j)x̃x̄ŷ + (un
i,j)x̂ỹȳ + (un

i,j)
p
x̃x̄ŷ + (un

i,j)
p
x̂ỹȳ]

+[(un
i,j)x̃x̃x̄x̄t̂ + (un

i,j)ỹỹȳȳt̂ ] +
h2

6
[(un

i,j)x̃x̄ỹỹȳȳt̂ + (un
i,j)x̃x̃x̄x̄ỹȳt̂ ] = 0, (53)

where p ≥ 2, 3 ≤ i, j ≤ J − 3, 2 ≤ n ≤ N , and the discrete initial–boundary value conditions are given as

u0
i,j = u0(xi, yj), 0 ≤ i, j ≤ J, (54)

un
0,j = un

J,j = un
−1,j = un

1,j = un
J−1,j = un

J+1,j = 0, (55)

un
i,0 = un

i,J = un
i,−1 = un

i,1 = un
i,J−1 = un

i,J+1 = 0, 1 ≤ n ≤ N. (56)

Since the scheme is a three-level method, to start the computation, a two-level in time method to estimate the solution
u1 is given

(u0
i,j)t̃ +

h2

6
∆h(u0

i,j)t̃ + ∇hu0.5
i,j + [(u0.5

i,j )ˆ̇xẋẋ + (u0.5
i,j )ˆ̇yẏẏ] + ∇h(u0

i,j)
p

+
h2

6
[(u0

i,j)x̃x̄ŷ + (u0
i,j)x̂ỹȳ + (u0

i,j)
p
x̃x̄ŷ + (u0

i,j)
p
x̂ỹȳ] + [(u0

i,j)x̃x̃x̄x̄t̃ + (u0
i,j)ỹỹȳȳt̃ ]

+
h2

6
[(u0

i,j)x̃x̄ỹỹȳȳt̃ + (u0
i,j)x̃x̃x̄x̄ỹȳt̃ ] = 0, (57)

where (u0
i,j)t̃ = (u1

i,j − u0
i,j)/τ , u

0.5
i,j = (u0

i,j + u1
i,j)/2, i, j = 2, . . . , J − 2.

We will analyse the conservation, stability, uniqueness and convergence of the above scheme using a similar method in
the previous section.

Lemma 3.1 (See [38–40]). For any two mesh functions u, v ∈ Z0
h,h, we have

⟨∇hu, v⟩ = −⟨u, ∇hv⟩, ⟨∆hu, u⟩ = −|u|21.

Lemma 3.2. For any two mesh functions u, v ∈ Z0
h,h, we have ⟨∆hu, v⟩ = ⟨u, ∆hv⟩.

Theorem 3.3. For any mesh function u ∈ Z0
h,h, we have

⟨ux̃x̄ỹỹȳȳ, u⟩ = −∥ux̃ỹȳ∥
2, ⟨uỹȳx̃x̃x̄x̄, u⟩ = −∥uỹx̃x̄∥

2.
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Proof. By Lemma 2.1, we obtain

⟨ux̃x̄ỹỹȳȳ, u⟩ = ⟨(uỹỹȳȳ)x̃x̄, u⟩ = −⟨(uỹỹȳȳ)x̃, ux̃⟩ = −⟨(ux̃)ỹỹȳȳ, ux̃⟩ = −∥ux̃ỹȳ∥
2,

and similarly ⟨uỹȳx̃x̃x̄x̄, u⟩ = −∥uỹx̃x̄∥
2.

Lemma 3.4 (See [40,41]). For any mesh function u ∈ Z0
h,h, we have

|u|1 ≤
1

2
√
3
∥∆hu∥.

Lemma 3.5 (See [41]). For any mesh function u ∈ Z0
h,h, we have

∥∇hu∥2
≤ ∥u∥ · ∥∆hu∥, ∥u∥2

∞
≤ C∥u∥ · (∥∆hu∥ + ∥u∥).

Theorem 3.6. Suppose that u0(x, y) ∈ H2
0 (Ω). Then the finite difference scheme in Eqs. (53)–(57) is conservative for discrete mass

in the sense of Q n
= Q n−1

= · · · = Q 0, where

Q n
=

h2

2

J∑
i,j=1

[
(un+1

i,j + un
i,j)

]
. (58)

Theorem 3.7. Suppose that u0 ∈ H2
0 (Ω). If τ is sufficiently small, then the finite difference scheme in Eqs. (53)–(57) satisfies

|u|1 ≤ C, ∥un
∥ ≤ C, ∥∇hun

∥ ≤ C, ∥∆hun
∥ ≤ C, ∥un

∥∞ ≤ C, n = 1, 2, 3, . . . ,N.

Proof.We use the mathematical induction method to prove it similar to the proof for Theorem 2.7. In particular, taking the
inner product of Eq. (53) with 2ūn (i.e., un+1

+ un−1), we obtain

⟨(un)t̂ , 2ū
n
⟩ +

h2

6
⟨∆h(un)t̂ , 2ū

n
⟩ + ⟨∇hun, 2ūn

⟩ + ⟨(ūn)ˆ̇xẋẋ + (ūn)ˆ̇yẏẏ, 2ūn
⟩

+⟨∇h(un)p, 2ūn
⟩ +

h2

6
⟨(un)x̃x̄ŷ + (un)x̂ỹȳ + (un)px̃x̄ŷ + (un)px̂ỹȳ, 2ū

n
⟩

+⟨(un)x̃x̃x̄x̄t̂ + (un)ỹỹȳȳt̂ , 2ū
n
⟩ +

h2

6
⟨(un)x̃x̄ỹỹȳȳt̂ + (un)x̃x̃x̄x̄ỹȳt̂ , 2ū

n
⟩ = 0. (59)

According to Lemmas 2.1 and 3.1, we obtain

⟨(un)t̂ , 2ū
n
⟩ = ∥un

∥
2
t̂ , ⟨∆h(un)t̂ , 2ū

n
⟩ = −(|un

|1)
2
t̂ , (60)

⟨(un)x̃x̃x̄x̄t̂ , 2ū
n
⟩ = ∥un

x̃x̄∥
2
t̂ , ⟨(un)ỹỹȳȳt̂ , 2ū

n
⟩ = ∥un

ỹȳ∥
2
t̂ , (61)

⟨(un)x̃x̃ỹỹȳȳt̂ , 2ū
n
⟩ = ∥un

x̃ỹȳ∥
2
t̂ , ⟨(un)x̃x̃x̄x̄ỹȳt̂ , 2ū

n
⟩ = ∥un

x̃x̄ỹ∥
2
t̂ . (62)

Substituting Eqs. (60)–(62) into Eq. (59) gives

∥un
∥
2
t̂ −

h2

6
(|un

|1)
2
t̂ + ∥un

x̃x̄∥
2
t̂ + ∥un

ỹȳ∥
2
t̂ +

h2

6
(∥un

x̃ỹȳ∥
2
t̂ + ∥un

x̃x̄ỹ∥
2
t̂ )

= −⟨∇hun, 2ūn
⟩ − ⟨(ūn)ˆ̇xẋẋ + (ūn)ˆ̇yẏẏ, 2ūn

⟩ − ⟨∇h(un)p, 2ūn
⟩

−
h2

6
⟨(un)x̃x̄ŷ + (un)x̂ỹȳ + (un)px̃x̄ŷ + (un)px̂ỹȳ, 2ū

n
⟩. (63)

Based on the Cauchy–Schwarz inequality [15], Lemmas 2.5, 3.1, 3.4 and the assumption ofmathematical induction,we obtain

⟨(ūn)ˆ̇xẋẋ + (ūn)ˆ̇yẏẏ, 2ūn
⟩ = 0, (64)

⟨∇hun, 2ūn
⟩ ≤ |un

|
2
1 + ∥un+1

∥
2
+ ∥un−1

∥
2, (65)

⟨(un)x̃x̄ŷ, 2ūn
⟩ ≤ ∥un

x̃x̄ỹ∥
2
+

1
2
(∥un+1

∥
2
+ ∥un−1

∥
2), (66)

⟨(un)x̂ỹȳ, 2ūn
⟩ ≤ ∥un

x̃ỹȳ∥
2
+

1
2
(∥un+1

∥
2
+ ∥un−1

∥
2), (67)



X. Wang and W. Dai / Journal of Computational and Applied Mathematics 355 (2019) 310–331 321

⟨∇h(un)p, 2ūn
⟩ ≤ C

[
∥un

∥
2
+

1
2
(|un+1

|
2
1 + |un−1

|
2
1)

]
, (68)

⟨(un)px̃x̄ŷ, 2ū
n
⟩ ≤ C

[
∥un

∥
2
+

1
2
∥un+1

x̃x̄ỹ ∥
2
+

1
2
∥un−1

x̃x̄ỹ ∥
2
]
, (69)

⟨(un)px̂ỹȳ, 2ū
n
⟩ ≤ C

[
∥un

∥
2
+

1
2
∥un+1

x̃ỹȳ ∥
2
+

1
2
∥un−1

x̃ỹȳ ∥
2
]
. (70)

Denoting

En
≡ ∥un+1

∥
2
+ ∥un

∥
2
−

h2

6
(|un+1

|
2
1 + |un

|
2
1) + ∥un+1

x̃x̄ ∥
2
+ ∥un

x̃x̄∥
2

+ ∥un+1
ỹȳ ∥

2
+ ∥un

ỹȳ∥
2
+

h2

6
(∥un+1

x̃ỹȳ ∥
2
+ ∥un

x̃ỹȳ∥
2
+ ∥un+1

ỹx̃x̄ ∥
2
+ ∥un

ỹx̃x̄∥
2), (71)

we obtain from Eqs. (63)–(71) that

En
− En−1

≤ Cτ (En
+ En−1), n > 1.

Thus, if τ is sufficiently small such that τ ≤
k−2
Ck when k > 2, then we have

En
≤

1 + Cτ

1 − Cτ
En−1

≤ (1 + Ckτ )En−1
≤ (1 + Ckτ )nE0

≤ exp(kCT )E0. (72)

From Lemma 2.6, we can obtain

∥un
∥
2
−

h2

6
(|un

|1)
2

≥ ∥un
∥
2
−

h2

6
4
h2 ∥un

∥
2

≥
1
3
∥un

∥
2

≥ 0, n > 1,

implying that

En
≥

1
3
(∥un+1

∥
2
+ ∥un

∥
2) + ∥un+1

x̃x̄ ∥
2
+ ∥un

x̃x̄∥
2
+ ∥un+1

ỹȳ ∥
2
+ ∥un

ỹȳ∥
2

+
h2

6
(∥un+1

x̃ỹȳ ∥
2
+ ∥un

x̃ỹȳ∥
2
+ ∥un+1

ỹx̃x̄ ∥
2
+ ∥un

ỹx̃x̄∥
2) ≥ 0, n > 1. (73)

From Eqs. (72)–(73), we obtain ∥un
∥ ≤ C , ∥un

x̃x̄∥ ≤ C , ∥un
ỹȳ∥ ≤ C , n > 1. By the definition of ∥∆hu∥, we have ∥∆hun

∥ ≤ C .
From Lemmas 3.4 and 3.5, we obtain |un

|1 ≤ C , ∥∇hun
∥ ≤ C , ∥un

∥∞ ≤ C , n = 1, 2, 3, . . . ,N . This completes the proof.

Theorem 3.8. The finite difference scheme in Eqs. (53)–(57) has a unique solution.

Proof. We use the mathematical induction method to prove it similar to that for Theorem 2.8. Suppose that u1, u2, . . . , un

(1 ≤ n ≤ N − 1) can be solved uniquely. We consider the homogeneous form of Eq. (53) for un+1 as
1
2τ

un+1
i,j +

1
2τ

[(un+1
i,j )x̃x̃x̄x̄ + (un+1

i,j )ỹỹȳȳ] +
1
2
[(un+1

i,j )ˆ̇xẋẋ + (un+1
i,j )ˆ̇yẏẏ]

+
h2

6
1
2τ

[∆h(un+1
i,j ) + (un+1

i,j )x̃x̄ỹỹȳȳ + (un+1
i,j )x̃x̃x̄x̄ỹȳ] = 0. (74)

Taking the inner product of Eq. (74) with un+1, we obtain from the discrete boundary conditions in Eqs. (55)–(56) and by
Lemmas 3.1, Lemma 3.3 that

∥un+1
∥
2
−

h2

6
|un+1

|
2
1 + ∥un+1

x̃x̄ ∥
2
+ ∥un+1

ỹȳ ∥
2
−

h2

6
(∥un+1

x̃ỹȳ ∥
2
+ ∥un+1

x̃x̄ ỹ∥2) = 0. (75)

By Lemma 2.6, we obtain

∥un+1
∥
2
−

h2

6
|un+1

|
2
1 ≥ ∥un+1

∥
2
−

h2

6
4
h2 ∥un+1

∥
2

=
1
3
∥un+1

∥
2, (76)

∥un+1
x̃x̄ ∥

2
−

h2

6
∥un+1

x̃x̄ỹ ∥
2

≥ ∥un+1
x̃x̄ ∥

2
−

h2

6
4
h2 ∥un+1

x̃x̄ ∥
2

=
1
3
∥un+1

x̃x̄ ∥
2, (77)

∥un+1
ỹȳ ∥

2
−

h2

6
∥un+1

x̃ỹȳ ∥
2

≥ ∥un+1
ỹȳ ∥

2
−

h2

6
4
h2 ∥un+1

ỹȳ ∥
2

=
1
3
∥un+1

ỹȳ ∥
2. (78)

From Eqs. (75)–(78), we obtain

∥un+1
∥
2
+ ∥un+1

x̃x̄ ∥
2
+ ∥un+1

ỹȳ ∥
2

≤ 0,
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implying that

∥un+1
∥
2

= 0, ∥un+1
x̃x̄ ∥

2
= 0, ∥un+1

ỹȳ ∥
2

= 0.

By Lemma 3.5, we obtain ∥un+1
∥∞ = 0. Hence, there uniquely admits a zero solution satisfying the scheme in Eqs. (53)–(57).

Therefore, un+1 is uniquely solvable, and this completes the proof.

Theorem 3.9. Supposing u0(x, y) ∈ H2
0 (Ω), then the solution un of the scheme in Eqs. (53)–(57) converges to the solution of the

problem in Eqs. (49)–(52) with the convergence rate of O(τ 2
+ h4) in both l2-norm and l∞-norm when τ and h are small.

Proof. The proof is similar to that for Theorem 2.10. Let eni,j = vn
i,j − un

i,j, where vn
i,j and un

i,j are the solutions of the problem
in Eqs. (49)–(52) and the scheme in Eqs. (53)–(57), respectively. Then, we obtain the following error equation

Rn
i,j = (eni,j)t̂ +

h2

6
∆h(eni,j)t̂ + ∇heni,j + [(ēni,j)ˆ̇xẋẋ + (ēni,j)ˆ̇yẏẏ] + ∇h[(vn

i,j)
p
− (un

i,j)
p
]

+
h2

6
[(eni,j)x̃x̄ŷ + (eni,j)x̂ỹȳ] +

h2

6
[(vn

i,j)
p
x̃x̄ŷ − (un

i,j)
p
x̃x̄ŷ + (vn

i,j)
p
x̂ỹȳ − (un

i,j)
p
x̂ỹȳ]

+[(eni,j)x̃x̃x̄x̄t̂ + (eni,j)ỹỹȳȳt̂ ] +
h2

6
[(eni,j)x̃x̄ỹỹȳȳt̂ + (eni,j)x̃x̃x̄x̄ỹȳt̂ ] = 0, (79)

where ēni,j = (en+1
i,j + en−1

i,j )/2. Taking the inner product of Eq. (79) with 2ēn (i.e. en+1
+ en−1), and according to Lemmas 2.1

and 3.1, we obtain

∥en∥2
t̂ −

h2

6
(|e|1)

2
t̂ + ∥enx̃x̄∥

2
t̂ + ∥enỹȳ∥

2
t̂ +

h2

6
(∥enx̃ỹȳ∥

2
t̂ + ∥enỹx̃x̄∥

2
t̂ )

= ⟨Rn, 2ēn⟩ − ⟨∇hen, 2ēn⟩ − ⟨(ēni,j)ˆ̇xẋẋ + (ēni,j)ˆ̇yẏẏ, 2ēn⟩
+ ⟨∇h[(un

i,j)
p
− (vn

i,j)
p
], 2ēn⟩ −

h2

6
⟨(eni,j)x̃x̄ŷ + (eni,j)x̂ỹȳ, 2ē

n
⟩

+
h2

6
⟨(un

i,j)
p
x̃x̄ŷ − (vn

i,j)
p
x̃x̄ŷ, 2ē

n
⟩ +

h2

6
⟨(un

i,j)
p
x̂ỹȳ − (vn

i,j)
p
x̂ỹȳ, 2ē

n
⟩. (80)

Based on the Cauchy–Schwarz inequality [15], Lemmas 3.1 and 3.4, we have

⟨∇hen, 2ēn⟩ ≤ |en|21 + ∥en+1
∥
2
+ ∥en−1

∥
2, (81)

⟨(ēn)ˆ̇xẋẋ + (ēn)ˆ̇yẏẏ, 2ēn⟩ = 0, (82)

⟨(un)x̃x̄ŷ, 2ēn⟩ ≤ ∥enx̃x̄ỹ∥
2
+

1
2
(∥en+1

∥
2
+ ∥en−1

∥
2), (83)

⟨(en)x̂ỹȳ, 2ēn⟩ ≤ ∥enx̃ỹȳ∥
2
+

1
2
(∥en+1

∥
2
+ ∥en−1

∥
2). (84)

Using a similar argument for the 1D case, one can obtain

⟨∇h[(un
i,j)

p
− (vn

i,j)
p
], 2ēn⟩

≤ C(∥en−1
∥
2
+ ∥en+1

∥
2
+ ∥en−1

x̃ ∥
2
+ ∥en+1

x̃ ∥
2
+ ∥en−1

ỹ ∥
2
+ ∥en+1

ỹ ∥
2), (85)

⟨(un
i,j)

p
x̃x̄ŷ − (vn

i,j)
p
x̃x̄ŷ, 2ē

n
⟩ ≤ C(∥en−1

∥
2
+ ∥en+1

∥
2
+ ∥en−1

x̃x̄ỹ ∥
2
+ ∥en+1

x̃x̄ỹ ∥
2), (86)

⟨(un
i,j)

p
x̂ỹȳ − (vn

i,j)
p
x̂ỹȳ, 2ē

n
⟩ ≤ C(∥en−1

∥
2
+ ∥en+1

∥
2
+ ∥en−1

x̃ỹȳ ∥
2
+ ∥en+1

x̃ỹȳ ∥
2), (87)

∥enx̃∥
2

= −⟨en, enx̃x̄⟩ ≤
1
2
(∥en∥2

+ ∥enx̃x̄∥
2), (88)

∥enỹ∥
2

= −⟨en, enỹȳ⟩ ≤
1
2
(∥en∥2

+ ∥enỹȳ∥
2). (89)

Substituting an equation similar to Eqs. (45) and (81)–(89) into Eq. (80) gives

∥en+1
∥
2
− ∥en−1

∥
2
−

h2

6
(|en+1

|
2
1 − |en−1

|
2
1) + ∥en+1

x̃x̄ ∥
2
− ∥en−1

x̃x̄ ∥
2

+∥en+1
ỹȳ ∥

2
− ∥en−1

ỹȳ ∥
2
+

h2

6
(∥en+1

x̃ỹȳ ∥
2
− ∥en−1

x̃ỹȳ ∥
2
+ ∥en+1

x̃x̄ỹ ∥
2
− ∥en−1

x̃x̄ỹ ∥
2),

≤ 2τ∥Rn
∥
2
+ Cτ (∥en+1

x̃x̄ ∥
2
+ ∥en−1

x̃x̄ ∥
2
+ ∥en+1

∥
2
+ ∥en∥2

+ ∥en−1
∥
2)
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+ Cτ (∥en+1
ỹȳ ∥

2
+ ∥en−1

ỹȳ ∥
2
+ |en+1

|
2
1 + |en−1

|
2
1)

+ C(∥en+1
x̃ỹȳ ∥

2
− ∥en−1

x̃ỹȳ ∥
2
+ ∥en+1

x̃x̄ỹ ∥
2
− ∥en−1

x̃x̄ỹ ∥
2). (90)

Denoting

Πn
≡ ∥en+1

∥
2
+ ∥en∥2

−
h2

6
(|en+1

|
2
1 + |en|21) + ∥en+1

x̃x̄ ∥
2
+ ∥enx̃x̄∥

2

+ ∥en+1
ỹȳ ∥

2
+ ∥enỹȳ∥

2
+

h2

6
(∥en+1

x̃ỹȳ ∥
2
+ ∥enx̃ỹȳ∥

2
+ ∥en+1

x̃x̄ỹ ∥
2
+ ∥enx̃x̄ỹ∥

2), (91)

then Eq. (90) can be simplified to

Πn
− Πn−1

≤ 2τ∥Rn
∥
2
+ Cτ (Πn

+ Πn−1).

Hence, we obtain

(1 − Cτ )(Πn
− Πn−1) ≤ 2τ∥Rn

∥
2
+ 2CτΠn−1.

If τ is sufficiently small such that 1 − Cτ > 1/2, then

Πn
− Πn−1

≤ Cτ∥Rn
∥
2
+ CτΠn−1. (92)

Summarizing Eq. (92) with respect to n from 1 to n, we obtain

Πn
≤ Π0

+ Cτ

n∑
l=1

∥Rl
∥
2
+ Cτ

n∑
l=1

Π l−1.

Note that

τ

n∑
l=1

∥Rl
∥
2

≤ nτ max
1≤l≤n

∥Rl
∥
2

≤ T · O(τ 2
+ h4)2,

if we use a fourth-order method such as Eq. (57) to compute u1 such that

e0 = 0, Π0
≤ O(τ 2

+ h4),

we then have

Πn
≤ O(τ 2

+ h4)2 + Cτ

n∑
k=1

Π k−1.

By Lemma 2.9, we obtain that Πn
≤ O(τ 2

+ h4)2, implying

∥en+1
∥ ≤ O(τ 2

+ h4), ∥en+1
x̃x̄ ∥ ≤ O(τ 2

+ h4), ∥en+1
ỹȳ ∥ ≤ O(τ 2

+ h4), (93)

and hence ∥∆hen+1
∥ ≤ O(τ 2

+ h4) and ∥en+1
∥∞ ≤ O(τ 2

+ h4) according to Lemma 3.5. Therefore, the solution un of the
scheme in Eqs. (53)–(57) converges to the solution of the problem in Eqs. (49)–(52) in both l2-norm and l∞-norm with the
convergence rate of O(τ 2

+ h4).
Using a similar argument as the proof for Theorem 3.9, one may obtain Theorem 3.10.

Theorem 3.10. Supposing u0(x, y) ∈ H2
0 (Ω), then the scheme in Eqs. (53)–(57) is unconditionally stable in the sense of l2-norm

and l∞-norm.

4. Numerical experiments

4.1. Example 1: 1D problems

For the case of p = 3, we considered the generalized Rosenau–KdV equation in Eq. (1) as

ut + ux + uxxx + uxxxxt + (u3)x = 0, α ≤ x ≤ β, t ∈ [0, T ], (94)

and chose the initial condition to be u0(x) = k11 sech2(k12x) so that the analytical solitary wave solution is u(x, t) =

k11 sech2
[k12(x − k13t)], where [24,26]

k11 =
1
4

√
−15 + 3

√
41, k12 =

1
4

√
−5 +

√
41

2
, k13 =

1
10

(5 +
√
41).
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Fig. 1. Numerical solutions of u(x, t) when α = −60, β = 100, h = 0.25, τ = h2 at T = 40.

Table 1
Errors and convergence rates of the present scheme in Eqs. (10)–(13) when h = 0.5 and τ = h2 at T = 40.
p h, τ h/2, τ/4 h/4, τ/16

∥e∥2 2.6393848E−02 1.6159943E−03 1.0089225E−04
p = 3 Rate − 4.029708 4.0015348

∥e∥∞ 9.9701002E−03 6.1045529E−04 3.8105323E−05
Rate − 4.0296505 4.0018212

∥e∥2 4.4059552E−02 2.6675119E−03 1.6644060E−04
p = 5 Rate − 4.0458882 4.0024154

∥e∥∞ 1.6616612E−02 1.0039841E−03 6.2629441E−05
Rate − 4.0488179 4.0027516

For the case of p = 5, we considered the generalized Rosenau–KdV equation in Eq. (1) as

ut + ux + uxxx + uxxxxt + (u5)x = 0, α ≤ x ≤ β, t ∈ [0, T ], (95)

and chose the initial condition to be u0(x) = k21 sech(k22x) so that the analytical solitary wave solution is u(x, t) =

k21 sech[k22(x − k23t)], where [42]

k21 =
4

√
4
15

(−5 +
√
34), k22 =

1
3

√
−5 +

√
34, k23 =

1
10

(5 +
√
34).

In our experiments, we chose α = −60 and β = 90. Numerical results in term of errors and rates of convergence at
time T = 40 were listed in Table 1, where h = 0.5 and τ = h2. From Table 1, one may see that the convergence rates
obtained based on the present fourth-order difference scheme in Eqs. (10)–(13) for both p = 3 and p = 5 are close to
4.0, which coincides with the theoretical prediction of convergence rates. We then compared errors and convergence rates
between the present scheme in Eqs. (10)–(13) and the schemes proposed in [22,24]. Results at time T = 40 were given in
Table 2. It can be seen from Table 2 that the errors in l∞-norm obtained based on the present scheme are much smaller than
those obtained based on the schemes in [22,24], and the fourth-order convergence rate of the present scheme is verified as
compared with the second-order convergence rate of the schemes in [22,24]. We computed the conservative invariants Q n

and En at various times as listed in Table 3. Results justify that the present scheme is conservative for both mass and energy.
Fig. 1 presents the numerical solitary wave travelling obtained based on the present scheme within 0 ≤ t ≤ 40 for cases

p = 3 and p = 5, respectively, where α = −60, β = 100, h = 0.25, and τ = h2. Figs. 2 and 3 show the error distributions
in absolute value along the x-direction at various times T = 15, 30, 45, 60, which were calculated using the present scheme
with h = 0.25 and τ = h2 for cases p = 3 and p = 5, respectively. It is observed that the maximum error is taking place
around the peak of the solitary wave.

To see the advantage of the present scheme when simulating the solitary wave travelling for a much longer time as
compared with the scheme in [24], we plotted the solitary wave travelling within 0 ≤ t ≤ 250 simulated based on the
present scheme and the scheme in [24], respectively, as shown in Figs. 4 and 5. It can be seen from Fig. 4 that based on the
scheme in [24]with h = 0.25, τ = h2 for cases p = 3 and p = 5, the solitarywavewas travellingwell within 0 ≤ t ≤ 50, and
however, was then destroyed after T > 50. This implies that the scheme in [24] does not keep the conservations for mass
and energy after T > 50. On the other hand, Fig. 5 shows that the present scheme simulatedwell the solitary wave travelling
within 0 ≤ t ≤ 250, and the numerical solitarywave is in excellent agreementwith the analytical solitarywave all the times,
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Fig. 2. Absolute error distribution when p = 3, h = 0.25, τ = h2 at T = 15, 30, 45, 60.

Table 2
Comparison of errors in the sense of l∞ at T = 40.

p Scheme h ∥eh∥∞
∥eh∥∞

∥eh/2∥∞
Rate

Zhou [22] 0.25 7.70544E−03 − −

0.125 1.94252E−03 3.96672 1.98794
0.0625 4.86553E−04 3.99242 1.99726

p = 3 Zheng [24] 0.25 1.34986E−02 − −

0.125 3.42489E−03 3.94134 1.97869
0.0625 8.59570E−04 3.98441 1.99436

Present 0.25 2.45605E−03 − −

0.125 1.52654E−04 16.08893 4.00799
0.0625 9.48832E−06 16.08868 4.00797

Zhou [22] 0.25 7.70544E−03 − −

0.125 1.94252E−03 3.96036 1.98563
0.0625 4.86553E−04 3.98994 1.99636

p = 5 Zheng [24] 0.25 1.79985E−02 − −

0.125 4.56804E−03 3.94009 1.97823
0.0625 1.14689E−03 3.98299 1.99385

Present 0.25 4.04781E−03 − −

0.125 2.50920E−04 16.13187 4.01184
0.0625 1.55345E−05 16.15236 4.01367
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Fig. 3. Absolute error distribution when p = 5, h = 0.25, τ = h2 at T = 15, 30, 45, 60.

Table 3
Discrete mass Q n and discrete energy En in various times for 1D Rosenau–KdV equation when h = 0.25 and τ = h2 .

p = 3 p = 5

T Q n En Q n En

0 4.898979485518449 1.681957861861872 7.093643137390966 3.109735165395684
10 4.898979485576961 1.681956437155376 7.093643135900470 3.109732974034659
20 4.898979485736063 1.681956292932830 7.093643130766687 3.109732758960448
30 4.898979473518048 1.681956184705329 7.093642968577600 3.109732533953539
40 4.898980423386804 1.681956107381031 7.093640511749809 3.109732332758717
50 4.898974912587071 1.681956051420233 7.093529220712367 3.109732153146640

100 4.898968968207399 1.681956046692215 7.093481395237128 3.109732136106961
150 4.898959456288376 1.681956042203882 7.093414869512039 3.109732119414538
200 4.898944499111343 1.681956037849454 7.093322677988481 3.109732102990418
250 4.898920998338203 1.681956033564348 7.093195103057346 3.109732086419298

where conservative invariantsQ n and En can be seen in Table 3. The comparison indicates that there is a significant difference
between these two schemes and the present scheme is more efficient for longer time solution simulations. Furthermore,
Fig. 5 shows that the solitary wave travels at the same speed under two different grid sizes, implying that our scheme is
grid-independent.

To compare with the recently developed linearized fourth-order scheme [35], we considered the following Rosenau–KdV
equation

ut + ux + uxxx + uxxxxt + uux = 0, α ≤ x ≤ β, t ∈ [0, T ], (96)
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Fig. 4. Numerical solutions in [24] when p = 3, p = 5, h = 0.25, τ = h2 at T = 0, 50, 100, 150, 200, 250.

Fig. 5. Exact solutions of u(x, t) at T = 0 and numerical solutions when p = 3, p = 5, h = 0.25, h = 0.125, τ = 0.0625 at T = 50, 100, 150, 200, 250,
respectively.



328 X. Wang and W. Dai / Journal of Computational and Applied Mathematics 355 (2019) 310–331

Fig. 6. Numerical solution for p = 3 at T = 10, 20, 30 and 40 when h = 0.1 and τ = 0.25.

Table 4
Comparison of errors in maximum norm ∥un

∥∞ and CPU times when h = 0.1 and τ = h2 .
T Scheme D [35] CPU (s) Present CPU (s)

5 6.000056996952052 ×10−5 23.484 2.662060476388284 ×10−6 13.828
10 8.508635753025351 ×10−5 67.469 4.687559301774780 ×10−6 47.047
15 9.567596016540891 ×10−5 89.282 6.229245215261248 ×10−6 58.953
20 1.000789659701996 ×10−4 135.688 7.507679379514798 ×10−6 94.672
25 1.007744439283902 ×10−4 162.078 8.616310676501371 ×10−6 112.500
30 1.013011979855601 ×10−4 202.984 9.606567987152648 ×10−6 141.438

and chose the initial condition to be u0(x) = k31 sech4(k32x) so that the analytical solitary wave solution is u(x, t) =

k31 sech4
[k32(x − k33t)], where

k31 = −
35
24

+
35
312

√
313, k32 =

1
24

√
−26 + 2

√
313, k33 =

1
2

+
1
26

√
313.

The comparison of errors ∥un
∥∞ and CPU times between the present scheme and SchemeD in [35] (SchemeD)was presented

in Table 4, where α = −70, β = 100 and h = 0.1, τ = h2. From Table 4, one may see that the present scheme provides
more accurate solutions and has less CPU times than Scheme D in [35] does.

4.2. Example 2: 2D problems

For the case of p = 3, we considered a 2D generalized Rosenau–KdV equation in Eq. (49) as

ut + ∇ · u + uxxx + uyyy + uxxxxt + uyyyyt + ∇ · u3
= 0, (97)
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Fig. 7. Numerical solution for p = 5 at T = 10, 20, 30 and 40 when h = 0.1 and τ = 0.25.

Table 5
Discrete mass Q n and discrete energy En in various times for 2D Rosenau–KdV equation when h = 0.1 and τ = 0.25.

p = 3 p = 5

T Q n En Q n En

0 1470.673641549157 1102.103195662962 2129.511670328377 2061.386333378561
5 1470.673641565020 1102.102957642978 2129.511683343761 2061.385550383789

10 1470.673641565538 1102.102931750660 2129.511685817504 2061.385443099122
15 1470.673641566190 1102.102925918361 2129.511686102712 2061.385368158929
20 1470.673641565720 1102.102918540323 2129.511685162606 2061.385255963096
25 1470.673641557803 1102.102908947192 2129.511679822136 2061.385244164556
30 1470.673641463808 1102.102903141113 2129.511652049340 2061.385215356977
35 1470.673640450367 1102.102895903703 2129.511508064930 2061.385150433415
40 1470.673629400097 1102.102889284785 2129.510761686757 2061.384945931876

where (x, y, t) ∈ [α, β] × [α, β] × [0, T ], and chose the initial condition to be

u0(x, y) =
1
4

√
−15 + 3

√
41 sech2

[1
4

√
−5 +

√
41

2
(x + y)

]
.

For the case of p = 5, we considered a 2D generalized Rosenau–KdV equation in Eq. (49) as

ut + ∇ · u + uxxx + uyyy + uxxxxt + uyyyyt + ∇ · u5
= 0, (98)
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Fig. 8. Numerical solutions of u(x, y, t) along the middle plane y = (β − α)/2 at T = 0, 10, 20, 30, 40, 50 when p = 3, p = 5, h = 0.5, h = 0.1, τ = 0.25,
respectively.

where (x, y, t) ∈ [α, β] × [α, β] × [0, T ], and chose the initial condition to be

u0(x, y) =
4

√
4
15

(−5 +
√
34) sech

[1
3

√
−5 +

√
34(x + y)

]
.

In our experiments, we chose the computational domain to be (x, y, t) ∈ [−60, 90] × [−60, 90] × [0, T ]. We employed
the present scheme in Eqs. (53)–(57) for cases p = 3 and p = 5 in our simulations. Table 5 lists the conservative invariants
Q n and En at various times T = 10, 20, 30 and 40, where h = 0.1 and τ = 0.25, and numerical solutions are shown in Figs. 6
and 7 for p = 3 and p = 5, respectively. Results imply that the present 2D scheme is conservative for mass and energy. In
particular, we plotted the numerical solutions along the middle plane at y = (β − α)/2 at T = 0, 10, 20, 30, 40, 50 in Fig. 8,
which were obtained based on the present scheme using τ = 0.25 and two different spacial grid sizes h = 0.5 and h = 0.1,
respectively. Fig. 8 shows clearly that the shapes of the soliton wave at different times are almost identical to each other.
Furthermore, Fig. 8 shows that the solitary wave travels at the same speed under two different grid sizes, implying again
that our scheme is grid-independent.

5. Conclusion

Wehave presented a new fourth-order accurate and conservative stable finite difference scheme for solving a generalized
Rosenau–KdV equation in both 1D and 2D. This method shows the second- and fourth-order accuracies in time and space,
respectively. The solvability, conservation, stability, mass and energy conservations, and convergence with O(τ 2

+ h4)
have been analysed theoretically. In addition, the results of numerical experiments support the theoretical analysis for
convergence rate, and confirm that the obtained scheme gives thewell resolution for the generalized Rosenau–KdV equation.
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