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Abstract 

Let A be a square symmetric n X n matrix, 4 be a vector from [w”, and f be a function defined on the spectral 
interval of A. The problem of computation of the vector u = f(A)+ arises very often in mathematical physics. 

We propose the following method to compute u. First, perform m steps of the Lanczos method with A and 4. 
Define the spectral Lanczos decomposition method (SLDM) solution as u, = Ilq5llef(H)e,, where Q is the n X m 
matrix of the m Lanczos vectors and H is the m x m tridiagonal symmetric matrix of the Lanczos method. We 
obtain estimates for I(u - u,II that are stable in the presence of computer round-off errors when using the simple 
Lanczos method. 

We concentrate on computation of exp(- tA)+, when A is nonnegative definite. Error estimates for this special 
case show superconvergence of the SLDM solution. Sample computational results are given for the two-dimensional 
equation of heat conduction. These results show that computational costs are reduced by a factor between 3 and 90 
compared to the most efficient explicit time-stepping schemes. Finally, we consider application of SLDM to 
hyperbolic and elliptic equations. 
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1. Introduction 

Let A be a symmetric it x n matrix. The Lanczos method has become accepted as a 
powerful tool for finding the eigenpairs (eigenvalues and eigenvectors) of A, when A is large 
and sparse. Here we demonstrate another use of the Lanczos method. Let f be a function 
defined on the spectral interval of A and #I a vector in R”. Consider the problem of computing 
the vector 

u =f(&$. (1) 
Solving a system of linear equations is a problem of this kind, where f(A) =A-‘. Such 
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problems with different forms of f also appear in mathematical physics when solving semidis- 
Crete approximations of partial differential equations whose coefficients do not depend on one 
of the variables 

f(A) = exp( -Ql), 

f(A) = cos( + tA”2), 

f(A) = exp( -&I’/*), 

In the well-known explicit 

for parabolic equations, 

for hyperbolic equations, 

for elliptic equations. 

methods for computing U, f(A) is approximated by a polynomial 
function of A. We can study the common properties of such methods through the eigenvalues 
and eigenvectors of A. Denote these eigenvalues by Ai, i = 1,. . . , II, and the corresponding 
eigenvectors by zi. If 4 is expanded in terms of zi, 

i=l 

Take the vector p(A)+ with p a polynomial 
Then the error norm is 

II’ -P(A)4II = j~14i(f-P)(Aj)rj~~ = II 
Thus, the problem has been reduced to the 
nodes hi and the weights 4;. 

Most of the computation in polynomial 

(2) 

of degree G m - 1 as an approximate value of u. 

r n 11/* 
1 C +,2(f-p)2(hi)l * (3) 
Li=l 1 

discrete polynomial approximation of f with the 

methods is connected with multiplying A with 
vectors; thus, the most important characteristic of such a method is the degree of the 
polynomial (measured by m) needed to achieve a given accuracy. It can be shown that for any 
fixed m, the minimum in (3) is achieved if and only if p consists of the initial m terms in the 
Fourier series expansion of f in the (Ai, &?-orthogonal polynomials. The Lanczos process, 
which initially was intended for the computation of the spectrum of A, also allows one to build 
up the discrete orthogonal polynomials whose weight function approximates the generalized 
weight (Ai, 4:) in a certain sense. 

The Lanczos process was first applied to solving linear systems [13,15,16], then to solving 
one-dimensional [8,9] and multi-dimensional [2] parabolic equations. The general scheme of 
applying the Lanczos process to solving problem (1) was suggested in [1,3] and in another form 
in [17]. Error bounds for the computation of (1) in general and for the most common specific 
forms of f are given below. In the final section, we extend our results to the case of finite 
computer arithmetic. 

2. The spectral Lanczos decomposition method 

We first review the results of applying m steps of the Lanczos method for generating the 
eigenvectors of A [14, Chapter 131. In the Krylov subspace Z” = span(4, A+, . . . , A”-‘&, 
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generate the basis q,, . . . , q, by Gram-Schmidt orthogonalization of the vectors 4, 
4,. . . , Am-l+. The orthogonalization can be carried out by the following three-term recur- 
rence: 

where &,qO is assumed to be 0, qr = 4/II 411, and pi 2 0. Denote by H the tridiagonal 
symmetric matrix 

with Bi, si = (sIi,. . . , smilT, i = 1,. . . , m, the eigenvalues and normalized eigenvectors of H. 
Define e, as the ith unit m vector, Q the matrix of basis vectors qi, Q = [qr 1 q2 1 . . . 1 q,], and 
yi = Qsj. Then (ei, yi) are the approximate eigenpairs of the matrix A that would be obtained 
by the Ritz method applied to 3”. 

In view of (2) and the orthonormality of the matrix [s, I s2 I . . . I s,], we have 

i=l i=l 

which is why it is natural to take the vector 

urn = II 4 II E Sli.f(‘i)Yi = II 4 IIQf(ff)e, 
i=l 

as an approximation to U. This definition is correct because the spectrum of H is contained in 
the spectral segment of A. We call the method just described the spectral Lanczos decomposi- 
tion method or SLDM. 

3. The general SLDM error bound 

We will assume that A is not scalar; that is, A, = max,h, > min,h, = A,. Assign 

A, +A, 2 
B= -I- 

An -4 
-A, 
An -A, 

g(x) =f(;[(A, + 4) - (A, - 4)x] ); 

then -I < B < I and the function g is defined on the segment [ - 1, 11. Consider the Chebyshev 
series of the first kind 

g(x) = c gkTk(-+ 
k=O 

(4) 
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Theorem 1 (Druskin and Knizhnerman [3, 931). If series (4) converges absolutely on [ - 1, 11, the 
inequality 

IIu -4 41~11 IfI l&l 
k=m 

holds. 

Theorem 1 cannot, in general, be noticeably improved. There has been found an example 
where the error is greater than the right-hand side of Theorem l’s inequality multiplied by il’*. 

4. The computation of exp( -ti) 

Assume that A > 0. Evidently, 

u( t ) = exp( - tA)4 = exp[ - +th,( I - B)] 4 = exp( - ith,)exp( ih,B)4, 

with B = I - 2A/A,, -I G B G I. Using the expansion 

e ax = Z,(a) + 2 g I,(a)T,(x), 
k=l 

where I, is the Bessel function, one easily finds that 

u(t) = e-tAn/2 Z0(itA,)4 + 2 2 Zk(ith,)Tk(B)~ . 
1 k=l 1 

Thus, 

g, = 21,(+th,), for k > 1. (5) 

Theorem 2 (Druskin and Knizhnerman [3, $41). Let a = ith, and m < a. Then the error bound 

II l.4 - ul?l II 
II 4 II 

.I,+oc~)]~exp[-O.5~+0(~)] 

holds. 

The proof uses (5) and the asymptotics for I,. In [3], there is also a proof of an estimate for 
small a. 

Numerical example. Consider the model problem 

-Au + ; =o, (x, y)Efl =]k I[*, t > 0, 

u(-G Y, ql,=, =x(1 -X)Y(l -Y>, u(x, Y, t)kx,,&m = 0. 
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t Exact solution 
differential 
equation 

Exact solution 
semi-discrete 
equation 

SLDM LIM 

- 
0.001 0.61456.10-’ 
0.002 0.60469.10-’ 
0.004 0.58517~10-’ 
0.008 o.54711~10-1 
0.016 0.47507.10-’ 
0.032 0.35155.10-’ 
0.064 0.18794.10-’ 
0.128 0.53158~10-* 
0.256 0.42489.10-3 
0.512 0.27145.10P5 
1.024 0.11078.10-9 

0.61456.10-’ 
0.60469.10-’ 
0.58517.10-’ 
0.54711’10-’ 
0.47508.10-’ 
0.35160.10-’ 
0.18801~10-’ 
0.53201.10-* 
0.42557.10-3 
O.27231.1O-5 
o.11150~10-9 

0.61456.10-’ 
0.60469.10-’ 
0.58516.10-’ 
0.54689. lo- ’ 
0.47392.10 - ’ 
0.34955 10 - ’ 
0.18657.10-’ 
0.52767.10-’ 
0.42189.10-” 
0.26969.10-’ 
0.11020~10-9 

0.61458.10-’ 
0.60471.10-’ 
0.58523.10 - ’ 
0.54722.10-l 
0.47534.10-l 
0.35218.10-’ 
0.18871.10-’ 
0.53598.10-* 
0.43196.10-’ 
0.28059.10-5 
0.11839.10-9 

Number of matriu-vector multiplications: 
Number of operations per step: 

15 3192 
10n 6n 

Approximating the Laplacian as usual on a rectangular grid with the spacing h = A, we get the 
second-order semi-discrete scheme with a spatial operator A. This scheme has been solved by 
the method described above and by the local iteration method [7]. Table 1 gives results of the 
comparison for the point (g, $). 

Use of SLDM has also shown a noticeable effect on splitting (alternating direction) methods 
for parabolic equations [5]. In addition, SLDM has been implemented for solving the three-di- 
mensional parabolic system that arises when displacement currents are neglected in Maxwell’s 
equations. The computational time for the impulse response of the electromagnetic field in an 
inhomogeneous, conductive earth, on a 40 x 40 x 75 grid, was several hours on a microvax or 
Vax computer [6]. For these examples, ]I A I( t was up to 109. 

5. Other matrix functions 

We will assume here that 114 ]I = 1. 
(a) u(t) = cos(tfi)+, A > 0 [3, $51. This vector function satisfies the hyperbolic Cauchy 

problem 

d2u 
Au + - 

dt2 =O, u(O)=& $(O)=O. 

Ilu -umlI G 
exp[ - fx(2[)“‘] 

2( ~#‘~(4rn’ -x~)“~ 

(some O-terms have been thrown away). 
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(b) u(z) = exp( -zfi>$, A, > 0 [3, $61. This vector function satisfies the elliptical Dirichlet 
problem 

d2u 
Au - - 

dt2 
=o, z>o, u(O)=& u(+w)=O. 

If c = (A, + h,)/(h, - A,), then 

Cc) u = A -l~$, A, > 0 (SSLE [3, $71). 

with 6 = T,[(A, + A,)(A, -A,)]-‘. 

6. Computer arithmetic 

The previous results assume that all computations are done in exact arithmetic. The Lanczos 
method, however, has been avoided in the past because of its instability. This instability shows 
up in loss of orthogonality of yk’s and in the appearance of parasitic counterparts to ei’s. 

In [11,12], Paige clarified the behavior of the simple (without re-orthogonalization) Lanczos 
method with finite computer arithmetic. He also pointed out that, in spite of the instability, 
there appear among the 8’s approximations to the A’s as m increases (the so-called Lanczos 
phenomenon). 

Using Paige’s well-known theorems, we have proved that finite computer arithmetic does not 
change a number of the results given here. The sense of these proofs is roughly as follows. The 
Lanczos process is unstable by itself, but the error bounds remain stable in the presence of 
roundoff errors. 

Let E be the elementary computer rounding error, c1 the maximal number of nonzero 
elements in rows of A, and define the following auxiliary quantities: 

El = (7+++, l 2 = fimax[l2(n + 4)~, ~~1, rj = m2.5 &4 II E2. 

Also, let f be defined on [A, - 7, A, + 71, 

B= 
(A, + A,)1 - 2A 

A,-A,+277 ’ 
g(x) =f(;[(A, +A,) - (A,, -4 +h)xl}, 

and g, be defined by (4). 

Theorem 3 (Druskin and Knizhnerman 14, 821). If 

m[6(n + 4)~ + el] G 1, (n + 4)~ < &, 
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and series (4) converges absolutely on [ - 1, 11, then the error bound 

261 

is valid for the computation of (1) by means of the simple Lanczos method. 

Evidently, Theorem 3 is an analog of Theorem 1 for finite computer arithmetic. Theorem 3 
shows that the simple Lanczos method produces an approximate solution of (1) with a stable 
error estimate. One can obtain results on the convergence of the eigenvalues of the simple 
Lanczos method by taking for f in Theorem 3 a “cap-like” polynomial picking out the 
particular eigenvalue [4, $95, 61. 
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