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Abstract 

For the numerical evaluation of finite-part integrals with singularities of order p ~> 1, we give error bounds for quadrature 
methods based on spline approximation. These bounds behave in the same way as the optimal ones. The ideas of the proof 
are also useful for methods based on other approximation processes. @ 1998 Elsevier Science B.V. All rights reserved. 
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I. Finite-part integrals and their applications 

We discuss the approximation of  Hadamard finite-part integrals of  the form 

fa 
b 

Hp[f](t):= Ix-tl-Pf(x)dx, pER, p>>,l, 

or  

fa 
b 

H * [ f ] ( t ) : =  ( x - t ) - P f ( x ) d x ,  p E N  

where a ~<t ~<b. For p = 1, the latter integral is the Cauchy principal value. Their main proper- 
ties are described in [3, Section 1.6.1] (also in [9, 13]). Finite-part integrals are used to reformu- 
late a boundary value problem for a partial differential equation in terms of  a hypersingular in- 
tegral equation (mainly leading to integrals with singularities of  integer or half-integer order [9, 
13]). Singularities of  noninteger order also arise in fractional calculus: The Riemann-Liouville 
fractional derivative dPf(x)/d(x- a) p of  order p ~ N of  the function f may be expressed as a 
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finite-part integral [10, Section 2]. Thus, quadrature formulas for these integrals can be used to 
approximate fractional derivatives. Moreover, any fractional differential equation is equivalent to 
a finite-part integral equation, and we may use quadrature rules to approximate its solution [7]. 
Fractional differential equations occur in the study of  diffusion problems [14, Chapter 1 1] and 
other areas of  chemistry, physics and engineering [14, pp. ix-x]. Note that, in fractional calcu- 
lus, the operator Hp is also used with p E C. With small modifications, our results hold in that 
case too. 

2. The quadrature methods and error bounds 

For the numerical calculation of  Hp[f],  we consider methods based on spline approximation for 
f .  We give error bounds holding uniformly on [a, b], assuming that f(s) is bounded. Such bounds 
can hold only if p - 1 < s ~< d + 1, where d is the degree of  exactness of the approximation process, 
cf. [8]. We see that these formulas can compete with the optimal ones. The proofs rely on a general 
principle. More applications of  this are given at the end of this paper. 

The optimal quadrature formula QOpt with n nodes for the integral Hp satisfies H p [ f ]  - Qn°p t [ f ]  = 

O(nP-l-s(1 + bp,1 lnn) )  (where bj, k is Kronecker's symbol) if f(~) is bounded [17]. A comparison 
with Theorem 1 shows that our methods are of  optimal order if p ~ M. For p E ~,  we lose at most 
a factor O(ln n). All known better formulas require f ' .  Our formulas only use function values of f .  

We start with the so-called nodal splines [4, 5]. We only mention some of  their properties. We 
have a set of knots {x/ O<~j<~dn} with a=xo  < x l  < " "  <Xdn=b.  The xa~, O<~i<<,n, are called 
the primary knots of  the spline; the others are called secondary. The spline approximation operator 
interpolates at the primary knots, and it reproduces polynomials of degree d. For the integral H*,  
the method based on this approximation is convergent [4]. Theorem 1 shows the rate of  convergence 
for this method applied to lip and H* for arbitrary p. 

We also look at interpolating splines for the function f with not-a-knot end condition, defined 
by being the (unique) splines of  odd degree d>~p with knots a + j ( b  - a)/(2n), j = d  + 1,d + 
3 , . . . , 2 n -  d -  1, and interpolation points a + j ( b -  a)/n, j = 0 , 1 , . . . , n .  In the case of Cauchy 
principal values (the operator H*) ,  they are known to give optimal order quadrature rules [6]. For 
H* with p = 2 , 3 , . . . ,  they have been discussed in [16]. Our Theorem 1 generalizes these results to 
p ~ ~ and improves the bounds of  [16]. 

Finally, we consider quasi-interpolatory spline approximation operators [11]. Their use has been 
suggested for Cauchy principal values [2]. The results are as in the previous cases, completing the 
error analysis of [2]. 

Theorem 1. Assume p -  1 < s<~d + 1. Let  f(s) be bounded. Let  (Jn) be 
- a sequence o f  nodal spline approximation operators o f  degree d with xj = a + (b - a ) j / (dn)  

( j =  1,2 . . . . .  dn), or 
- a sequence o f  not-a-knot spline interpolation operators o f  odd degree d >~ p with uniform 

partitions, or 
- a sequence o f  quasi-interpolatory spline approximation operators o f  degree d >i p with uniform 

partitions as described above. 
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Denote by Hp,,,[f]  : = H,[J”[f]] the quadrature rule for HP based on J,,. Then,

In the case p E N, the same result holds if we replace HP by Hi.

Theorem 2. Assume p - 1 < s. Let J,, : &“[a, b] --+ &“[a, b] satisfy

sup{I((J,[fl -f )@)I/,:  f E C’[a,bl,  llf”‘ll,G  l)=nk-s&k,n

where (&k,n)E]  are given for k = 0, 1, . . . , s. Then, for every f E C”[a, b],

(1)

IIff,[f] - Hp[Jn[f]]Il,  = ($‘:‘:; ~;~“‘k7n + “--J Inn)
k o  &k,n

;:,“,‘;’
In the case p E N, the same result holds if we replace HP by HT.

Here, #[a, b] is the set of functions on [a, b] whose (s - 1)st  derivative is absolutely continuous,
and ]xJ denotes the largest integer not exceeding X.

Proof of Theorem 2. We assume that x E (a + l/n, b - l/n). The other cases require only minor
modifications. Then, defining r, : = f - J,, [ f 1, we write

Hp[f I@> - Hp[JnEf 11(x> = +$I,,.,  +jf”“” +L.) &df

and deal with the four integrals separately. First, we see that

IJ Y”(t)dt G II~nllm  s,,,>,,n Ix - tlP
Ix-fl>ljrI  Ix - tl

lnp-‘-s&g,n(jfq ifp > 1,
2n-“(lnn  + ln(b - a)).zo,,ll~)II_  ifp= 1,

uniformly for all x. Furthermore, for p E N, we have by definition [3, Section 1.6.11

p-2 IrikYx)l
mdt “g Ik + 1 - plk!nk+‘-P i-2

Ib-~p-‘)(x)l  ln n
(P - I)!

+ 2 /+&[+‘(t+x-u)+-;qu)dudt
( p -  I)! 0

< 211f(S)II,nP-'-s $ Ik + 1”” plk!  + Ep-“n Inn
(P - I>!

k#p- 1
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uniformly for all x. A similar calculation for p £ N yields uniformly 

~xx+l/'n ~n(t~l p LpJ ek, n 

-1 / .  I at  <2llf (s> n Ik + i -  plk!" 

Adding up these estimates, we obtain 

IIHp[f] - HAJ,[f]]II  (2) 

~p,n 

F'k, n 

E}P~ Ik + 1 - p lk !  4eo , . / (p  1) + 2 

4eo,,, In n + 2(e1.. + Go,,, ln(b - a))  

~k,n 2gp-l,n 
4e0,,/(p 1 ) + 2 P 

- ~ = l , k 4 p - 1  [k + 1 - p lk!  + - -  ( p -  1)! 

if p ~ N ,  

if p = l ,  

Inn if p E N \ { 1 } ,  

(3) 

and the claim for Hp follows. With respect to Hp, we proceed similarly. [] 

Proof of Theorem 1. For our nodal spline operators, relation (1) holds with e~,, = O(1 ) for all k ~< s 
[5, Corollary Yl],  so the claim follows from Theorem 2. 

For not-a-knot splines, (1) holds with ek,~ = O(1 ) for k 4 s  = d + 1 [15, Lemma 1 ]. Using the idea 
of [2, Proof of Lemma 3.3], we see that this also holds for s = 0, 1,2, . . . ,  d. So, applying Theorem 2, 
we derive this case too. 

For the quasi-interpolatory splines, property (1) with ek,~ = O(1 ) is also known [2, Lemma Y2], 
and Theorem 2 again yields the desired result. [] 

Remark 3. We have only considered splines with uniform partitions. This condition can be relaxed 
to allow, e.g., for more nodes in certain subintervals. This may lead to larger ek,,, but Theorem 2 
is still applicable, thus giving error bounds for the quadrature problem. Typically [2, 4], we have 
ek,, = O ( ( n A , )  s -k )  where A, is the maximum distance of  consecutive knots. 

Remark 4. If precise values or sharp bounds for ek,, are known, we can use (2) and (3) to determine 
upper bounds for the asymptotic constants implicitly contained in the O-terms of Theorem 1. Then, 
by comparing these constants, one may decide which formula to use. However, all rules based 
on spline interpolation have very similar error constants [1], and they are all close to the (often 
unknown) optimal method. We may thus expect only small differences in the quality of the various 
spline-based algorithms. 

Remark 5. Theorem 2 can be used for methods not relying on splines too. For polynomial inter- 
polation, we can find nodes satisfying (1) with ek,,----O(ln n) [12] to get quadrature rules for Hp 
with error bounds being close to optimal. They compare favourably with known polynomial-based 
methods [9, 13]. 
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