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Abstract

The famous Newton–Kantorovich hypothesis has been used for a long time as a su/cient condition for the
convergence of Newton’s method to a solution of an equation in connection with the Lipschitz continuity of
the Fr4echet-derivative of the operator involved. Here using Lipschitz and center-Lipschitz conditions we show
that the Newton–Kantorovich hypothesis can be weakened. The error bounds obtained under our semilocal
convergence result are more precise than the corresponding ones given by the dominating Newton–Kantorovich
theorem.
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1. Introduction

In this study we are concerned with the problem of approximating a solution x∗ of equation

F(x) = 0; (1)

where, F is a Fr4echet-diCerentiable operator deDned on an open convex subset D of a Banach space
X with values in a Banach space Y .
A large number of problems in applied mathematics and also in engineering are solved by Dnding

the solutions of certain equations. For example, dynamic systems are mathematically modeled by
diCerence or diCerential equations, and their solutions usually represent the states of the systems. For
the sake of simplicity, assume that a time-invariant system is driven by the equation ẋ = Q(x) (for
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some suitable operator Q), where x is the state. Then the equilibrium states are determined by solving
Eq. (1). Similar equations are used in the case of discrete systems. The unknowns of engineering
equations can be functions (diCerence, diCerential, and integral equations), vectors (systems of linear
or nonlinear algebraic equations), or real or complex numbers (single algebraic equations with single
unknowns). Except in special cases, the most commonly used solution methods are iterative—when
starting from one or several initial approximations a sequence is constructed that converges to a
solution of the equation. Iteration methods are also applied for solving optimization problems. In
such cases, the iteration sequences converge to an optimal solution of the problem at hand. Since
all of these methods have the same recursive structure, they can be introduced and discussed in a
general framework.
The famous Newton’s method

xn+1 = xn − F ′(xn)−1F(xn) (n¿ 0) (x0 ∈D) (2)

has long played a central role in approximating solutions x∗ of non-linear equations and systems.
Here F ′(xn) denotes the Fr4echet-derivative of operator F evaluated at x = xn(n¿ 0) [4,6,11]. The
geometric interpretation of Newton’s method is well known, if F is a real function. In such a case
xn+1 is the point where the tangential line y − F(xn) = F ′(xn)(x − xn) of function F(x) at the
point (xn; F(xn)) intersects the x-axis. The geometric interpretation of the complex Newton method
(F :C → C) is given in [18].
There is much literature concerning the convergence of Newton’s method as well as error estimates.

Among others, in the real case, Fourier studied the quadratic convergence of Newton’s method in
1818, provided that a solution x∗ of Eq. (1) exists [9]. In 1829, Cauchy Drst proved a semilocal
convergence theorem which does not require any knowledge of existence of solution and asserted
that the iterates (2) converge to a solution x∗ if the initial guess x0 satisDes certain conditions [7].
Ostrowski reDned Fourier’s and Cauchy’s results for the case X = R or X = C [14].
For the general case when X , Y are Banach spaces, Kantorovich established a now famous and

dominating semilocal convergence theorem for Newton’s method which is called Kantorovich’s or
Newton–Kantorovich’s theorem [13] (see Theorem 3 that follows) based on the famous Newton–
Kantorovich hypothesis (see (37)). Three years later, he introduced the majorant principle to present
a new proof [13]. His technique is so powerful that many authors have applied it to establish conver-
gence theorems for variants of Newton’s method, the so-called Newton-like methods
[2–6,8,19].
Despite the fact that many decades have passed the Newton–Kantorovich hypothesis has not been

challenged or improved. That is all results have been based or can be reduced to this hypothesis.
Our new approach is to use center-Lipschitz (see (13)) instead of Lipschitz conditions (see (14))
for the bounds on ‖F ′(xn)−1F ′(x0)‖ (semilocal) or ‖F ′(xn)−1F ′(x∗)‖ (local case) (n¿ 0). This idea
arises from the observation that under center-Lipschitz the bounds are more precise and cheaper
to compute than in the case of Lipschitz conditions used so far. This idea can be extended for
Newton-like methods, and in the case Lipschitz conditions are replaced by “small” functions (see
[1,6]).
This way we show that under our weaker hypothesis (3) (for 
 = 1, say) ((3) implies (29) but

not vice versa unless if ‘ = ‘0) Newton’s method converges to a locally unique solution x∗ of Eq.
(1). Our estimates on the distances ‖xn+1 − xn‖, ‖xn − x∗‖ are more precise than the ones obtained
by the Newton–Kantorovich theorem. Moreover, our uniqueness ball is at least as small as the one
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given by the Newton–Kantorovich theorem; hence providing better information on the location of
the solution.
Finally we provide numerical examples to show our results:

(1) apply to solve nonlinear equations where others fail;
(2) provide more precise error estimates on the distances involved;
(3) provide a better information on the location of the solution.

2. Semilocal analysis of Newton’s method

We provide the following result on majorizing sequences for Newton’s method (2).

Lemma 1. Assume there exist parameters ‘¿ 0, ‘0¿ 0 with ‘06 ‘, �¿ 0, and 
∈ [0; 1] such
that

h
 = (
‘0 + ‘)�6 
: (3)

Then, iteration {tn} (n¿ 0) given by

t0 = 0; t1 = �; tn+2 = tn+1 +
‘(tn+1 − tn)2

2(1− ‘0tn+1)
(n¿ 0) (4)

is non-decreasing, bounded above by t∗∗ = 2�=(2− 
) and converges to some t∗ such that

06 t∗6 t∗∗: (5)

Moreover, the following error bounds hold for all n¿ 0

06 tn+2 − tn+16


2
(tn+1 − tn)6

(


2

)n+1
�: (6)

Proof. The result clearly holds if 
= 0, or ‘= 0 or �= 0. Let us assume 
 �= 0, ‘ �= 0 and � �= 0.
We must show for all k¿ 0

‘(tk+1 − tk) + 
‘0tk+16 
; tk+1 − tk¿ 0 and 1− ‘0tk+1¿ 0: (7)

Estimate (6) can then follow immediately from (4) and (7). Using induction on the integer k we
have for k = 0

‘(t1 − t0) + 
‘0t1 = ‘�+ 
‘0�6 
; t1¿ t0 and 1− ‘0�¿ 0 (by (3)):

But then (4) gives

06 t2 − t16


2
(t1 − t0):

Let us assume (6) and (7) holds for all k6 n+ 1.
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We can have in turn

‘(tk+2 − tk+1) + 
‘0tk+26 ‘�
(


2

)k+1
+ 
‘0

[
t1 +



2
(t1 − t0) +

(


2

)2
(t1 − t0)

+ · · ·+
(


2

)k+1
(t1 − t0)

]

6 ‘�

(


2

)k+1
+ 
‘0�

1− (
=2)k+2

1− 
=2

= ‘�

(


2

)k+1
+
2
‘0�
2− 


[
1−

(


2

)k+2]

=

{
‘
(


2

)k+1
+
2‘0

2− 


[
1−

(


2

)k+2]}
�: (8)

By (3) and (8) it su/ces to show

‘
(


2

)k+1
+
2‘0

2− 


[
1−

(


2

)k+2]
6 ‘ + 
‘0

or


‘0

{
2

2− 


(
1−

(


2

)k+2)
− 1

}
6 ‘

[
1−

(


2

)k+1]

or [
‘0
2

2− 

− ‘
][
1−

(


2

)k+1]
6 0;

or

‘0
2

2− 

6 ‘ (9)

which is true by the choice of 
. Hence, the Drst estimate in (7) holds for all n¿ 0. We must also
show:

tk6 t∗∗:

For k = 0; 1; 2 we have

t0 = 06 t∗∗; t1 = �6 t∗∗ and t26 �+


2
�=

2 + 

2

�6 t∗∗:
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It follows from (6) that for all k¿ 0,

tk+26 tk+1 +


2
(tk+1 − tk)6 tk +



2
(tk − tk−1) +



2
(tk+1 − tk)

6 · · ·6 t1 +


2
(t1 − t0) + · · ·+

(


2

)
(tk − tk−1) +



2
(tk+1 − tk)

6 �+


2
�+

(


2

)2
�+ · · ·+

(


2

)k+1
�

6

[
1 +



2
+
(


2

)2
+ · · ·+

(


2

)k+1]
�

6
1− (
=2)k+2

1− 
=2
�¡

2
2− 


�= t∗∗:

Moreover, we have

‘0tk+2¡
2‘0�
2− 


6 1 (by (3)): (10)

Hence, sequence {tn} (n¿ 0) is bounded above by t∗∗. It also follows from (4) that {tn} (n¿ 0)
is non-decreasing and as such it converges to some t∗ satisfying (5).
That completes the proof of Lemma 1.

Remark 1. The conclusions of Theorem 1 hold in a more general setting as we can easily see if we
just follow the above proof (see, e.g. (9) and (10)). Indeed with ‘0, ‘, � as above and 
0 ∈ [0; 2)
replace (3) by the more di/cult to verify conditions:

h
06 
0;
2‘0�
2− 
0

6 1;
‘0
20
2− 
0

6 ‘: (3′)

Note that if 
0 ∈ [0; 1] then (3)′ reduces to (3), as we can set 
0 = 
. As an example, let ‘ = 2‘0.
The last condition in (3)′ holds if 
0 ∈ [0;√5−1]. Choose 
0=

√
5−1. Then the Drst two conditions

in (3)′ hold if

h= 2‘�6
4
0
2 + 
0

= 1:527864045 : : : :

However, (3) for 
= 1 is true if the stronger condition

h= 2‘�6 4
3 = 1: R3

holds. Call the result using (3)′ instead of (3) Lemma 1′.
Conditions (3)′ can be combined in one to look like Newton–Kantorovich-type hypotheses in

some cases. Indeed, if 
= ‘0 = 0, then (3)′ hold if ‘ = 0 or �= 0. Assume ‘0 �= 0, ‘ �= 0. DeDne

d=
‘
‘0
:
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Then


0 =
−d+√

d2 + 8d
2

satisDes the last inequality in (3)′ as equality. Moreover, deDne

c =
2‘0
2− 
0

;

b= ‘0 + 
−1
0 ‘;

a=max{c; b}
and

L=




1
2
a; ‘0 �= 0;

0; ‘0 = ‘ = 0 or ‘0 = �= 0;

1
2
‘

0
; ‘0 = 0:

Then conditions (3)′ can be written as

h∗ = 2L�6 1: (3′′)
Below is the main semilocal convergence theorem for Newton’s method (2) using Lipschitz (14)

and center-Lipschitz conditions (13).

Theorem 1. Let F :D ⊆ X → Y be a Fr6echet-di7erentiable operator. Assume hypotheses of Lemma
1 hold, and there exist a point x0 ∈D and parameters �¿ 0, ‘0¿ 0, ‘¿ 0, such that

F ′(x0)−1 ∈L(Y; X ); (11)

‖F ′(x0)−1F(x0)‖6 �; (12)

‖F ′(x0)−1[F ′(x)− F ′(x0)]‖6 ‘0‖x − x0‖; (13)

‖F ′(x0)−1[F ′(x)− F ′(y)]‖6 ‘‖x − y‖ for all x; y∈D; (14)

RU (x0; t∗∗) = {x∈X | ‖x − x0‖6 t∗∗} ⊆ D; (15)

where, t∗∗ is given in Theorem 1.
Then, sequence {xn} (n¿ 0) generated by Newton’s method (2) is well de;ned, remains in

RU (x0; t∗) for all n¿ 0 and converges to a unique solution x∗ ∈ RU (x0; t∗) of equation F(x) = 0.
Moreover, the following error bounds hold for all n¿ 0:

‖xn+2 − xn+1‖6 ‘‖xn+1 − xn‖2
2[1− ‘0‖xn+1 − x0‖]6 tn+2 − tn+1 (16)

and

‖xn − x∗‖6 t∗ − tn; (17)

where, iteration {tn} (n¿ 0) is given by (4).
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Furthermore, if there exists R¿ t∗ such that

U (x0; R) ⊆ D (18)

and

‘0(t∗ + R)6 2; (19)

the solution x∗ is unique in U (x0; R).

Proof. Let us prove

‖xk+1 − xk‖6 tk+1 − tk (20)

and

RU (xk+1; t∗ − tk+1) ⊆ RU (xk ; t∗ − tk) (21)

hold for all k¿ 0.
For every z ∈ RU (x1; t∗ − t1),

‖z − x0‖6 ‖z − x1‖+ ‖x1 − x0‖6 t∗ − t1 + t1 = t∗ − t0; (22)

implies z ∈ RU (x0; t∗ − t0). Since also

‖x1 − x0‖= ‖F ′(x0)−1F(x0)‖6 �= t1 − t0;

(20) and (21) hold for k = 0. Given they hold for n= 0; 1; : : : ; k, then

‖xk+1 − x0‖6
k+1∑
i=1

‖xi − xi−1‖6
k+1∑
i=1

(ti − ti−1) = tk+1 − t0 = tk+1

and

‖xk + �(xk+1 − xk)− x0‖6 tk + �(tk+1 − tk)¡t∗ �∈ [0; 1]:
Using (2) we obtain the approximation

F(xk+1) =F(xk+1)− F(xk)− F ′(xk)(xk+1 − xk)

=
∫ 1

0
[F ′(xk + �(xk+1 − xk))− F ′(xk)](xk+1 − xk) d� (23)

and by (14)

‖F ′(x0)−1F(xk+1)‖6
∫ 1

0
‖F ′(x0)−1[F ′(xk + �(xk+1 − xk))− F ′(xk)]‖ d�‖xk+1 − xk‖

6
‘
2
‖xk+1 − xk‖26 ‘

2
(tk+1 − tk)2: (24)

It follows from (13) and (3)

‖F ′(x0)−1[F ′(xk+1)− F ′(x0)]‖6 ‘0‖xk+1 − x0‖6 ‘0tk+1¡ 1;

and the Banach Lemma on invertible operators [11] that the inverse F ′(xk+1)−1 exists and

‖F ′(xk+1)−1F ′(x0)‖6 1
1− ‘0‖xk+1 − x0‖ 6

1
1− ‘0tk+1

: (25)
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Therefore, by (2), (4), (29) and (25) we obtain in turn

‖xk+2 − xk+1‖ = ‖F ′(xk+1)−1F(xk+1)‖
6 ‖F ′(xk+1)−1F ′(x0)‖ · ‖F ′(x0)−1F(xk+1)‖

6
‘‖xk+1 − xk‖2

2(1− ‘0‖xk+1 − x0‖)6
‘(tk+1 − tk)2

2(1− ‘0tk+1)
= tk+2 − tk+1: (26)

Thus for every z ∈ RU (xk+2; t∗ − tk+2) we have

‖z − xk+1‖6 ‖z − xk+2‖+ ‖xk+2 − xk+1‖6 t∗ − tk+2 + tk+2 − tk+1 = t∗ − tk+1:

That is,

z ∈ RU (xk+1; t∗ − tk+1): (27)

Estimates (26) and (27) imply that (20) and (21) hold for n= k+1. By induction the proof of (20)
and (21) is completed.
Lemma 1 implies that {tn}(n¿ 0) is a Cauchy sequence. From (20) and (21) {xn} (n¿ 0)

becomes a Cauchy sequence too, and as such it converges to some x∗ ∈ RU (x0; t∗) (since RU (x0; t∗) is
a closed set) such that

‖x∗ − xk‖6 t∗ − tk : (28)

The combination of (24) and (28) yields F(x∗)=0. Finally to show uniqueness let y∗ be a solution
of equation F(x) = 0 in U (x0; R). It follows from (13), the estimate∣∣∣∣

∣∣∣∣F ′(x0)−1
∫ 1

0
[F ′(y∗ + �(x∗ − y∗))− F ′(x0)]

∣∣∣∣
∣∣∣∣ d�

6 ‘0

∫ 1

0
‖y∗ + �(x∗ − y∗)− x0‖ d�

6 ‘0

∫ 1

0
[�‖x∗ − x0‖+ (1− �)‖y∗ − x0‖] d�¡ ‘0

2
(t∗ + R)6 1

and the Banach Lemma on invertible operators that linear operator

L=
∫ 1

0
F ′(y∗ + �(x∗ − y∗)) d�

is invertible.
Using the identity

0 = F(x∗)− F(y∗) = L(x∗ − y∗)

we deduce

x∗ = y∗:

The uniqueness in RU (x0; t∗) follows as above by setting t∗ = R.
That completes the proof of Theorem 1.
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Remark 2. Note that the conclusions of Theorem 1 hold if conditions (3) are replaced by (3)′.
In order for us to compare Theorem 1 with the famous Newton–Kantorovich theorem which is

based on the Newton–Kantorovich hypothesis (29) we recall it below (see also [1,4,6,15–17]):

Theorem 2 (Moret [13], Miel [12], Kantorovich and Akilov [11]). Let F :D ⊆ X → Y be a
Fr6echet-di7erentiable operator. Assume: there exist a point x0 ∈D and parameters �¿ 0, ‘¿ 0
such that (11), (12), (14),

h= 2‘�6 1 (29)

and

RU (x0; s∗) ⊆ D;

where

s∗ =
1− √

1− h
‘

; (30)

hold below s∗.
Then, sequence {xn} (n¿ 0) generated by Newton’s method (2) is well de;ned, remains in

RU (x0; s∗) for all n¿ 0 and converges to a unique solution x∗ ∈ RU (x0; s∗) of equation F(x) = 0.
Moreover, the following error bounds hold:

‖xn+1 − xn‖6 ‘‖xn − xn−1‖2
2[1− ‘0‖xn − x0‖]6 sn − sn−1 (n¿ 1); (31)

‖xn − x∗‖6 s∗ − sn (n¿ 0); (32)

06 sn+1 − sn =
1
2 ‘s

2
n−sn+�
1−‘sn =

1
2 ‘(sn−sn−1)2

1−‘sn (n¿ 1); (33)

and

s∗ − sn+1 =
1
2 ‘(s

∗−sn)2
1−‘sn 6

1
‘2n+1

h2
n+1

(n¿ 0) (for h¡ 1): (34)

We can now compare Theorems 1 and 2.

Theorem 3. Under hypotheses of Theorems 1 ( for ‘0¡‘) and 2 the following error bounds hold:

tn+1¡sn+1 (n¿ 1); (35)

tn+1 − tn ¡ sn+1 − sn (n¿ 1); (36)

t∗ − tn6 s∗ − sn (n¿ 0); (37)

t∗6 s∗; (38)

06 tn+1 − tn6 �2
n−1
(sn+1 − sn) (n¿ 1); �=

1− ‘�
1− ‘0�

∈ [0; 1) (39)
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and

06 t∗ − tn6 �2
n−1
(s∗ − sn) (n¿ 1): (40)

Moreover, we have: tn = sn (n¿ 0) if ‘ = ‘0.

Proof. We use induction on the integer k to show (35) and (36) Drst. For n= 0 in (4) we obtain

t2 − �=
‘�2

2(1− ‘0�)
6

‘�2

2(1− ‘�)
= s2 − s1

and

t26 s2:

Assume:

tk+1¡sk+1; tk+1 − tk ¡ sk+1 − sk (k6 n+ 1):

Using (4) and (33) we get

tk+2 − tk+1 =
‘=2(tk+1 − tk)2

1− ‘0tk+1
¡
‘=2(sk+1 − sk)2

1− ‘sk+1
= sk+2 − sk+1

and

tk+2 − tk+1¡sk+2 − sk+1:

Let m¿ 0, we can obtain

tk+m − tk ¡ (tk+m − tk+m−1) + (tk+m−1 − tk+m−2) + · · ·+ (tk+1 − tk)

¡ (sk+m − sk+m−1) + (sk+m−1 − sk+m−2) + · · ·+ (sk+1 − sk)

¡sk+m − sk : (41)

By letting m → ∞ in (41) we obtain (37). For n= 1 in (37) we get (38).
Finally, (39) and (40) follow easily from (4) and (33). Note also that (39) holds as a strict

inequality if n¿ 2.
That completes the proof of Theorem 3.

Remark 3. It follows from Theorems 1–3 that whenever the Newton–Kantorovich hypothesis (29)
holds so does (3) (for 
= 1) (but not vice versa unless if ‘= ‘0). Moreover, our error bounds are
more precise, since

‘06 ‘ (42)

in general. Note also that t∗ ∈ [�; 2�] and under the hypotheses of Theorem 2 t∗ ∈ [�; s∗]. Moreover,
‘=‘0 can be arbitrarily large. Indeed:

Example 1. DeDne the scalar function F by F(x)=c0x+c1+c2 sin ec3x, x0=0, where ci, i=0; 1; 2; 3
are given parameters. Then it can easily be seen that for c3 large and c2 su/ciently small ‘=‘0 can
be arbitrarily large. That is (3) may be satisDed but not (29).
We provide the additional error bounds without proof since these are similar to the ones given

by others in the special case ‘0 = ‘.
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Proposition 1 (Yamamoto [17]). Under the hypotheses of Theorem 1 for ‘0¡‘ the following error
bounds hold for all n¿ 0:

2‖xn+1 − xn‖
1 +

√
1 + 4an||xn+1 − xn||

6 ‖xn − x∗‖6 bn6 cn; (43)

‖xn − x∗‖6dn; (44)

an‖xn − x∗‖2 + ‖xn − x∗‖ − ‖xn+1 − xn‖¿ 0; (45)

where

an =
‘

2[1− ‘0‖xn − x0‖] ; bn =
‘‖xn − xn−1‖2

2[1− ‘0=2(‖xn − x0‖+ ‖x∗ − x0‖)] ; (46)

cn =
‘‖xn − xn−1‖2

1− ‘0‖xn − x0‖+
√
(1− ‘0||xn − x0||)2 − ‘0‘||xn − xn−1||2

(47)

and

dn =
‘

2[1− ‘0‖xn−1 − x0‖]‖xn−1 − x∗‖2: (48)

Proposition 2 (Yamamoto [17]). Under the hypotheses of Proposition 1 the following additional
error bounds hold for all n¿ 1:

‖xn − x∗‖6 2‖xn+1 − xn‖
1 +

√
1− 2Mn||xn+1 − xn||

6
2‖xn+1 − xn‖

1 +
√
1− 2Nn||xn+1 − xn||

6 t∗ − tn; (49)

where

Mn =
‘

1− ‘0‖xn − x0‖ ; Nn =
‘

1− ‘0tn
: (50)

Remark 4. Yamamoto in [17, p. 210] showed estimates of the form (49) with

RMn =
‘

1− ‘‖xn − x0‖ (51)

and

RNn =
‘

1− ‘sn
: (52)

Note for all n¿ 1

Mn6 RMn (53)

and

Nn6 RNn: (54)

Hence our estimates (49) are Dner than Yamamoto’s if strict inequality holds in (42).
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Remark 5. Gragg and Tapia [10] showed
2‖xn+1 − xn‖

1 +
√
1 + 4� 2n =(1 + � 2n)2

6 ‖x∗ − xn‖6 � 2
n−1‖xn − xn−1‖; (n¿ 1); (55)

where

�=
1− √

1− h

1 +
√
1− h

: (56)

Our error bounds compare favorably with (55). In the case of the lower bounds (similarly for the
upper bounds) our error bounds (43) are larger than (55). This is true since the coe/cient of the
quadratic term in (45) is larger than ours (see [10, p. 12]).

Let us compare (43) with (55) using a simple example.

Example 2. Let X = Y = R, D = [− 0:5; 0:5], x0 = 0:25 and deDne F on R by

F(x) =
x3

3
+ x: (57)

Using (12)–(14), (56) and (57) we obtain

�= 0:240196078; ‘ =
16
17
; ‘0 =

12
17
; h= 0:452133794;

h1 = (‘ + ‘0)�= 0:339100346; �= 0:149306495;

x1 = 0:009803922; x2 = 0:000000628; x3 = x∗ = 0:
We obtain by (55)

0:2178604636 ‖x∗ − x0‖;
0:0009602656 ‖x∗ − x1‖;
‖x∗ − x1‖6 0:035862835;

‖x∗ − x2‖6 0:000218539;

and by (43)

0:2178604636 ‖x∗ − x0‖;
0:0097660216 ‖x∗ − x1‖;
‖x∗ − x1‖6 0:032830147;

‖x∗ − x2‖6 0:000054917:

Hence our estimates (43) are more precise than (55).
Note that lower bounds were given also by Miel [12] and Yamamoto [17] using diCerent techniques

but the same type of quadratic inequality. Since their coe/cient of the quadratic term is larger than
ours (see (45)) we deduce that our lower bound is also more precise than the corresponding ones
given by Miel and Yamamoto.
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Remark 6. Under the Newton–Kantorovich hypothesis (29) Miel [12] showed

‖xn+1 − xn‖6 ‘
2[1− ‘‖xn − x0‖]‖xn − xn+1‖26 ‘

2(1− ‘sn)
‖xn − xn−1‖2

=
sn+1 − sn
(sn − sn−1)2

‖xn − xn−1‖2 (58)

and

‖x∗ − xn‖6An‖xn − xn−1‖26Bn‖xn − xn−1‖6Cn‖x1 − x0‖ (59)

are valid and best possible, where,

An =
s∗ − sn

(sn − sn−1)2
; Bn =

s∗ − sn
sn − sn−1

; Cn =
s∗ − sn
s1

: (60)

But for ‘0¡‘
‘

2[1− ‘0‖xn − x0‖]¡
‘

2[1− ‘‖xn − x0‖] (61)

and
‘

2[1− ‘0tn]
¡

‘
2[1− ‘0sn]

: (62)

Hence under the hypotheses of Theorem 1

‖xn+1 − xn‖6 ‘
2[1− ‘0‖xn − x0‖]‖xn − xn−1‖26 ‘

2[1− ‘0tn]
‖xn − xn−1‖2

=
tn+1 − tn
(tn − tn−1)2

‖xn − xn−1‖2 (63)

and

‖x∗ − xn‖6 RAn‖xn − xn−1‖26 RBn‖xn − xn−1‖6 RCn‖x1 − x0‖ (64)

are valid, best possible and Dner than (58) because of (61) and (62), where

RAn =
t∗ − tn

(tn − tn−1)2
; RBn =

t∗ − tn
tn − tn−1

; RCn =
t∗ − tn
t1

: (65)

Miel also gave the following lower bounds:
2‖xn+1 − xn‖

1 +
√
1 + 4[sn+1 − sn=sn − s2n−1]

2
6

2‖xn+1 − xn‖
1 +

√
1 + 4(s∗ − sn+1)=(s∗ − sn)2||xn+1 − xn||

6 ‖x∗ − xn‖: (66)

Simply replace the s∗, sn by t∗, tn to obtain our lower bounds which from the discussion above are
also Dner (closer to ‖x∗ − xn‖) than the corresponding ones in (66).

Remark 7. Moret [13] showed

‖xn − x∗‖6 u(‖xn+1 − xn‖)− u(0) = '1n (n¿ 0) (67)
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and

‖xn − x∗‖6 u(‖xn − xn−1‖)− ‖xn − xn−1‖ − u(0) = '2n (n¿ 1); (68)

under condition (29) using the “r” functions which Potra and PtUak call “rates of convergence” [16].
The functions u, r are given by

u(t) = u(t; gn; pn) = t +

√
t2 +

1− 2gnpn
g2n

; t ∈ [0; �] (69)

r(t) =
t2

2(u(t)− t)
; t ∈ [0; �] (70)

g0 = ‘; qn = 1− ‘‖xn − x0‖; pn = ‖xn+1 − xn‖; gn =
‘
qn
:

DeDne functions Ru, Rr by

Ru(t) = Ru(t; Rgn; zn; pn) = t +
1− znpn

Rgn
; t ∈ [0; �] (71)

Rr(t) =
t2

2( Ru(t)− t)
; t ∈ [0; �]; (72)

z0 = ‘0; Rg0 = ‘; zn = Rgn (n¿ 1); Rgn =
‘

1− ‘0‖xn+1 − x0‖ :

Moret’s results (67) and (68) are deduced from

‖xn+1 − xn‖6 r(‖xn − xn−1‖) (n¿ 1): (73)

But under (3) we have already showed

‖xn+1 − xn‖6 Rr(‖xn − xn−1‖)¡r(‖xn − xn−1‖) (‘ �= ‘0) (n¿ 1): (74)

Exactly as in Moret [11, pp. 67–70] we get under the hypotheses of Theorem 1

‖xn − x∗‖6
∞∑
k=0

Rr(k)(‖xn+1 − xn‖)6 '1n (75)

and

‖xn − x∗‖6
∞∑
k=0

Rr(k)(‖xn+1 − xn‖)6 '2n (n¿ 1): (76)

That is, our upper bounds are at least as Dne as (67) and (68). The results obtained by Potra and
PtUak in [16] can also be improved along the same lines since our function “ Rr” is smaller than “r”.
However we leave the details to the motivated reader.

Remark 8. The error bounds obtained in the Newton–Kantorovich Theorem 2 have been improved
by several authors and under diCerent techniques. The interested reader can Dnd a list of error bounds
and the relationship between them in [4,15,17]. It is clear from the error estimates in Theorem 3
that a parallel and more favorable list to the one in [17] can be obtained for error bounds using the
same information (see Propositions 1 and 2 and Remarks 3–6) under our weaker hypotheses and
for error bounds using the same information.
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Let us give a brief sketch of what else we mean. Under the assumptions of Theorem 1 set:

RU = RU 0 = RU (x0; t∗); RUn = RU (xn; t∗ − tn) (n¿ 1); K0 = ‘; RK0 = ‘0;

Kn = sup
x;y∈ RUn

x �=y

‖F ′(xn)−1[F ′(x)− F ′(y)]‖
‖x − y‖ ; (77)

RKn = sup
x �=xn
x∈ RUn

‖F ′(xn)−1[F ′(x)− F ′(xn)]‖
‖x − xn‖ : (78)

It can easily be seen that

Kn6K0
1

1− RK0‖xn − x0‖
(79)

and

RKn6K0
1

1− RK0‖xn − x0‖
: (80)

We show

(Kn + 
 RKn)‖xn+1 − xn‖6 
; (81)

or
(1 + 
)K0

1− RK0‖xn − x0‖
‖xn+1 − xn‖6 
;

or
(1 + 
)K0

1− 2 RK0[1− ( 12)n ]�
(
1
2

)n �6 
;

or

(1 + 
)
(
1
2

)n K0�6 
− 2
 RK0
[
1− ( 12)n] �

or {
(1 + 
)

(
1
2

)n K0 + 2
 [1− ( 12)n] RK0} �6 
: (82)

It su/ces to show

(1 + 
)
(
1
2

)n K0 + 2
 [1− ( 12)n] RK06K0 + RK0


or

RK0

[
2
(
1− ( 12)n)− 1

]
6K0

[
1− (1 + 
)

(
1
2

)n]
or



[
1− ( 12)n−1]6 1− (1 + 
)

(
1
2

)n
or



[
1− ( 12)n]6 1− ( 12)n
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or


6 1

which is true by hypothesis.
That is, the conclusions of Theorem 1 can pass from (0; 
; F; x0; RU 0; K0; RK0) to the class (�; 
; F; xn;
RUn; Kn; RKn) (n¿ 1) in order to obtain Dner error bounds than the ones given by Yamamoto in [17]
(see, e.g., Theorem 3.2 or the chart on page 213). Similar remarks can be made if we take the sup
on RU instead of RUn (n¿ 1).
We now complete this section with three numerical examples. In the Drst as well as in the third

one we show that hypothesis (29) fails whereas (3) holds. In the second example used also in [16]
we compare estimates (4), (16) and (33), (32), respectively.

Example 3. Let X = Y = R, D = [
√
2− 1;

√
2 + 1], x0 =

√
2 and deDne function F on D by

F(x) =
1
6
x3 −

(
23=2

6
+ 0:23

)
: (83)

Using (11)–(13) and (83) we obtain

�= 0:23; ‘ = 2:4142136; ‘0 = 1:914213562;

h= 2‘�= 1:1105383¿ 1 (84)

and (3) for 
= 1

h1 = (‘ + ‘0)�= 0:995538247¡ 1: (85)

That is, there is no guarantee that Newton’s method {xn} (n¿ 0) starting at x0 converges to a
solution x∗ of equation F(x) = 0, since (29) is violated. However since (85) holds, Theorem 1
guarantees the convergence of Newton’s method to x∗ = 1:614507018.

Example 4. Let X = Y = R, x0 = 1:3, D = [x0 − 2�; x0 + 2�] and deDne function F on D by

F(x) = 1
3(x

3 − 1): (86)

As in Example 2 we obtain

�= 0:236094674; ‘ = 2:097265501; ‘0 = 1:817863519

h= 2‘�= 0:990306428¡ 1; h1 = (‘ + ‘0)�= 0:92434111¡ 1; (for 
= 1)

t∗ = 0:369677842 and s∗ = 0:429866445:

That is, we provide a better information on the location of the solution x∗ since

RU (x0; t∗) ⊂ RU (x0; s∗): (87)

Moreover, using (2), (86), (4), (33) and (32) we can tabulate the following results (Table 1):

A more interesting example is given by the following:
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Table 1
Comparison table

xn Estimates (16) Estimates (17) Estimates (33) Estimates (32)

x1 = 1:0639053254 0.236094674 0.133583172 0.236094674 0.193771771
x2 = 1:0037617275 0.102400629 0.031182539 0.115780708 0.0779910691
x3 = 1:0000140800 0.028585756 0.002596783 0.053649732 0.024342893
x4 = 1:0000000002 0.002575575 0.000021208 0.020186667 0.004156226
n= 5 0.000021207 0.000000001 0.003987206 0.00016902
n= 6 0.000000001 0 0.000166761 0.000002259

Example 5. Let X = Y = R, x0 = 1 and deDne function F by

F(x) = x3 − a for all x∈ [a; 2− a]; a∈ [0; 12):
Using (12)–(14) we Dnd

�= 1
3(1− a); ‘0 = 3− a and ‘ = 2(2− a):

The Newton–Kantorovich hypothesis (29) does not hold since

h= 4
3(1− a)(2− a)¿ 1 for all a∈ [0; 12):

That is there is no guarantee that Newton’s method (2) converges to the solution x∗= 3
√
a of equation

F(x) = 0. However, (3) holds for all a∈ [ 5−
√
13

3 ; 12) if 
= 1, since

h1 = 1
3(1− a)[3− a+ 2(2− a)]6 1:

References

[1] J. Appel, E. DePascale, P.P. Zabrejko, On the application of the Newton–Kantorovich method to nonlinear integral
equations of Uryson type, Numer. Funct. Anal. Optim. 12 (3 and 4) (1991) 271–283.

[2] I.K. Argyros, Relations between forcing sequences and inexact Newton iterates in Banach space, Computing 63
(1999) 131–144.

[3] I.K. Argyros, Newton methods on Banach spaces with a convergence structure and applications, Comput. Math.
Appl. 40 (1) (2000) 37–48.

[4] I.K. Argyros, Advances in the E/ciency of Computational Methods and Applications, World ScientiDc, River Edge,
NJ, 2000.

[5] I.K. Argyros, A Newton–Kantorovich theorem for equations involving m-Fr4echet-diCerentiable operators and
applications in radiative transfer, J. Comput. Appl. Math. 131 (1–2) (2001) 149–159.

[6] I.K. Argyros, F. Szidarovszky, The Theory and Applications of Iteration Methods, CRC Press, Boca Raton, FL,
1993.

[7] A.L. Cauchy, Sur la d4etermination approximative des racines d’une 4equation alg4ebrique ou transcendante, in: Lecons
sur le Calcul DiC4erentiel, Bur4e freres, Paris (1829), reprinted in Oeuvres compl4etes (IV), 2nd series, Gauthier-Villars,
Paris, 1899, pp. 573–609.

[8] J.E. Dennis, Toward a uniDed convergence theory for Newton-like methods, in: L.B. Rall (Ed.), Nonlinear Functional
Analysis and Applications, Academic Press, New York, 1971, pp. 425–472.

[9] J.B.J. Fourier, Question d’analyse algebrique, in: Oeuvres compl4etes (II), Gauthier-Villars, Paris, 1890, pp. 243–253.
[10] W.B. Gragg, R.A. Tapia, Optimal error bounds for the Newton–Kantorovich theorem, SIAM J. Numer. Anal. 11

(1) (1974) 10–13.



332 I.K. Argyros / Journal of Computational and Applied Mathematics 169 (2004) 315–332

[11] L.V. Kantorovich, G.P. Akilov, Functional Analysis, Pergamon Press, Oxford, 1982.
[12] G.J. Miel, Majorizing sequences and error bounds for iterative methods, Math. Comput. 34 (149) (1980) 185–202.
[13] I. Moret, A note on Newton-type iterative methods, Computing 33 (1984) 65–73.
[14] A.M. Ostrowski, Solution of Equations in Euclidean and Banach Spaces, Academic Press, New York, 1973.
[15] F.A. Potra, On Q-order and R-order of convergence, SIAM J. Optim. Theory Appl. 63 (3) (1989) 415–431.
[16] F.A. Potra, V. PtUak, Sharp error bounds for Newton’s process, Numer. Math. 34 (1980) 67–72.
[17] T. Yamamoto, A method for Dnding sharp error bounds for Newton’s method under the Kantorovich assumptions,

Numer. Math. 49 (1986) 203–220.
[18] L. Yau, A. Ben-Israel, The Newton and Halley methods for complex roots, Amer. Math. Monthly 105 (1998)

806–818.
[19] T.J. Ypma, Local convergence of inexact Newton methods, SIAM J. Numer. Anal. 21 (3) (1984) 583–590.


	On the Newton--Kantorovich hypothesis for solving equations
	Introduction
	Semilocal analysis of Newton's method
	References


