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Abstract

We show that various functions related to the logarithms of the canonical profuets= [~ (1 + z/n”"),
p>1landQ(z) =[12g (14 z9"), ¢ € (0, 1) are Pick functions. As a consequence we find an integral expansion
of a function involving the logarithm of Jacksoggyamma function.
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1. Introduction

We shall investigate certain entire functions of genus 0 having only negative zeros. These functions are
canonical products and have the representation

f@)= ]o_o[ (1+ ai) , (1)

n=1 n

where the positive numbelg,,} are arranged in increasing order of magnitude and where the series
Yo 1 1/a, converges. The corresponding zero counting funaticndefined as

n(r) =#{n|la,|<r}. )
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We describe the motivation for the investigations carried out in this paper. The maximal growth of a
function of the form (1) occurs in the direction of the positive axis;

m(f,r) =max|f )|zl =r}= f(r),

for r > 0. The ordelc of f is defined as the infimum of the numbersuch that there exists a const&nt
with the property that:( f, r) <C exp(r®), for all » > 0. In our situationc< 1 and in the case whereis
positive we see that the related function

|
¢(z) = ngf(z) ,

K

varies between 0 and a constant wizemns through the positive axis. The constant could be equal to
infinity, although it is finite if we impose further restrictions on the zero distribution (which we shall do
in this paper). The natural question about the detailed behaviogroofthe positive axis is addressed
here for some classes of functions of the form (1). This behaviour is read off from the properties of the
holomorphic functionp in the cut plane = C\ (—o0, 0)] and our investigation focuses on its behaviour
in.</.

A Pick function is a holomorphic function in the upper half plane having nonnegative imaginary part.
For the general theory about these functions][8kdt is known that any Pick function admits an integral
representation interms of a positive measure. Furthermore, if this measure is supported on the negative axis
then it is easily seen that the derivative of the function is a completely monotone function. A completely
monotone functiomy is aC> function such tha¢—1)" g™ (x) >0 for x > 0. For an introduction to these
functions see the monografit¥]. Many references on results about completely monotone functions can
be found in e.g[7]. A positive functionf (x) whose derivative is completely monotone is sometimes
called a Bernstein function.

The general goal of this paper is to explore what can be called a Pick property for some classes of
entire functions having negative zeros. The investigations were initiated by the study of Eulers gamma
function (sed4]) and have subsequently been carried out for a more general class of functions of genus
one (sed12]) as well as for the double gamma function introduced by Barneq18¢e

In our results below the expression legz) (wherew is some analytic function) denotes the branch of
the logarithm obtained by analytic continuation of logx) for positive realx. The principal logarithm
is denoted by Log.

Theorem 1.1. Let P be a canonical product of the forh) where|n(r) — r%/?|<Const.Then

logP(z) log P (i) 1/0 1 t
7l _ER< il/p >+n o \t—z 1241 dar,

where the function d is given by

sin(z/p)

di) = 7|1/

(—=log|P(t)| + = cot(n/p)n(—t)).

This is the Stieltjes representation@dg P (z))/zY/*.
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We put forp > 1
= z
P,(z) = ]I <1+ E) .
Theorem 1.2. The function(log P,(z))/z*/* is a Pick function and

logP,(z) = 1 /0 d, (1)
e sintn/p)  m ) e t—2z

dr,

where thepositivefunctiond,, is given by

sin(z/p)

GO ="

(—log|P,(t)| + = cot(n/p)n(—t)).

As a corollary of this result we notice
Corollary 1.3. The function(log Pp(x))/xl/P is a Bernstein function

We shall also investigate canonical products of order 0. Here we shall limit ourselves by considering
functions of the form

0@ =[]A+zg". q<©1.

n=0
This function appears in the theoryaspecial functions. The infinite produ@(—q*) is in fact the limit
of the g-shifted factorials (og-Pochhammer symbolsy*; ¢),,.
One well-known function defined in terms of these factorials is Jacksegesnma function. Itis given
as
_ @ 9Do
(@% D)oo
Historical remarks and several references on this function can be foyib{ in
We shall explain the motivation for our choice of the function relate@ that we consider in Theorem
1.6. It has recently been proved that
logI'(z + 1)
',_) e —
zlogz

Iy(2) (1—q) .

is a Pick function (sef4]). The question arises if there iggeanalogue of this result involving Jacksons
g-gamma functior’,. This function has poles at all points of the fofmn + 2rim/logq}, wheren >0
andm are integers. In particular there are poles in the upper half plane so the function(tods not
even holomorphic there.

If we restrict our viewpoint to the positive real axis, then the function

logl'y(x + 1)
x log (ﬁ%{;)
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varies between zero and some positive constant (which easily is seen to be 1). As a corollary to Theorem
1.6 we show that this function is increasing. This may be considered-asalogue of the corresponding
result about the gamma function (4@¢), sincel’;(x +1) — I'lx +1) and(1 — ¢*)/(1 —¢q) — x as
qg— 1_.
Corollary 1.4. The function
logl'y(x + 1)
x log (%)

increase®n the positive line frord to 1. It has the following integral representation:

log I'y (x + 1) logI,(in/(2 logq) + 1) -1 1 t
=R : / - - > h_(t)dr
x log (%) in log (%) /(2 logq) t+q 1“+1

+/Oo ! ! hy(t)dr
o \t+q* 24+1)°7F ’

whereh_ andh, are the functions defined {11) and(12).

—00

(We remark that the function in the corollary above doethave a completely monotone derivatives.)
Concerning the functio we notice:

Theorem 1.5. The function
_10gQ(z) —log 0(—q)
a3

¥(2)

is a Pick function

Theorem 1.6. The function

() 109049 ~log0(-9) + 989 Log(—z)
Log (%_i;) Log(—z)

is a Pick function and it has the following integral representation

_ -1 1 t
Y(2)=Ry (i) +/ (— — ) h_(t)dt

—oo \I — 2 241

*/ 1 t
+fo (: — t2+1) h+(l)dt,

whereh_ and i are certain positive function@lefined in(11) and(12)).

The development to follow is based on a maximum principle in the upper half plane. However, it is
burdened with many technical estimates.
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2. Positive order

Here we investigate the situation where the zero counting functiassociated with the canonical
productP of the form (1) satisfies

n(r) — r'/?|<Const 3)
for all » > 0. Herep > 1. We define

log P(z) =) _ Log(1+ z/ay),
n=1

where Log denotes the principal logarithm. The functiis of order ¥p. Indeed we have

. log P(x) T
x“—>moo xYr 7 sin(n/p)’

This may be verified using the relation

_ [0 s
IogP(x)_/0 ; t+xdt’ (4)

see e.g[5, Chapter 4pr[11, Lecture 12]In the proof of Theorem 1.1 we need an estimate of B@)|.
That is the contents of Lemma 2.1.

Lemma 2.1. If n(r) <Crl/? there exists a sequen¢e,} tending to infinity and a constant such that we
have

|log P(z)| <Constz|Y?,  |z] =ry,

for all n.

Proof. Since the maximum growth & occurs along the positive real line we obtain
T e
sin(n/p)

for r > 0. By a result of Littlewood (sef8, Chapter 6] this is also a lower bound on lo¢ | on circles of
certain radii{r,,} tending to infinity. The estimate

logm (P, r)<Const

|arg P(z)|<Constz|Y?, zecC,

may be proved by as follows. We suppose that 0 and definé& =min{k | ax > A+1}. Then, ifz=x+iy
wherex € [-A, —A + 1] andy >0, we get

arg P(z)= Y Arg(1+z/ay)
n=1

<n(K -1+ Z arctan( 4 )

a, — A
n=K n
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One may rewrite the infinite sum as an integral in terms of the counting funetion- n(ax_1) and
perform integration by parts. In this way one obtains

o0 9]
E arctan( 4 )gf ns+A) - Y st,
— a, — A s€4y

1

and this last integral is seen to be less than Qarlét + y1/?). Therefore

arg P(z)<ConstkK — 1+ AY/r + yl/p)g(:onstzll/ﬂ. 0

Proof of Theorem 1.1. We let B > 0 and consider the auxiliary function

log P
pp(z) = 21/;Z) + BLlogz, z¢€ ..

We set out to prove that is a Pick function ifB > 0 is chosen sufficiently large. This amounts to
showing that the harmonic functid®y z is nonnegative in the upper half plane. We shall verify this by
appealing to a Phragmén—Lindel6f principle. To this end we need to investigate the boundary behaviour
of 3¢y on the real line. A routine computation shows that,

—sin(n/p)log| P (x)| + n cosn/p)n(—x) N

x| Ve o

Sep(z) —>

asz — x € (—oo, 0)\{—a,} within the upper half plane. We see thi&bz has nonnegative boundary
values on the real line provided

Br|x|Y/P
sin(z/p)’

We now show that we can chooBeo large that this holds. We see fr¢®n Theorem 4.1}hat there exists
ro > 0 such that

log|P(x)|<m cot(n/p)n(—x) + x <0. (5)

log | P(x)| < (m cot(x/p) + DIx[Y*,  x < —ro.
Suppose that € (1, 2]. From (3) and the line above we get (noting that(epp) <0)
log| P(x)| <7 cot(x/p)(n(—x) — C) + |x|*/*
=n cot(n/p)n(—x) + Ix|¥? + Const  x < — ro.

Forx e [—ro, 0], log|P(x)| — cot(x/p)n(—x) is bounded from above and it is less than or equal to
Constx| asx — 0. Hence we may choogg> 0 such that (5) is satisfied.

If p> 2, we use logP (x)| <z cot(n/p)(n(—x) + C) + |x|*/? to obtain (5) in this case.

We may rephrase (5) as: lim inf . 3¢z (z) >0 for all realx. Furthermore, from Lemma 2.1,

|Sep(z)|<Const logz|, |z| =rx,

for some sequende, } tending to infinity. We obtain from these facts thai; > 0 throughout the upper
half plane by a Phragmén—Lindel6f principle or extended maximum prindipleChapter Il1] (See also
[12].) Thereforep is a Pick function.
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It is not hard to show that (using the general integral representation of Pick functions, sk e.g.
Section 1)

log P (i) 1 [0 1 ¢
0= (550 2 [ (7 - ) oo

where

sin(z/p)
£]1/p

vp(t) = (—=log|P ()| + = cot(n/p)n(—1)) + Br.

Furthermore, since Logis itself a Pick function and in fact

0 1 t
Logz = - — ) ds,
9z f—oo (t_Z t2+l>

we get the desired Stieltjes representation

logP(z) . (logP(i) 1/‘O 1 t
Z4/p _R( il/r +n o \t—z 1241 d@dr,

where

_sin(n/p)

d@t) = [ (= log|P(?)| + = cot(n/p)n(—t)).

We have proved Theorem 1.1

Proof of Theorem 1.2. From the integral representation in Theorem 1.1 and the positivity of the measure
in Proposition 2.2 below we see thidg P(z))/zY/* is a Pick function with integral representation

log P,(z) . (logP,(i) 1 (0 1 t
U0 (B0 o2 [ (- ) o

where
d, (1) = sin(z/p)

myp(—bmaﬁn+ncmmmm@4» t <0.

We find (by differentiating under the integral sign) thlaty P (x)) /x/? increases from 0 to/ sin(z/ p) asx
increases from zero to infinity. This means however that the funétian=r=/ sin(z/p) — (log P(z)) /zY/*
is positive on the positive axis and has negative imaginary part in the upper half plane. The function is
thus a Stieltjes transform and hence it has an integral representation of the form
T log P(z) /OO da (1)
- — =o+ ,
sin(z/p) Z4/p 0 z+t
wherex=Ilim,_, o F(x)=0 andfgO do(2)/(141) < oo (see e.g[3]). It follows that &r(r) =d(—¢)dt /=
and hence that
logP(z) T 1 /00 d,(—1)
e sin(n/p)  m)o z+t

This proves Theorem 1.2 (once the proposition below is verified).

dr.
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Proposition 2.2. For anyp > 1 we have
log|P,(x)| <= cot(n/p)n(—x), x<O.

This proposition furnishes an upper bound|&y| on the negative axis. Theorems[&sTheorem 4.1]

give an asymptotic upper bound where the right-hand side is replaceddmi(z/p) + ¢)|x|/?. This is
however not precise enough for our needs and in fact the proof of our proposition becomes an involved

and technical argument.

The precise asymptotic behaviour of 18g has been described by Hardy, $8k We shall use some
of the formulae in that paper and also extend them. We formulate the following lemma.
Lemma 2.3. For p € (1, 4) anda > 0 we have

log | P,(—a)|=n cot(n/p)a*” 4 log|sin na®*| — (loga)/2
— logn + (1 — p/2) log(2n) — (p/n) sin(zp/2)al(a, p),

where

B 00 ' npfl
I(a,p) = / (09(2 SinfG) — 1)~

In the situation where < 2 this lemma is obtained i8] and it is easy to see that it holds also for
p = 2. We shall verify the relation in the lemma fpre (2, 4) in the Appendix.
About the integrall (a, p) we notice

I NS N < X .
a Cl, p p

Proof. We find

- log(1 2mn an’”” d
—al R = — 10 — e &
al(a, p) /o (—log( ) N2 + a2 — 2anP coYnp/2) £
o an/’_l

< —1 1— — 21
fo( og(l—e ))nzpﬂzdn

1 o0 a2,7p—l
== —log(1l — e~ d
- /0 (— log( D g O

1 o
<= / (—log(1 — e 2™y~ Ldy

a.Jo

— > _ _ a1
= 207 /0( log(1 —e ")’ dt

1 T
a(2n)7 ri@ = I

I'(p)(p+1<

- a(2m)?
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The relation involving Riemanns zeta function and the gamma function can be verified by performing
partial integration on the integral and by using the well-known formula

tP

F(p—i—l)C(p—i—l):/ dr.

0o -1
This completes the proof of the lemmal
The assertion of Proposition 2.2 may be written as follows:
log|P,(—t)|<km cot(n/p), t e (k*, (k+1)’), (6)

fork>0.1f k =0, (6) is easily verified regardless of the valugof| P,(—1)| varies between 0 and 1 for
tin the interval (0,1).)

Proof of Proposition 2.2 whenp € (1, 4). We suppose that € (k”, (k + 1)”) for somek>1. From
Lemma 2.3 we see that (6) holds provided

n cot(n/p)(tY/* — k) + log| sin nt¥/*| — (logt)/2
— logzn + (1 - p/2) log(2n) — (p/m)t sin(np/2)1(t, p) <0,

fort € (k, (k + 1)?). Here it is elementary to see that (introducing the variabterl/? — k € (0, 1))
n cot(n/p) (1P — k) + log | sin ntY/?| < cot(n/p)(1 — 1/p) + log| sin(z/p)|,
and therefore it is enough to verify

n cot(n/p)(1 — 1/p) + log|sin(n/p)| — (logt)/2 — logn
+ (1= p/2) log(2r) — (p/m)t sin(np/2)1(z, p) <O. (7)

Here we consider two situations, namelye (1, 2] andp € (2,4). If p € (1, 2] we have from Lemma
2.4 that—r1(z, p) <=n/(12). Hence, the left-hand side of (7) is less than or equal to (remembering that
cot(n/p) <0 andr >1)

— log=n + (log(2n))/2 + 1/6,

which in fact is negative. Therefore (7) is verified in this situation.
If p € (2,4),

—(p/m)t sin(np/2)1(t, p) <O,

since both the integrdl(z, p) and sif(n/p) are negative. Thus (7) follows if we can verify that
n cot(n/p)(1 — 1/p) + log|sin(z/p)| —logn + (1 — p/2) log(2n) <O,

for p € (2,4). Here we put = n/p € (n/4, =/2) and have to verify
cot(r)(n — r) + log|sinr| +log 2 — (n log(2rn))/(2r) <O0.

This relation is indeed true as one can prove by standard calculus methods. Proposition 2.2 is thus proved
whenp € (1,4). O
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To prove the proposition fgr >4 we need some technical lemmas. We prove them below.

Lemma 2.5. We have

log|P,(—t)|<m col(n/p), te[l, 2], p=>4

Lemma 2.6. We have

log P, ((k + 1)f)<kn/sin(n/p) +1, pel2,4], k=2 (8)

log P, ((k + 1)) <kn/sin(n/p), p €[4,00), k=2 )
Proof of Proposition 2.2 whenp>4. We begin by noticing that the desired inequality does hold for
1<r<2” and for anyp>4 by Lemma 2.5.

Suppose next thate (k”, (k + 1)”) for somek >2 and thap € [4, 8). We pute = p/2 ands = /t
and we notice that’ <t < (k + D ifand only if k? <s <(k + 1)°. The idea is now to use that

log | Py(—1)| =10 | Pag(—s5?)| = 10g| Ps(—3)| + 109 Py (s).
From Lemma 2.6,

log P,;(s)<kn/sin(n/c) + 1,
for k>2 and from Lemma 2.3 (since> 27)

log | Py (—s)|<krn cot(n/o) + n(1l— 1/0) cot(n/o)
+ log|sin(n/a)| +log 2 — (¢/2) log(2r) — (a/2) log 2.

Since furthermore cot/p) = cot(n/o) + 1/ sin(n/c) we get

log|P,(—1)| — kn cot(n/p) <1+ (n — n/o) col(n/c) + log|sin(n/o)|
+ log2— (¢/2) log(2r) — (a/2) log 2.

It is seen by standard calculus arguments that this quantity is negativeffit/4, =/2]. This proves the
proposition forp < 8.

Forp e [27, 2" for m = 3,4, ... we use Lemma 2.5 and relation (9) repeatedly. In this way the
proposition is finally proved. O

Remark 2.7. In the proof we used the relation
log| P2 (—1%)| = log | Py(~1)| + log Py (1).

It is easy to show that l08,(r) <(n/ sin(z/c))tY/? (see (4)). Whert is small (e.g. forr <27), it may
happen that lo@,(z) > (n/ sin(n/a))n(t). This accounts for many of the technicalities in the situation
wherep > 4.

Proof of Lemma 2.5. Since log1l — s) < — s for s <1 we have for € (1, 2°),

l0g | P,(—n|<logt = 1)+ 3" — =log(r — 1) — 1((p) — D).
n=2



H.L. Pedersen / Journal of Computational and Applied Mathematics 175 (2005) 245—-263 255

The asserted inequality will follow from the inequality
—t({(p) — 1) +log(t — )<n cot(n/p), ¢t € (L,2). (10)

It is easy to see that the left-hand side of this relation has a unique maximum p@lneiM, namely
atr =1+ 1/(¢(p) — 1) (which actually is less that’2. If we evaluate (10) at this point we obtain the
relation.

—{(p) —log(l(p) — D <n cot(n/p), p=>4,

which we set out to verify. We let

8(p) = =l(p) —log(l(p) — 1) — = cot(n/p)

and find
o) = — () ( n/p )2
lp)—1 sinn/p)
Here,
() () 35 o Gogm)/n?
- = > log 2,
ORI -5V T
)

—{(p) —log(t(p) — 1) — p log 2

is increasing as a function @f Its limit asp tends to infinity is easily seen to equal. Therefore the
function itself must be less than or equal+d for all p > 4. To show thafg(p) <0 for all p >4 it is
therefore enough to show that

plog2—rncotn/p<l
for all p > 4. This is indeed the case. We get

n/p
log2— =p|log2—
p log 7 cot n/p=p (og sin/p COSn/p)

<p(log 2 — cos/p)

<p<log2— %2)<0. O

Proof of Lemma 2.6. We shall first show that the function

XT
sin(z/p)

gx) =) logl+ ((x + /n)’) —

n=1
decreases infor x > 1 andp > 1. Itis easily seen that

p i (x + 1) n

x+1 B

SO L G s
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and therefore, replacing the sum by an integral, that

p /"O (x +1* q n

x+1)o P+ +1P  sin(n/p)

g'x)<

/Oo ds 7
o sP+1 sin(z/p)

(See e.g[9, 3.222 (2)]) The assertions of the lemma will then follow from the inequalities

log P,(3")<2n/sin(z/p) +1, pel[24],
log P,(3”)<2n/sin(n/p), p €[4, 00).

We begin by verifying the first inequality. We have

log P,(3")=1log(1 + 3") + log(1 + (3/2)) +log 2+ Y log(1+ (3/n)")
n=4

<log(1+ 3°) +log(1+ (3/2)”) + log 2+ /oo log(1+ (3/1)")dr.
3

Here

o0

/ log(1 + (3/1)")dr <3 / log(1 + s~2)ds = 3(n/2 — log 2).

3 1

(See e.qg. [9, 4.293 (2), 8.375 (1)].) Therefore the first assertion holds provided that
log(1+ 3”) +log(1+ (3/2)") + 3r/2 — 2 log2<2n/sin(n/p) + 1, p € [2,4].

Now this inequality can be verified using convexity of the logarithmic terms, e.g.
log(1 + 3°) < (log(1+ 3% — log(1 + 3%))(p — 2)/2 + log(1 + 3°).

We shall not give the details.
The second inequality follows in the same way, using that

o 1 2-2
lo (1+s‘4)ds:i —log2+ — lo )
/ Y V2 ARV, R PI
(See the same references as above.) Here one should verify that
3\" 3n 22 21
log(1+3”) +lo (1+(—))—2Io 2+—+—lo <= ,
o )+l 2 J V2 V2 9 24+ ./2] "sin(n/p)

for p > 4 and this can be done by showing that the derivative is negative. This completes the sketch of
the proof. O
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3. Zero order

We shall investigate functions related to the functi@defined by

0@) =[] (A+z¢"). qe@©D.

n=0

Proof of Theorem 1.5. We have

0g 0(2) ~ log 0(—g) _ & L9 (£547)
Log (i_if]) —o Log (%) ’
and here it is easy to see that
Log (151)
oa( )

is a Pick function fou € (0, 1). Thus the infinite sum is also a Pick function.]

Concerning the growth d we notice.
Lemma 3.1. There exists a sequengeg } tending to infinity and a constant such that we have
llog 0(z)|<Const(log |z))?,  |z| =ry,
for all n.

We shall not give the proof of this lemma, since the method is the same as we have used before: we
obtain an upper bound d@ on the positive real line and use it as an upper boun@®an the entire
plane. A lower bound comes from the result of Littlewood mentioned above. Estimation gf(ayds
also straight forward.

Proposition 3.2 below expresses positivity of the boundary values of the imaginary part of the function

() 190 109 0(-9) + 290 Log(—2)
)=
Log () Log(—2)

in the upper half plane. Theorem 1.6 follows now by the same general arguments as we have used before
So the functiony is a Pick function. It is not difficult to find the integral representatiory @nd we shall
not write down the derivation. We get

=Ry (@ o ! o h_(t)dt - ! o ho ()dt
V) = ¢<z>+/m(:—t2+1) ) +/0 (:—Ml) L,
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wheren is the zero counting function associated wih

n(—qgx)log |i’:—;

— (1og] ()] — I0g Q(—q) + 4E=2 log(—))

h_(x)= 3 , (1D
(Iog Hi—; ) + 72
forx <—1and

log (¥£) ((ogx)? + )

for x > 0. In the integral representation ¥f the positive measure is now supported by(seto, —1] U
[0, 00), and not on any half line. It is however still possible to differentiate under the integral sign when
z € (=1, 0). In this way we obtain that’(r) > 0 forz € (—1, 0). We therefore conclude that

X = lp(_qx)v X € (07 OO)
is increasing. A simple substitution finally shows that
loglI'y(x + 1)
1—g*
X |Og (g)

and this proves Corollary 1.4.

Y(—q") =

’

Proposition 3.2. We have

log(1 —
log|Q(gx)| — log|Q(—q)| + M
0gq

log(—x) <n(—gx)log 1 , x<-—1,

l-gqg

and
log Q(gx)>1log Q(—¢q), x>0.

Proof. The second assertion of the proposition is easily verified so we go directly to the first. We split
the linex < — 1 into the interval§—g %1, —¢ %), k>0, and use the relatio@(gz) = (1+2z)Q(z) in
an inductive argument. We shall begin by considering the k&s@ and this amounts to showing that

log(l —
log Q(gx) — log O(—q) + ogl(—")
0gg

Here logQ(gx) — log Q(—q) < 0 but the remaining term is in fact positive so we need to make a more
detailed analysis. When=—1 the relation holds and we shall differentiate the expression on the left-hand
side and show that it is positive. We get (fox — 1)

log(1 —¢) S N log(1—q)
(IOg Q(CIX) - IOQ Q(_Q) + W |Og(—x)) _; (HXZC:) it qn—l-lx + |qu )

1({ —¢"1 log(l-—
T Z q M— a( q) ‘
x \= l1—g logg

log(—x)<0, x e (-1/q,-1).




H.L. Pedersen / Journal of Computational and Applied Mathematics 175 (2005) 245—-263 259

Here we claim that

i g"t log(1— ¢)
> 0.
1— ql’H—l |qu

n=0

Indeed, we have- log(1 — ¢) = Y2 ,¢"*1/(n + 1) so that

1

i g"tt  log(1—g) :i S 1
= 1—gntt logg = 1-¢"1  (m+1logq)’

Now, each summand in this sum is positive due to the fact that4og— 1 forr € (0, 1) (putz = ¢"+1).
This completes the basis for our inductive argument. We shall not write that down since it is straight
forward. O

Appendix A. Appendix. Hardy’s investigations

In [8] Hardy found precise asymptotic relations involving the functiyn when 1< p <2. In this
appendix we shall extend these relations to also covep 2 4. We adapt the ideas of Hardy to our
situation. We shall show that far> 0 andp € (2, 4),

log | P,(—a)|=n cot(n/p)a*’” 4 log|sin na®?| — (loga),/2
— logzn + (1 - p/2) l0g(2n) — (p/n) sin(np/2)al(a, p),

where

B o0 ' npfl
I(a,p) = / (09(2 SintG) — 1)~ el

We denote by, r (for R, ¢ > 0) the region
Q. r={uecCle<|ul<R,Ru>0}
Forz = ré?% and¢ € (=4, ) the function
1

uf —z

u =

is meromorphic inQ, z with a single and simple pole at= r/*€?/?. Indeed ifu = |u|e’, where
0 € (—n/2, n/2), the solutions ta” = z are given by = r1/Pe(@#/p+2t/p) " | ¢ 7. This forcesk = 0 if
we assume thalis chosen so that p — 6/p > n/2, which we henceforth do.

The residue at this pole is

1 1/p—-1
Res( ,zl/”) .
uf —z P

and the Residue theorem now yields (whéff is not a pole of catru))

1 TCCOt(TCu) T 1 1/p—1 1
- —  “du= - cot /p /p .
2t | oo w5, (nz*)z + > g

e<nn<R
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We letdC, denote the right half of the circle| = r traversed in the usual counter clockwise direction.
We use that

cot
/ n—(nu)du‘—>0 asRkR — oo
oCR uf —z

(at least through a sequen®,}) and

cot j
/ n—(7m)du‘_>_n_z ase — 0.
oc, u’—z z

The integral along the vertical parts @2, ¢ is seen (after some computation) to equal

n? coth y
20 4 72 — 2Pz cosnp/2)

R
2ni Sin(rp/2) / dn.
e N

Therefore, lettindr tend to infinity and: tend to zero, we obtain

=1 m 1
Z — _ _ COt(TEZl/p)Zl/pil + —
- nf —z 0 2z
n? coth iy

+ sin(zp/2) /OO dn. (A1)
0

N2 4 z2 — 2yPz coS(np/2)
We shall consider the integral in this relation more closely. We write it as asi@) + A2(z), where

A()‘lfoo (- dy= P12
He= o 1% + z2 — 2yPz coSnp/2) = z Sin(np/2)’

/i

(this identity can be verified by making the substitutioa * followed by[9, 3.252(12)] and

™ (coth 1 Ui d
A = cot - — .
2(2) /o ( i mf]) n2p 4 z2 — 2yPz co(mp/2) ’7

The expression on the left-hand side of (A.1) we recognizéoasP,)’(—z) and we integrate both sides
of the relation to obtain information about I¢y(—z). We integrate along a straight line from a small
positivee to a € {|Argw| < o}\R. (At this moment we wish to avoid bringing in principal values of
integrals and therefore we takedo be nonreal. Later we shall alloato be real again.) We find

a 1
—(log P,(—a) — log Pp(—g)):/ (— E cot(mz /)1 4 —) dz
& P Pz
+ sin(np/2) / A2(z)dz
= — logsin(ra*?) + 1 Loga + logsin(ne'/?)
p

1 _ a
— ;Loga+S|n(np/2)/ As(z)dz.
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Now,

a a 00 1 77p
A dz= cothmyn — — dnd
/8 2(e) /8 /0 ( i mv) 0% + 22 — 200z coSnpj2)

/OO /a ndz <coth 1) d
= wm— — .
o J e n?+z2—2nPz cosnp/2) )

A computation shows that
a sin(mp/2)n? —nP co 2\1¢
/ e (np/2)n de — [arctan<z 1 Snp/ ))] ’
e NP 4+ z4 — 2nPz co9np/2) sin(rp/2)n? .
where arctan as usual denotes the branch that is zero at the origin. Therefore,

- Sin(np/Z)/ A(2)dz
= — / - [arctan(Z __np COS(np/Z))] (coth i — i) dy
0 sin(rp/2)n? . o
B o0 a —n” cognp/2) 1
= — / . (arctan( Sin(ep 2 ) — Lp) <coth  — n—ﬂ) dn

o ¢ —n? co9np/2) 1
- o ) ) om- D)

a —n’ cosnp/2)
sin(mp/2)n?

We get by integration by parts,
00 — P
/ (arctan(a _17 costmp/ 2)) — Lp) <coth m — i) dn
0 sin(rp/2)n? b1eJ]

_ [} log (Smh ”") (arctan(a - COSW/Z)) . Lp)}
T i sin(rp/2)nP 0

3 1. /OO log <sinh nn) apn?~Lsin(np/2)
T Jo 7 020 4+ a? — 2an? conp/2)
_ 1_ /Oo log (sinh nr/) apn’~Lsin(np/2)

0 i n20 + a2 — 2an? coSnp/2)

where

L,= lim arctan( ) = arctan(— cot(rp/2)).
n—00

T

We therefore get
1 1
log P,(—a)=logsin(na'/?) — = Loga — logsin(ze'/?) + = Loge + log P,(—e)
p p

B 1 /00 o sinh ny apn’~Lsin(np/2)
w)o O\ T ) v+ a2 = 2an cosmp/2)
1 /OO log (sinh 7u1> epn?~Lsin(np/2)

+ T 0 7 N2 + &2 — 2enP comp/2)

261
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In this relation we let tend to zero. Clearly,
Y 1
— logsin(ne™*) 4+ — Loge + log P,(—¢) — — log,
p

ase — 0. Furthermore

1 /Oo o sinh iy epn’~Lsin(np/2)
o I\ ) w2+ 2= 2ep cosmp/2)

1 (> sinh /e ¢ sin(np/2)
= / Iog( 1 ) 2 - 2
nJo P (t — e coSnp/2))° + (¢ Sin(np/2))

1 [ Y
- —f G(t) ———5——dr,
TJ _0o (t—X)*+7Y?

whereX = ¢ coSnp/2), Y = ¢ sin(np/2) and

T

sinh /¢
G(t) = |Og W

for+ > 0 andG(r) = 0 forr <0. SinceG is continuous and (1) /(% + 1) is integrable on the real line we
conclude that

00 i p—1gj
1f IOg(smhnn) epn?~+sin(np/2)

T 0 7 N2 + &2 — 2enP comp/2)

— 0,
ase — 0. This yields

1
log P,(—a)=logsin(za®*) — = Loga — log=
p

B 1./00 log sinh oy apn?~Lsin(np/2)
0 m ) n? +a? — 2an® conp/2)

T

We write

log (Smn:nn> = (log(2 sinhmy) — ) + (zy — log(2mn))

and use the facts (these follow by some computation from the rel@j@252 (12)]

/Oo n? dy — n at/P~Llcotn/p
o 1% +aZ—2pPacosnp/2) | p  sin(mp/2)
/OO n”~1 logy _nloga 1—p/2
o 1% +a2—2pPacosnp/2) | p2a sin(np/2)’
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to obtain

log P,(—a)=logsin(ma’/*) — 1 Loga — logr — £ sin(zp/2)al(a, p)
P T

1 0o ap’,’p—l Sin(TC,O/Z)
_t —log(2
/0 (mn 9(2mn)) 020 + a2 — 2an? coSnp/2)

. 1
= logsin(ma®/?) — 5 Loga — logn + na™” cot(n/p)

+ (1= p/2) log(2n) — % sin(zp/2)al (a, p).

Now extend this relation te > 0 and take its real part. That gives the desired relation fel0.
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