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Abstract

We show that various functions related to the logarithms of the canonical productsP�(z) = ∏∞
n=1 (1+ z/n�),

�>1 andQ(z)=∏∞
n=0 (1+ zqn), q ∈ (0,1) are Pick functions. As a consequence we find an integral expansion

of a function involving the logarithm of Jacksonsq-gamma function.
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1. Introduction

We shall investigate certain entire functions of genus 0 having only negative zeros. These functions are
canonical products and have the representation

f (z)=
∞∏
n=1

(
1+ z

an

)
, (1)

where the positive numbers{an} are arranged in increasing order of magnitude and where the series∑∞
n=1 1/an converges. The corresponding zero counting functionn is defined as

n(r)= #{n | |an|�r}. (2)
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We describe the motivation for the investigations carried out in this paper. The maximal growth of a
function of the form (1) occurs in the direction of the positive axis;

m(f, r) ≡ max{|f (z)| |z| = r} = f (r),

for r >0. The order� of f is defined as the infimum of the numbersssuch that there exists a constantC
with the property thatm(f, r)�C exp(rs), for all r >0. In our situation��1 and in the case where� is
positive we see that the related function

�(z)= logf (z)

z�
,

varies between 0 and a constant whenz runs through the positive axis. The constant could be equal to
infinity, although it is finite if we impose further restrictions on the zero distribution (which we shall do
in this paper). The natural question about the detailed behaviour of� on the positive axis is addressed
here for some classes of functions of the form (1). This behaviour is read off from the properties of the
holomorphic function� in the cut planeA= C\(−∞,0)] and our investigation focuses on its behaviour
inA.
A Pick function is a holomorphic function in the upper half plane having nonnegative imaginary part.

For the general theory about these functions, see[6]. It is known that any Pick function admits an integral
representation in termsof apositivemeasure.Furthermore, if thismeasure is supportedon thenegativeaxis
then it is easily seen that the derivative of the function is a completely monotone function. A completely
monotone functiong is aC∞ function such that(−1)ng(n)(x)�0 for x >0. For an introduction to these
functions see the monograph[14]. Many references on results about completely monotone functions can
be found in e.g.[7]. A positive functionf (x) whose derivative is completely monotone is sometimes
called a Bernstein function.
The general goal of this paper is to explore what can be called a Pick property for some classes of

entire functions having negative zeros. The investigations were initiated by the study of Eulers gamma
function (see[4]) and have subsequently been carried out for a more general class of functions of genus
one (see[12]) as well as for the double gamma function introduced by Barnes (see[13]).
In our results below the expression logw(z) (wherew is some analytic function) denotes the branch of

the logarithm obtained by analytic continuation of logw(x) for positive realx. The principal logarithm
is denoted by Log.

Theorem 1.1. Let P be a canonical product of the form(1)where|n(r)− r1/�|�Const.Then
logP(z)

z1/�
=R

(
logP(i)

i1/�

)
+ 1

�

∫ 0

−∞

(
1

t − z
− t

t2 + 1

)
d(t)dt,

where the function d is given by

d(t)= sin(�/�)

|t |1/� (− log |P(t)| + � cot(�/�)n(−t)).

This is the Stieltjes representation of(logP(z))/z1/�.
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We put for�>1

P�(z)=
∞∏
n=1

(
1+ z

n�

)
.

Theorem 1.2. The function(logP�(z))/z
1/� is a Pick function and

logP�(z)

z1/�
= �

sin(�/�)
+ 1

�

∫ 0

−∞
d�(t)

t − z
dt,

where thepositivefunctiond� is given by

d�(t)= sin(�/�)

|t |1/� (− log |P�(t)| + � cot(�/�)n(−t)).

As a corollary of this result we notice

Corollary 1.3. The function(logP�(x))/x
1/� is a Bernstein function.

We shall also investigate canonical products of order 0. Here we shall limit ourselves by considering
functions of the form

Q(z)=
∞∏
n=0

(1+ zqn), q ∈ (0,1).

This function appears in the theory ofq-special functions. The infinite productQ(−qx) is in fact the limit
of theq-shifted factorials (orq-Pochhammer symbols)(qx; q)n.
Onewell-known function defined in terms of these factorials is Jackson’sq-gamma function. It is given

as

�q(z)= (q; q)∞
(qz; q)∞ (1− q)−(z−1).

Historical remarks and several references on this function can be found in[1].
We shall explain the motivation for our choice of the function related toQ that we consider in Theorem

1.6. It has recently been proved that

z 
→ log�(z+ 1)

z logz

is a Pick function (see[4]). The question arises if there is aq-analogue of this result involving Jacksons
q-gamma function�q . This function has poles at all points of the form{−n+ 2�im/ logq}, wheren�0
andm are integers. In particular there are poles in the upper half plane so the function log�q(z) is not
even holomorphic there.
If we restrict our viewpoint to the positive real axis, then the function

x 
→ log�q(x + 1)

x log
(
1−qx
1−q

)
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varies between zero and some positive constant (which easily is seen to be 1). As a corollary to Theorem
1.6 we show that this function is increasing. This may be considered as aq-analogue of the corresponding
result about the gamma function (see[2]), since�q(x + 1) → �(x + 1) and(1− qx)/(1− q) → x as
q → 1−.

Corollary 1.4. The function

x 
→ log�q(x + 1)

x log
(
1−q x
1−q

)
increaseson the positive line from0 to 1. It has the following integral representation:

log�q(x + 1)

x log
(
1−q x
1−q

)=R

 log�q(i�/(2 logq)+ 1)

i� log
(
1+i
1−q

)
/(2 logq)


+

∫ −1

−∞

(
1

t + qx
− t

t2 + 1

)
h−(t)dt

+
∫ ∞

0

(
1

t + qx
− t

t2 + 1

)
h+(t)dt,

whereh− andh+ are the functions defined in(11)and(12).

(We remark that the function in the corollary above doesnothave a completely monotone derivatives.)
Concerning the functionQwe notice:

Theorem 1.5. The function

�(z)= logQ(z)− logQ(−q)
Log

(
1+z
1−q

)
is a Pick function.

Theorem 1.6. The function

�(z)=
logQ(qz)− logQ(−q)+ log(1−q)

logq Log(−z)
Log

(
1+z
1−q

)
Log(−z)

is a Pick function and it has the following integral representation

�(z)=R�(i)+
∫ −1

−∞

(
1

t − z
− t

t2 + 1

)
h−(t)dt

+
∫ ∞

0

(
1

t − z
− t

t2 + 1

)
h+(t)dt,

whereh− andh+ are certain positive functions(defined in(11)and(12)).

The development to follow is based on a maximum principle in the upper half plane. However, it is
burdened with many technical estimates.
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2. Positive order

Here we investigate the situation where the zero counting functionn associated with the canonical
productP of the form (1) satisfies

|n(r)− r1/�|�Const, (3)

for all r >0. Here�>1. We define

logP(z)=
∞∑
n=1

Log(1+ z/an),

where Log denotes the principal logarithm. The functionP is of order 1/�. Indeed we have

lim
x→∞

logP(x)

x1/�
= �

sin(�/�)
.

This may be verified using the relation

logP(x)=
∫ ∞

0

n(t)

t

x

t + x
dt, (4)

see e.g.[5, Chapter 4]or [11, Lecture 12]. In the proof of Theorem 1.1 we need an estimate of log|P(z)|.
That is the contents of Lemma 2.1.

Lemma 2.1. If n(r)�Cr1/� there exists a sequence{rn} tending to infinity and a constant such that we
have

| logP(z)|�Const|z|1/�, |z| = rn,

for all n.

Proof. Since the maximum growth ofP occurs along the positive real line we obtain

logm(P, r)�Const
�

sin(�/�)
r1/�,

for r >0. By a result of Littlewood (see[8, Chapter 6]) this is also a lower bound on log|P | on circles of
certain radii{rn} tending to infinity. The estimate

|argP(z)|�Const|z|1/�, z ∈ C,

may be proved by as follows.We suppose thatA>0 and defineK=min{k | ak�A+1}. Then, ifz=x+iy
wherex ∈ [−A,−A+ 1] andy�0, we get

argP(z)=
∞∑
n=1

Arg(1+ z/an)

��(K − 1)+
∞∑
n=K

arctan

(
y

an − A

)
.
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One may rewrite the infinite sum as an integral in terms of the counting functionn(t) − n(aK−1) and
perform integration by parts. In this way one obtains

∞∑
n=K

arctan

(
y

an − A

)
�
∫ ∞

1
n(s + A)

y

s2 + y2
ds,

and this last integral is seen to be less than Const(A1/� + y1/�). Therefore

argP(z)�Const(K − 1+ A1/� + y1/�)�Const|z|1/�. �

Proof of Theorem 1.1.We letB >0 and consider the auxiliary function

�B(z)= logP(z)

z1/�
+ B Logz, z ∈ A.

We set out to prove that�B is a Pick function ifB >0 is chosen sufficiently large. This amounts to
showing that the harmonic functionI�B is nonnegative in the upper half plane. We shall verify this by
appealing to a Phragmén–Lindelöf principle. To this end we need to investigate the boundary behaviour
of I�B on the real line. A routine computation shows that,

I�B(z) → − sin(�/�) log |P(x)| + � cos(�/�)n(−x)
|x|1/� + B�

asz → x ∈ (−∞,0)\{−an} within the upper half plane. We see thatI�B has nonnegative boundary
values on the real line provided

log |P(x)|�� cot(�/�)n(−x)+ B�|x|1/�
sin(�/�)

, x <0. (5)

We now show that we can chooseBso large that this holds.We see from[5, Theorem 4.1]that there exists
r0>0 such that

log |P(x)|�(� cot(�/�)+ 1)|x|1/�, x <− r0.

Suppose that� ∈ (1,2]. From (3) and the line above we get (noting that cot(�/�)�0)

log |P(x)|�� cot(�/�)(n(−x)− C)+ |x|1/�
= � cot(�/�)n(−x)+ |x|1/� + Const, x <− r0.

For x ∈ [−r0,0], log|P(x)| − cot(�/�)n(−x) is bounded from above and it is less than or equal to
Const|x| asx → 0. Hence we may chooseB >0 such that (5) is satisfied.
If �>2, we use log|P(x)|�� cot(�/�)(n(−x)+ C)+ |x|1/� to obtain (5) in this case.
We may rephrase (5) as: lim infz→x I�B(z)�0 for all realx. Furthermore, from Lemma 2.1,

|I�B(z)|�Const log|z|, |z| = rn,

for some sequence{rn} tending to infinity. We obtain from these facts thatI�B�0 throughout the upper
half plane by a Phragmén–Lindelöf principle or extended maximum principle[10, Chapter III]. (See also
[12].) Therefore�B is a Pick function.
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It is not hard to show that (using the general integral representation of Pick functions, see e.g.[4,
Section 1])

�B(z)=R

(
logP(i)

i1/�

)
+ 1

�

∫ 0

−∞

(
1

t − z
− t

t2 + 1

)
vB(t)dt,

where

vB(t)= sin(�/�)

|t |1/� (− log |P(t)| + � cot(�/�)n(−t))+ B�.

Furthermore, since Logz is itself a Pick function and in fact

Logz=
∫ 0

−∞

(
1

t − z
− t

t2 + 1

)
dt,

we get the desired Stieltjes representation

logP(z)

z1/�
=R

(
logP(i)

i1/�

)
+ 1

�

∫ 0

−∞

(
1

t − z
− t

t2 + 1

)
d(t)dt,

where

d(t)= sin(�/�)

|t |1/� (− log |P(t)| + � cot(�/�)n(−t)).
We have proved Theorem 1.1�

Proof of Theorem 1.2. From the integral representation in Theorem 1.1 and the positivity of themeasure
in Proposition 2.2 below we see that(logP(z))/z1/� is a Pick function with integral representation

logP�(z)

z1/�
=R

(
logP�(i)

i1/�

)
+ 1

�

∫ 0

−∞

(
1

t − z
− t

t2 + 1

)
d�(t)dt,

where

d�(t)= sin(�/�)

|t |1/� (− log |P�(t)| + � cot(�/�)n(−t)), t <0.

Wefind (bydifferentiatingunder the integral sign) that(logP(x))/x1/� increases from0 to�/ sin(�/�)asx
increases fromzero to infinity. Thismeans however that the functionF(z)=�/ sin(�/�)−(logP(z))/z1/�
is positive on the positive axis and has negative imaginary part in the upper half plane. The function is
thus a Stieltjes transform and hence it has an integral representation of the form

�

sin(�/�)
− logP(z)

z1/�
= � +

∫ ∞

0

d�(t)

z+ t
,

where�= limx→∞ F(x)=0 and∫∞
0 d�(t)/(1+ t) <∞ (see e.g.[3]). It follows that d�(t)=d(−t)dt/�

and hence that

logP(z)

z1/�
= �

sin(�/�)
− 1

�

∫ ∞

0

d�(−t)
z+ t

dt.

This proves Theorem 1.2 (once the proposition below is verified).�
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Proposition 2.2. For any�>1we have

log |P�(x)|�� cot(�/�)n(−x), x <0.

This proposition furnishes an upper bound on|P�| on the negative axis. Theorems as[5, Theorem 4.1]
give an asymptotic upper bound where the right-hand side is replaced by(� cot(�/�)+ 	)|x|1/�. This is
however not precise enough for our needs and in fact the proof of our proposition becomes an involved
and technical argument.
The precise asymptotic behaviour of logP� has been described by Hardy, see[8]. We shall use some

of the formulae in that paper and also extend them. We formulate the following lemma.

Lemma 2.3. For � ∈ (1,4) anda >0we have

log |P�(−a)|=� cot(�/�)a1/� + log | sin �a1/�| − (loga)/2
− log� + (1− �/2) log(2�)− (�/�) sin(��/2)aI (a, �),

where

I (a, �)=
∫ ∞

0
(log(2 sinh(�
))− �
)


�−1


2� + a2 − 2a
� cos(��/2)
d
.

In the situation where�<2 this lemma is obtained in[8] and it is easy to see that it holds also for
� = 2. We shall verify the relation in the lemma for� ∈ (2,4) in the Appendix.
About the integralI (a, �) we notice

Lemma 2.4. Let I (a, �) be as in Lemma2.3.Then

−aI(a, �)� �

12a
, for 1< ��2.

Proof. We find

−aI(a, �)=
∫ ∞

0
(− log(1− e−2�
))

a
�−1


2� + a2 − 2a
� cos(��/2)
d


�
∫ ∞

0
(− log(1− e−2�
))

a
�−1


2� + a2
d


= 1

a

∫ ∞

0
(− log(1− e−2�
))

a2
�−1


2� + a2
d


�
1

a

∫ ∞

0
(− log(1− e−2�
))
�−1 d


= 1

a(2�)�

∫ ∞

0
(− log(1− e−t ))t�−1 dt

= 1

a(2�)�
�(�)�(� + 1)�

1

a(2�)�
�(1)�(2)= �

12a
.
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The relation involving Riemanns zeta function and the gamma function can be verified by performing
partial integration on the integral and by using the well-known formula

�(� + 1)�(� + 1)=
∫ ∞

0

t�

et − 1
dt.

This completes the proof of the lemma.�

The assertion of Proposition 2.2 may be written as follows:

log |P�(−t)|�k� cot(�/�), t ∈ (k�, (k + 1)�), (6)

for k�0. If k = 0, (6) is easily verified regardless of the value of�. (|P�(−t)| varies between 0 and 1 for
t in the interval (0,1).)

Proof of Proposition 2.2 when� ∈ (1,4). We suppose thatt ∈ (k�, (k + 1)�) for somek�1. From
Lemma 2.3 we see that (6) holds provided

� cot(�/�)(t1/� − k)+ log | sin �t1/�| − (log t)/2
− log� + (1− �/2) log(2�)− (�/�)t sin(��/2)I (t, �)�0,

for t ∈ (k�, (k + 1)�). Here it is elementary to see that (introducing the variables = t1/� − k ∈ (0,1))

� cot(�/�)(t1/� − k)+ log | sin �t1/�|�� cot(�/�)(1− 1/�)+ log | sin(�/�)|,
and therefore it is enough to verify

� cot(�/�)(1− 1/�)+ log | sin(�/�)| − (log t)/2− log�

+ (1− �/2) log(2�)− (�/�)t sin(��/2)I (t, �)�0. (7)

Here we consider two situations, namely� ∈ (1,2] and� ∈ (2,4). If � ∈ (1,2] we have from Lemma
2.4 that−tI (t, �)��/(12t). Hence, the left-hand side of (7) is less than or equal to (remembering that
cot(�/�)�0 andt�1)

− log� + (log(2�))/2+ 1/6,

which in fact is negative. Therefore (7) is verified in this situation.
If � ∈ (2,4),

−(�/�)t sin(��/2)I (t, �)�0,

since both the integralI (t, �) and sin(�/�) are negative. Thus (7) follows if we can verify that

� cot(�/�)(1− 1/�)+ log | sin(�/�)| − log� + (1− �/2) log(2�)�0,

for � ∈ (2,4). Here we putr = �/� ∈ (�/4, �/2) and have to verify

cot(r)(� − r)+ log | sin r| + log 2− (� log(2�))/(2r)�0.

This relation is indeed true as one can prove by standard calculus methods. Proposition 2.2 is thus proved
when� ∈ (1,4). �
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To prove the proposition for��4 we need some technical lemmas. We prove them below.

Lemma 2.5.We have

log |P�(−t)|�� cot(�/�), t ∈ [1,2�], ��4.

Lemma 2.6.We have

logP�((k + 1)�)�k�/ sin(�/�)+ 1, � ∈ [2,4], k�2, (8)

logP�((k + 1)�)�k�/ sin(�/�), � ∈ [4,∞), k�2. (9)

Proof of Proposition 2.2 when��4. We begin by noticing that the desired inequality does hold for
1� t�2� and for any��4 by Lemma 2.5.
Suppose next thatt ∈ (k�, (k + 1)�) for somek�2 and that� ∈ [4,8). We put� = �/2 ands = √

t

and we notice thatk�� t�(k + 1)� if and only if k��s�(k + 1)�. The idea is now to use that

log |P�(−t)| = log |P2�(−s2)| = log |P�(−s)| + logP�(s).

From Lemma 2.6,

logP�(s)�k�/ sin(�/�)+ 1,

for k�2 and from Lemma 2.3 (sinces�2�)

log |P�(−s)|�k� cot(�/�)+ �(1− 1/�) cot(�/�)
+ log | sin(�/�)| + log 2− (�/2) log(2�)− (�/2) log 2.

Since furthermore cot(�/�)= cot(�/�)+ 1/ sin(�/�) we get

log |P�(−t)| − k� cot(�/�)�1+ (� − �/�) cot(�/�)+ log | sin(�/�)|
+ log 2− (�/2) log(2�)− (�/2) log 2.

It is seen by standard calculus arguments that this quantity is negative for� ∈ [�/4, �/2]. This proves the
proposition for�<8.
For � ∈ [2m,2m+1] for m = 3,4, . . . we use Lemma 2.5 and relation (9) repeatedly. In this way the

proposition is finally proved. �

Remark 2.7. In the proof we used the relation

log |P2�(−t2)| = log |P�(−t)| + logP�(t).

It is easy to show that logP�(t)�(�/ sin(�/�))t1/� (see (4)). Whent is small (e.g. fort�2�), it may
happen that logP�(t)> (�/ sin(�/�))n(t). This accounts for many of the technicalities in the situation
where��4.

Proof of Lemma 2.5. Since log(1− s)� − s for s <1 we have fort ∈ (1,2�),

log |P�(−t)|� log(t − 1)+
∞∑
n=2

−t
n�

= log(t − 1)− t (�(�)− 1).
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The asserted inequality will follow from the inequality

−t (�(�)− 1)+ log(t − 1)�� cot(�/�), t ∈ (1,2�). (10)

It is easy to see that the left-hand side of this relation has a unique maximum point in[1,2�], namely
at t = 1+ 1/(�(�) − 1) (which actually is less that 2�). If we evaluate (10) at this point we obtain the
relation.

−�(�)− log(�(�)− 1)�� cot(�/�), �>4,

which we set out to verify. We let

g(�)= −�(�)− log(�(�)− 1)− � cot(�/�)

and find

g′(�)= − �(�)�′(�)
�(�)− 1

−
(

�/�

sin �/�

)2
.

Here,

− �(�)�′(�)
�(�)− 1

= �(�)

∑∞
n=2 (logn)/n�∑∞

n=2 1/n�
� log 2,

so

−�(�)− log(�(�)− 1)− � log 2

is increasing as a function of�. Its limit as� tends to infinity is easily seen to equal−1. Therefore the
function itself must be less than or equal to−1 for all �>4. To show thatg(�)�0 for all �>4 it is
therefore enough to show that

� log 2− � cot �/��1

for all �>4. This is indeed the case. We get

� log 2− � cot �/�=�

(
log 2− �/�

sin �/�
cos�/�

)
��(log 2− cos�/�)

��

(
log 2− 1√

2

)
<0. �

Proof of Lemma 2.6.We shall first show that the function

g(x) ≡
∞∑
n=1

log(1+ ((x + 1)/n)�)− x�

sin(�/�)

decreases inx for x >1 and�>1. It is easily seen that

g′(x)= �

x + 1

∞∑
n=1

(x + 1)�

n� + (x + 1)�
− �

sin(�/�)
,
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and therefore, replacing the sum by an integral, that

g′(x)� �

x + 1

∫ ∞

0

(x + 1)�

t� + (x + 1)�
dt − �

sin(�/�)

= �

∫ ∞

0

ds

s� + 1
− �

sin(�/�)
= 0.

(See e.g.[9, 3.222 (2)].) The assertions of the lemma will then follow from the inequalities

logP�(3
�)�2�/ sin(�/�)+ 1, � ∈ [2,4],

logP�(3
�)�2�/ sin(�/�), � ∈ [4,∞).

We begin by verifying the first inequality. We have

logP�(3
�)= log(1+ 3�)+ log(1+ (3/2)�)+ log 2+

∞∑
n=4

log(1+ (3/n)�)

� log(1+ 3�)+ log(1+ (3/2)�)+ log 2+
∫ ∞

3
log(1+ (3/t)�)dt.

Here ∫ ∞

3
log(1+ (3/t)�)dt�3

∫ ∞

1
log(1+ s−2)ds = 3(�/2− log 2).

(See e.g. [9, 4.293 (2), 8.375 (1)].) Therefore the first assertion holds provided that

log(1+ 3�)+ log(1+ (3/2)�)+ 3�/2− 2 log 2�2�/ sin(�/�)+ 1, � ∈ [2,4].
Now this inequality can be verified using convexity of the logarithmic terms, e.g.

log(1+ 3�)�(log(1+ 34)− log(1+ 32))(� − 2)/2+ log(1+ 32).

We shall not give the details.
The second inequality follows in the same way, using that

∫ ∞

1
log(1+ s−4)ds = �√

2
− log 2+ 1√

2
log

(
2− √

2

2+ √
2

)
.

(See the same references as above.) Here one should verify that

log(1+ 3�)+ log

(
1+

(
3

2

)�)
− 2 log 2+ 3�√

2
+ 3√

2
log

(
2− √

2

2+ √
2

)
�

2�

sin(�/�)
,

for �>4 and this can be done by showing that the derivative is negative. This completes the sketch of
the proof. �
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3. Zero order

We shall investigate functions related to the functionQ defined by

Q(z)=
∞∏
n=0

(1+ zqn), q ∈ (0,1).

Proof of Theorem 1.5.We have

logQ(z)− logQ(−q)
Log

(
1+z
1−q

) =
∞∑
n=0

Log
(
1+zqn
1−qqn

)
Log

(
1+z
1−q

) ,

and here it is easy to see that

Log
(
1+za
1−qa

)
Log

(
1+z
1−q

)
is a Pick function fora ∈ (0,1). Thus the infinite sum is also a Pick function.�

Concerning the growth ofQwe notice.

Lemma 3.1. There exists a sequence{rn} tending to infinity and a constant such that we have
| logQ(z)|�Const(log |z|)2, |z| = rn,

for all n.

We shall not give the proof of this lemma, since the method is the same as we have used before: we
obtain an upper bound onQ on the positive real line and use it as an upper bound onQ in the entire
plane. A lower bound comes from the result of Littlewood mentioned above. Estimation of argQ(z) is
also straight forward.
Proposition 3.2 below expresses positivity of the boundary values of the imaginary part of the function

�(z)=
logQ(qz)− logQ(−q)+ log(1−q)

logq Log(−z)
Log

(
1+z
1−q

)
Log(−z)

in the upper half plane. Theorem 1.6 follows now by the same general arguments as we have used before.
So the function� is a Pick function. It is not difficult to find the integral representation of� and we shall
not write down the derivation. We get

�(z)=R�(i)+
∫ −1

−∞

(
1

t − z
− t

t2 + 1

)
h−(t)dt +

∫ ∞

0

(
1

t − z
− t

t2 + 1

)
h+(t)dt,



258 H.L. Pedersen / Journal of Computational and Applied Mathematics 175 (2005) 245–263

wheren is the zero counting function associated withQ,

h−(x)=
n(−qx) log

∣∣∣1+x1−q
∣∣∣− (

log |Q(qx)| − logQ(−q)+ log(1−q)
logq log(−x)

)
(
log

∣∣∣1+x1−q
∣∣∣)2 + �2

, (11)

for x <− 1 and

h+(x)= logQ(qx)− logQ(−q)
log

(
1+x
1−q

)
((logx)2 + �2)

, (12)

for x >0. In the integral representation of�, the positive measure is now supported by set(−∞,−1] ∪
[0,∞), and not on any half line. It is however still possible to differentiate under the integral sign when
z ∈ (−1,0). In this way we obtain that�′(t)>0 for t ∈ (−1,0). We therefore conclude that

x 
→ �(−qx), x ∈ (0,∞)

is increasing. A simple substitution finally shows that

�(−qx)= log�q(x + 1)

x log
(
1−qx
1−q

) ,
and this proves Corollary 1.4.

Proposition 3.2.We have

log |Q(qx)| − log |Q(−q)| + log(1− q)

logq
log(−x)�n(−qx) log

∣∣∣∣1+ x

1− q

∣∣∣∣ , x <− 1,

and

logQ(qx)� logQ(−q), x >0.

Proof. The second assertion of the proposition is easily verified so we go directly to the first. We split
the linex <− 1 into the intervals[−q−k−1,−q−k), k�0, and use the relationQ(qz) = (1+ z)Q(z) in
an inductive argument. We shall begin by considering the casek = 0 and this amounts to showing that

logQ(qx)− logQ(−q)+ log(1− q)

logq
log(−x)�0, x ∈ (−1/q,−1).

Here logQ(qx) − logQ(−q)<0 but the remaining term is in fact positive so we need to make a more
detailed analysis.Whenx=−1 the relation holds andwe shall differentiate the expression on the left-hand
side and show that it is positive. We get (forx <− 1)(

logQ(qx)− logQ(−q)+ log(1− q)

logq
log(−x)

)′
=1
x

( ∞∑
n=0

qn+1x
1+ qn+1x

+ log(1− q)

logq

)

>
1

x

( ∞∑
n=0

−qn+1
1− qn+1

+ log(1− q)

logq

)
.
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Here we claim that
∞∑
n=0

qn+1

1− qn+1
− log(1− q)

logq
>0.

Indeed, we have− log(1− q)=∑∞
n=0 qn+1/(n+ 1) so that

∞∑
n=0

qn+1

1− qn+1
− log(1− q)

logq
=

∞∑
n=0

qn+1
(

1

1− qn+1
+ 1

(n+ 1) logq

)
.

Now, each summand in this sum is positive due to the fact that logt < t − 1 for t ∈ (0,1) (put t = qn+1).
This completes the basis for our inductive argument. We shall not write that down since it is straight
forward. �

Appendix A. Appendix. Hardy’s investigations

In [8] Hardy found precise asymptotic relations involving the functionP�, when 1< �<2. In this
appendix we shall extend these relations to also cover 2��<4. We adapt the ideas of Hardy to our
situation. We shall show that fora >0 and� ∈ (2,4),

log |P�(−a)|=� cot(�/�)a1/� + log | sin �a1/�| − (loga)/2
− log� + (1− �/2) log(2�)− (�/�) sin(��/2)aI (a, �),

where

I (a, �)=
∫ ∞

0
(log(2 sinh(�
))− �
)


�−1


2� + a2 − 2a
� cos(��/2)
d
.

We denote by�	,R (for R, 	>0) the region

�	,R = {u ∈ C | 	< |u|<R,Ru>0}.
For z= rei
 and
 ∈ (−�, �) the function

u 
→ 1

u� − z

is meromorphic in�	,R with a single and simple pole atu = r1/�ei
/�. Indeed ifu = |u|ei�, where
� ∈ (−�/2, �/2), the solutions tou� = z are given byu= r1/�ei(
/�+2�k/�), k ∈ Z. This forcesk = 0 if
we assume that� is chosen so that 2�/� − �/�> �/2, which we henceforth do.
The residue at this pole is

Res

(
1

u� − z
, z1/�

)
= z1/�−1

�

and the Residue theorem now yields (whenz1/� is not a pole of cot(�u))

1

2�i

∫
��	,R

� cot(�u)

u� − z
du= �

�
cot(�z1/�)z1/�−1 +

∑
	<n�<R

1

n� − z
.
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We let�Cr denote the right half of the circle|z| = r traversed in the usual counter clockwise direction.
We use that∣∣∣∣

∫
�CR

� cot(�u)

u� − z
du

∣∣∣∣ → 0 asR → ∞

(at least through a sequence{Rn}) and∣∣∣∣
∫

�C	

� cot(�u)

u� − z
du

∣∣∣∣ → − �i

z
as	 → 0.

The integral along the vertical parts of��	,R is seen (after some computation) to equal

2�i sin(��/2)
∫ R

	


� coth �



2� + z2 − 2
�z cos(��/2)
d
.

Therefore, lettingR tend to infinity and	 tend to zero, we obtain

∞∑
n=1

1

n� − z
= − �

�
cot(�z1/�)z1/�−1 + 1

2z

+ sin(��/2)
∫ ∞

0


� coth �



2� + z2 − 2
�z cos(��/2)
d
. (A.1)

We shall consider the integral in this relation more closely. We write it as a sumA1(z)+ A2(z), where

A1(z)= 1

�

∫ ∞

0


�−1


2� + z2 − 2
�z cos(��/2)
d
 = 1/� − 1/2

z sin(��/2)
,

(this identity can be verified by making the substitutiont = 
� followed by[9, 3.252(12)]) and

A2(z)=
∫ ∞

0

(
coth �
 − 1

�


)

�


2� + z2 − 2
�z cos(��/2)
d
.

The expression on the left-hand side of (A.1) we recognize as(logP�)
′(−z) and we integrate both sides

of the relation to obtain information about logP�(−z). We integrate along a straight line from a small
positive 	 to a ∈ {|Argw|< �}\R. (At this moment we wish to avoid bringing in principal values of
integrals and therefore we takea to be nonreal. Later we shall allowa to be real again.) We find

−(logP�(−a)− logP�(−	))=
∫ a

	

(
− �

�
cot(�z1/�)z1/�−1 + 1

�z

)
dz

+ sin(��/2)
∫ a

	
A2(z)dz

= − logsin(�a1/�)+ 1

�
Loga + logsin(�	1/�)

− 1

�
Log	 + sin(��/2)

∫ a

	
A2(z)dz.
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Now, ∫ a

	
A2(z)dz=

∫ a

	

∫ ∞

0

(
coth �
 − 1

�


)

�


2� + z2 − 2
�z cos(��/2)
d
dz

=
∫ ∞

0

∫ a

	


�dz


2� + z2 − 2
�z cos(��/2)

(
coth �
 − 1

�


)
d
.

A computation shows that∫ a

	

sin(��/2)
�


2� + z2 − 2
�z cos(��/2)
dz=

[
arctan

(
z− 
� cos(��/2)

sin(��/2)
�

)]a
	
,

where arctan as usual denotes the branch that is zero at the origin. Therefore,

− sin(��/2)
∫ a

	
A2(z)dz

= −
∫ ∞

0

[
arctan

(
z− 
� cos(��/2)

sin(��/2)
�

)]a
	

(
coth �
 − 1

�


)
d


= −
∫ ∞

0

(
arctan

(
a − 
� cos(��/2)

sin(��/2)
�

)
− L�

)(
coth �
 − 1

�


)
d


+
∫ ∞

0

(
arctan

(
	 − 
� cos(��/2)

sin(��/2)
�

)
− L�

)(
coth �
 − 1

�


)
d
,

where

L� = lim

→∞ arctan

(
a − 
� cos(��/2)

sin(��/2)
�

)
= arctan(− cot(��/2)).

We get by integration by parts,∫ ∞

0

(
arctan

(
a − 
� cos(��/2)

sin(��/2)
�

)
− L�

)(
coth �
 − 1

�


)
d


=
[
1

�
log

(
sinh �


�


)(
arctan

(
a − 
� cos(��/2)

sin(��/2)
�

)
− L�

)]∞

0

− 1

�

∫ ∞

0
log

(
sinh �


�


)
a�
�−1 sin(��/2)


2� + a2 − 2a
� cos(��/2)
d


= − 1

�

∫ ∞

0
log

(
sinh �


�


)
a�
�−1 sin(��/2)


2� + a2 − 2a
� cos(��/2)
d
.

We therefore get

logP�(−a)=logsin(�a1/�)− 1

�
Loga − logsin(�	1/�)+ 1

�
Log	 + logP�(−	)

− 1

�

∫ ∞

0
log

(
sinh �


�


)
a�
�−1 sin(��/2)


2� + a2 − 2a
� cos(��/2)
d


+ 1

�

∫ ∞

0
log

(
sinh �


�


)
	�
�−1 sin(��/2)


2� + 	2 − 2	
� cos(��/2)
d
.
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In this relation we let	 tend to zero. Clearly,

− logsin(�	1/�)+ 1

�
Log	 + logP�(−	) → − log�,

as	 → 0. Furthermore

1

�

∫ ∞

0
log

(
sinh �


�


)
	�
�−1 sin(��/2)


2� + 	2 − 2	
� cos(��/2)
d


= 1

�

∫ ∞

0
log

(
sinh �t1/�

�t1/�

)
	 sin(��/2)

(t − 	 cos(��/2))2 + (	 sin(��/2))2
dt

= 1

�

∫ ∞

−∞
G(t)

Y

(t −X)2 + Y 2
dt,

whereX = 	 cos(��/2), Y = 	 sin(��/2) and

G(t)= log

(
sinh �t1/�

�t1/�

)

for t >0 andG(t)= 0 for t�0. SinceG is continuous andG(t)/(t2+ 1) is integrable on the real line we
conclude that

1

�

∫ ∞

0
log

(
sinh �


�


)
	�
�−1 sin(��/2)


2� + 	2 − 2	
� cos(��/2)
d
 → 0,

as	 → 0. This yields

logP�(−a)=logsin(�a1/�)− 1

�
Loga − log�

− 1

�

∫ ∞

0
log

(
sinh �


�


)
a�
�−1 sin(��/2)


2� + a2 − 2a
� cos(��/2)
d
.

We write

log

(
sinh �


�


)
= (log(2 sinh�
)− �
)+ (�
 − log(2�
))

and use the facts (these follow by some computation from the relation[9, 3.252 (12)])

∫ ∞

0


�


2� + a2 − 2
� a cos(��/2)
d
 = − �

�

a1/�−1 cot �/�
sin(��/2)

,∫ ∞

0


�−1 log



2� + a2 − 2
� a cos(��/2)
d
 = �Loga

�2a

1− �/2

sin(��/2)
,
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to obtain

logP�(−a)=logsin(�a1/�)− 1

�
Loga − log� − �

�
sin(��/2)aI (a, �)

− 1

�

∫ ∞

0
(�
 − log(2�
))

a�
�−1 sin(��/2)


2� + a2 − 2a
� cos(��/2)
d


= logsin(�a1/�)− 1

2
Loga − log� + �a1/� cot(�/�)

+ (1− �/2) log(2�)− �

�
sin(��/2)aI (a, �).

Now extend this relation toa >0 and take its real part. That gives the desired relation fora >0.
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