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Abstract

Westudyconditionsunderwhich thesolutionsofa timevarying lineardynamicsystemof the formx�(t)=A(t)x(t)
are stable on certain time scales.We give sufficient conditions for various types of stability, including Lyapunov-type
stability criteria and eigenvalue conditions on “slowly varying” systems that ensure exponential stability. Finally,
perturbations of the unforced system are investigated, and an instability criterion is also developed.
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1. Introduction

It is widely known that the stability characteristics of an autonomous linear system of differential or
difference equations can be characterized completely by the placement of the eigenvalues of the system
matrix [1,13]. Recently, Pötzsche et al.[23] authored a landmark paper which developed necessary and
sufficient conditions for the stability of time invariant linear systems on arbitrary time scales. Their
characterization included the sufficient condition that the eigenvalues of the system matrix be contained
in the possibly disconnected set of stabilityS(T) ⊂ C−, which may change for each time scale on which
the system is studied. The subsequent paper in[10] examined the stability characteristics of time varying
and time invariant scalar dynamic equations on time scales and was the first paper to characterize the
behavior of a time varying first order dynamic equation on arbitrary time scales.
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The intent of this paper is to extend the current results of autonomous linear dynamic systems to the
more general case of nonautonomous linear dynamic systemsona large class of time scales (i.e. those time
scales with bounded graininess and supT = ∞). We show that, in general, the placement of eigenvalues
of the system matrix does not guarantee the stability or exponential stability of the time varying system,
as is the case with autonomous linear systems of differential and difference equations[6,13,19,20,25]
and dynamic equations on time scales[23].We unify and extend the theorems of eigenvalue placement in
the proper region of the complex plane for sufficiently slow varying system matrices of continuous and
discrete nonautonomous systems, which yields exponential stability of the system, as in the classic papers
[8,9,24], and the relatively recent paper[26]. To develop this theory for nonautonomous systems, we unify
the theorems of uniform stability, uniform exponential stability, and uniform asymptotic stability for time
varying systems by implementing a generalized time scales version of the “second (direct) method” of
Lyapunov[22], a Russianmathematician and engineer, as in the standard papers on stability of continuous
and discrete dynamical systems in[19,20].
In his dissertation of 1892, Lyapunov developed two methods for analyzing the stability of differential

equations. His “second (direct) method” has become the most widely used tool for stability analysis of
linear and nonlinear systems in both differential and difference equations. The idea is very straightforward
and it involves measuring the energy of the system, usually the norm of the state variables, as the system
evolves in time. The objective of the so-called “second (direct) method” of Lyapunov is this:To answer
questions of stability of differential and difference equations, utilizing the given form of the equations but
without explicit knowledge of the solutions. The principal idea of the second method is contained in the
following physical reasoning: If the rate of change, dE(x)/dt , of the energyE(x) of an isolated physical
system is negative for every possible statex, except for a single equilibrium statexe, then the energy will
continually decrease until it finally assumes its minimum valueE(xe). In other words, a system that is
perturbed from its equilibrium state will always return to it. This is the intuitive concept of stability. It
follows that the mathematical counterpart of the preceding statement is the following:A dynamic system
is stable(in the sense that it returns to equilibrium after any perturbation) if and only if there exists
a “Lyapunov function,” i.e., some scalar functionV (x) of the state with the properties: (a) V (x)>0,
V̇ (x)<0,whenx �= xe, and(b) V (x)= V̇ (x)= 0whenx = xe [19].
In engineering applications and applied mathematics problems, a solution usually is neither readily

available nor easily calculated. As in adaptive control, which was born from a desire to stabilize certain
classes of linear continuous systems without the need to explicitly identify the unknown system param-
eters, even a knowledge of the system matrix itself may not be fully available. The inherent beauty and
elegance of the “second method” of Lyapunov is that knowledge of the exact solution is not necessary.
The qualitative behavior of the solution to the system (i.e. the stability or instability) can be investigated
without computing the actual solution.
By unifying and extending Lyapunov’s “second method” to nonautonomous linear systems on time

scales, we encounter the possibility of a time domain consisting of nonuniform distance between suc-
cessive points. This proves to be a nontrivial issue and hence is seldom dealt with in the literature. It is,
however, a rapidly rising theme in many engineering applications, such as the papers[16–18]which deal
with high-gain adaptive controllers, digital systems, as well as very recent results from[11,12] which
give new algorithms for adaptive controllers and bandwidth reduction using controller area networks. The
time scale methods introduced and developed in this paper allow the examination and manipulation of
the stability characteristics of dynamical systems without regard to the particular domain of the system,
i.e. continuous, discrete, or mixed.
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This paper is organized as follows. In Section 2, we give general definitions of our matrix norms,
matrix definiteness, aswell as stability definitionsandcharacterizationsso that thepaper is reasonably self-
contained. Section 3 introduces the unified theoremsof uniform stability and uniformexponential stability
of linear systems on time scales, as well as illustrations of these theorems in examples. Section 4 gives
conditions on the eigenvalues of a sufficiently “slowly varying” systemmatrix which ensures exponential
stability of the system solution. In Section 5, the stability properties of systems with perturbations are
investigated. Finally, Section 6 demonstrates how the quadratic Lyapunov function developed in Section
3 can also be used to determine the instability of a system.We give a brief summary of the theory of time
scales in the Appendix.

2. General definitions

We start by introducing definitions and notation that will be employed in the sequel.
TheEuclidean normof ann× 1 vectorx(t) is defined to be a real-valued function oft and is denoted

by

‖x(t)‖ =
√
xT(t)x(t).

The induced normof anm× n matrixA is defined to be

‖A‖ = max‖x‖=1
‖Ax‖.

The norm ofA induced by the Euclidean norm above is equal to the nonnegative square root of the
absolute value of the largest eigenvalue of the symmetric matrixATA. Thus, we define this norm next.
Thespectral normof anm× n matrixA is defined to be

‖A‖ =
[
max‖x‖=1

xTATAx

]1/2
.

This will be the matrix norm that is used in the sequel and will be denoted by‖ · ‖.
A symmetric matrixM is defined to bepositive semidefiniteif for all n×1 vectorsx we havexTMx�0

and it ispositive definiteif xTMx�0, with equality only whenx = 0. Negative semidefiniteness and
definiteness are defined in terms of positive definiteness of−M.
We now define the concepts of uniform stability and uniform exponential stability. These two concepts

involve the boundedness of the solutions of the regressive time varying linear dynamic equation

x�(t)= A(t)x(t), x(t0)= x0, t0 ∈ T. (2.1)

Definition 2.1. The time varying linear dynamic equation (2.1) isuniformly stableif there exists a finite
constant�>0 such that for anyt0 andx(t0), the corresponding solution satisfies

‖x(t)‖��‖x(t0)‖, t� t0. (2.2)

For the next definition, we define a stability property that not only concerns the boundedness of a
solutions to (2.1), but also the asymptotic characteristics of the solutions as well. If the solutions to (2.1)
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possess the following stability property, then the solutions approach zero exponentially ast → ∞ (i.e.
the norms of the solutions are bounded above by a decaying exponential function).

Definition 2.2. The time varying linear dynamic equation (2.1) is calleduniformly exponentially stable
if there exist constants�, �>0 with−� ∈ R+ such that for anyt0 andx(t0), the corresponding solution
satisfies

‖x(t)‖�‖x(t0)‖�e−�(t, t0), t� t0. (2.3)

It is obvious by inspection of the previous definitions that we must have��1. By using the word
uniform, it is implied that the choice of� does not depend on the initial timet0.
The last stability definition given uses a uniformity condition to conclude exponential stability.

Definition 2.3. The linear state equation (2.1) is defined to beuniformly asymptotically stableif it is
uniformly stable and given any�>0, there exists aT >0 so that for anyt0 andx(t0), the corresponding
solutionx(t) satisfies

‖x(t)‖��‖x(t0)‖, t� t0 + T . (2.4)

It is noted that the timeT that must pass before the norm of the solution satisfies (2.4) and the constant
�>0 is independent of the initial timet0.
Wenowstateandprove four theorems, thefirst threeofwhichcharacterizeuniformstability anduniform

exponential stability in terms of the transition matrix for system (2.1). The fourth theorem illustrates the
relationship between uniform asymptotic stability and uniform exponential stability.

Theorem 2.1. The time varying linear dynamic equation(2.1) is uniformly stable if and only if there
exists a�>0 such that

‖�A(t, t0)‖��

for all t� t0 with t, t0 ∈ T.

Proof. Suppose that (2.1) is uniformly stable. Then, there is a�>0 such that for anyt0, x(t0), the
solutions satisfy

‖x(t)‖��‖x(t0)‖, t� t0.

Given anyt0 andta� t0, let xa be a vector such that

‖xa‖ = 1, ‖�A(ta, t0)xa‖ = ‖�A(ta, t0)‖ ‖xa‖ = ‖�A(ta, t0)‖
So the initial statex(t0)= xa gives a solution of (2.1) that at timeta satisfies

‖x(ta)‖ = ‖�A(ta, t0)xa‖ = ‖�A(ta, t0)‖ ‖xa‖��‖xa‖.
Since‖xa‖ = 1, we see that‖�A(ta, t0)‖��. Sincexa can be selected for anyt0 andta� t0, we see that
‖�A(t, t0)‖�� for all t, t0 ∈ T.
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Now suppose that there exists a� such that‖�A(t, t0)‖�� for all t, t0 ∈ T. For anyt0 andx(t0)= x0,
the solution of (2.1) satisfies

‖x(t)‖ = ‖�A(t, t0)x0‖�‖�A(t, t0)‖ ‖x0‖��‖x0‖, t� t0.

Thus, uniform stability of (2.1) is established.�

Theorem 2.2. The time varying linear dynamic equation(2.1) is uniformly exponentially stable if and
only if there exist�, �>0 with−� ∈ R+ such that

‖�A(t, t0)‖��e−�(t, t0)

for all t� t0 with t, t0 ∈ T.

Proof. First suppose that (2.1) is exponentially stable. Then there exist�, �>0 with−� ∈ R+ such that
for anyt0 andx0 = x(t0), the solution of (2.1) satisfies

‖x(t)‖ = ‖x0‖�e−�(t, t0), t� t0.

So for anyt0 andta� t0, let xa be a vector such that

‖xa‖ = 1, ‖�A(ta, t0)xa‖ = ‖�A(ta, t0)‖ ‖xa‖ = ‖�A(ta, t0)‖.
Then the initial statex(t0)= xa gives a solution of (2.1) that at timeta satisfies

‖x(ta)‖ = ‖�A(ta, t0)xa‖ = ‖�A(ta, t0)‖‖xa‖�‖xa‖�e−�(t, t0).

Since‖xa‖ = 1 and−� ∈ R+, we have‖�A(t, t0)‖��e−�(t, t0). Sincexa can be selected for anyt0 and
ta� t0, we see that‖�A(t, t0)‖��e−�(t, t0) for all t, t0 ∈ T.
Now suppose there exist�, �>0 with −� ∈ R+ such that‖�A(t, t0)‖��e−�(t, t0) for all t, t0 ∈ T.

For anyt0 andx(t0)= x0, the solution of (2.1) satisfies

‖x(t)‖�‖�A(t, t0)x0‖�‖�A(t, t0)‖‖x0‖�‖x0‖�e−�(t, t0), t� t0,

and thus uniform exponential stability is attained.�

Theorem 2.3. Suppose there exists a constant� such that for allt ∈ T, ‖A(t)‖��. Then the linear state
equation(2.1) is uniformly exponentially stable if and only if there exists a constant� such that∫ t

�
‖�A(t, 	(s))‖�s�� (2.5)

for all t, � ∈ T with t�	(�).

Proof. Suppose that the state equation (2.1) is uniformly exponentially stable. By Theorem 2.2, there
exist�, �>0 with−� ∈ R+ so that

‖�A(t, �)‖��e−�(t, �)
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for all t, � ∈ T with t��. So we now see that by a result in[5, p. 64, Theorem 2.39],∫ t

�
‖�A(t, 	(s))‖�s�

∫ t

�
�e−�(t, 	(s))�s

= �

�
[e−�(t, t)− e−�(t, �)]

= �

�
[1− e−�(t, �)]

�
�

�

for all t�	(�). Thus, we have established (2.5) with� = �
� .

Now suppose that (2.5) holds. We see that we can represent the state transition matrix as

�A(t, �)= I −
∫ t

�
[�A(t, s)]�s�s = I +

∫ t

�
�A(t, 	(s))A(s)�s,

so that, with‖A(t)‖��,

‖�A(t, �)‖�1+
∫ t

�
‖�A(t, 	(s))‖ ‖A(s)‖�s�1+ ��

for all t, � ∈ T with t�	(�).
To complete the proof,

‖�A(t, �)‖(t − �)=
∫ t

�
‖�A(t, �)‖�s

�
∫ t

�
‖�A(t, 	(s))‖ ‖�A(	(s), �)‖�s

��(1+ ��) (2.6)

for all t�	(�).
Now, choosingT with T �2�(1+ ��) andt = � + T ∈ T, we obtain

‖�A(t, �)‖� 1
2, t, � ∈ T. (2.7)

Using the bound from Eqs. (2.6) and (2.7), we have the following set of inequalities on intervals in the
time scale of the form[� + kT , � + (k + 1)T )T, with arbitrary�:

‖�A(t, �)‖�1+ ��, t ∈ [�, � + T )T,

‖�A(t, �)‖ = ‖�A(t, � + T )�A(� + T , �)‖
�‖�A(t, � + T )‖ ‖�A(� + T , �)‖
�
1+ ��

2
, t ∈ [� + T , � + 2T )T,

‖�A(t, �)‖ = ‖�A(t, � + 2T )�A(� + 2T , � + T )�A(� + T , �)‖
�‖�A(t, � + 2T )‖‖�A(� + 2T , � + T )‖‖�A(� + T , �)‖
�
1+ ��

22
, t ∈ [� + 2T , � + 3T )T.
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In general, for any� ∈ T, we have

‖�A(t, �)‖�
1+ ��

2k
, t ∈ [� + kT , � + (k + 1)T )T.

Wenowchoose thebounds toobtain adecayingexponential bound. Let�=2(1+��)anddefine thepositive
(possibly piecewise defined) function�(t) (with −�(t) ∈ R+) as the solution toe−�(t, �)�e−�(� + (k +
1)T , �)= 1

2k+1 , for t ∈ [� + kT , � + (k + 1)T )T with k ∈ N0. Then for allt, � ∈ T with t��, we obtain
the decaying exponential bound

‖�A(t, �)‖��e−�(t, �).

Therefore, by Theorem 2.2, we have uniform exponential stability.�

For example, whenT = R, the solution to

e−�(t−�)�e−�(�+(k+1)T−�) = e−�((k+1)T ) = 1

2k+1

with k ∈ N0 andt ∈ [� + kT , � + (k + 1)T )T is � = − 1
T
ln(12).

WhenT = Z, the solution to

(1− �)t−��(1− �)�+(k+1)T−� = (1− �)(k+1)T = 1

2k+1

with k ∈ N0 andt ∈ [� + kT , � + (k + 1)T )T is � = 1− (12)
−1/T , and−� ∈ R+ onT = Z.

Theorem2.4. The linear state equation(2.1)is uniformly exponentially stable if and only if it is uniformly
asymptotically stable.

Proof. Suppose that system (2.1) is uniformly exponentially stable. This implies that there exist constants
�, �>0 with −� ∈ R+ so that‖�A(t, �)‖��e−�(t, �) for t��. Clearly, this implies uniform stability.
Now, given a�>0, we choose a sufficiently large positive constantT ∈ T so thatt0 + T ∈ T and
e−�(t0 + T , t0)� �

� . Then for anyt0 andx0, andt�T + t0 with t ∈ T,

‖x(t)‖ = ‖�A(t, t0)x0‖
�‖�A(t, t0)‖‖x0‖
��e−�(t, t0)‖x0‖
��e−�(t0 + T , t0)‖x0‖
��‖x0‖, t� t0 + T .

Thus, (2.1) is uniformly asymptotically stable.
Now suppose the converse. By definition of uniform asymptotic stability, (2.1) is uniformly stable.

Thus, there exists a constant�>0 so that

‖�A(t, �)‖�� for all t��. (2.8)

Choosing� = 1
2, let T be a positive constant so thatt = t0 + T ∈ T and (2.4) is satisfied. Given at0 and

lettingxa be so that‖xa‖ = 1, we have

‖�A(t0 + T , t0)xa‖ = ‖�A(t0 + T , t0)‖.
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Whenx0 = xa, the solutionx(t) of (2.1) satisfies

‖x(t)‖ = ‖x(t0 + T )‖ = ‖�A(t0 + T , t0)xa‖ = ‖�A(t0 + T , t0)‖ ‖xa‖� 1
2‖xa‖.

From this, we obtain

‖�A(t0 + T , t0)‖� 1
2. (2.9)

It is easy to see that for anyt0 there exists anxa as claimed. Therefore, the above inequality holds
for any t0. Thus, by using (2.8) and (2.9) exactly as in Theorem 2.3, uniform exponential stability is
obtained. �

3. Stability of the time varying linear dynamic system

In this section, we investigate the stability of the regressive time varying linear dynamic system of the
form

x�(t)= A(t)x(t), x(t0)= x0, t0 ∈ T. (3.1)

Our goal is to assess the stability of the unforced system by observing the system’s total energy as the
state of the system evolves in time. If the total energy of the system decreases as the state evolves, then
the state vector approaches a constant value (equilibrium point) corresponding to zero energy as time
increases. The stability of the system involves the growth characteristics of solutions of the state equation,
and these properties can be measured by a suitable (energy-like) scalar function of the state vector. In the
following two subsections, we discuss the boundedness properties and asymptotic behavior ast → ∞
of solutions of system (3.1). The present issue is obtaining a proper scalar function.
We assume that the time scaleT is unbounded above. To start, we consider conditions that imply all

solutions of the linear state equation (3.1) are such that‖x(t)‖2 → 0 ast → ∞. For any solution of
(3.1), the delta derivative of the scalar function

‖x(t)‖2 = xT(t)x(t)

with respect tot is:

[‖x(t)‖2]�t
= xT

�
(t)x(t)+ xT

	
(t)x�(t)

= xT(t)AT(t)x(t)+ xT(t)(I + 
(t)AT(t))A(t)x(t)

= xT(t)[AT(t)+ A(t)+ 
(t)AT(t)A(t)]x(t). (3.2)

So if the quadratic form we obtained is negative definite, i.e.AT(t)+ A(t)+ 
(t)AT(t)A(t) is negative
definite at eacht , then‖x(t)‖2 will decrease monotonically ast increases. We later show that if there
exists a�>0 so thatAT(t) + A(t) + 
(t)AT(t)A(t)� − �I for all t , then‖x(t)‖2 → 0 ast → ∞. To
formalize our discussion, we define time-dependent quadratic forms that are useful for analyzing stability.
Wewill refer to these quadratic forms asunified time scale quadratic Lyapunov functions. For a symmetric
matrixQ(t) ∈ C1rd(T,Rn×n)we write the general quadratic Lyapunov function asxT(t)Q(t)x(t). If x(t)
is a solution to (3.1), and sincexT(t)Q(t)x(t) has a scalar output, our interest lies in the behavior of the
quantityxT(t)Q(t)x(t) for t� t0. With this we now define one of the main ideas of this paper.
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Definition 3.1. Let Q(t) be a symmetric matrix such thatQ(t) ∈ C1rd(T,Rn×n). A unified time scale
quadratic Lyapunov functionis given by

xT(t)Q(t)x(t), t� t0, (3.3)

with delta derivative

[xT(t)Q(t)x(t)]�t = xT(t)[AT(t)Q(t)

+ (I + 
(t)AT(t))(Q�(t)+Q(t)A(t)+ 
(t)Q�(t)A(t))]x(t)
= xT(t)[AT(t)Q(t)+Q(t)A(t)+ 
(t)AT(t)Q(t)A(t)

+ (I + 
(t)AT(t))Q�(t)(I + 
(t)A(t))]x(t).
The matrix dynamic equation that is obtained by differentiating (3.3) with respect tot is given by

AT(t)Q(t)+Q(t)A(t)+ 
(t)AT(t)Q(t)A(t)

+ (I + 
(t)AT(t))Q�(t)(I + 
(t)A(t))= −M, M =MT.

One can easily see that it merges with the familiar continuous matrix differential equation (T = R) and
discrete (T=Z) difference (recursive) equationobtained from the respective quadratic Lyapunov functions
in R andZ.
For the continuous case, we observe that
(t) ≡ 0 whenT = R. Thus, from (3.1) we now have the

continuous system

ẋ(t)= A(t)x(t), t� t0. (3.4)

The derivative of the quadratic Lyapunov function that emerges from (3.4) is

d

dt
[xT(t)Q(t)x(t)] = xT(t)[AT(t)Q(t)+Q(t)A(t)+ Q̇(t)]x(t),

where

AT(t)Q(t)+Q(t)A(t)+ Q̇(t)= −M, M =MT,

is the familiar matrix differential equation[6,8,19,24,25]derived from the continuous system (3.4).
For the discrete caseT = Z, we note that systems of difference equations inZ are traditionally written

in recursive form

x(t + 1)= AR(t)x(t), t� t0, (3.5)

while the difference form is written

x�(t)= �x(t)= x(t + 1)− x(t)= A(t)x(t), t� t0. (3.6)

Thus, changing from difference form to recursion just requires a unit shift on the matrixA(t), that is,

x(t + 1)= (I + A(t))x(t)= AR(t)x(t),

whereAR = (I + A).



390 J.J. DaCunha / Journal of Computational and Applied Mathematics 176 (2005) 381–410

Now we see that with the unified time scale quadratic Lyapunov function above, noting that when in
Z, 
(t) ≡ 1, we obtain

xT(t)[AT(t)Q(t)+Q(t)A(t)+ AT(t)Q(t)A(t)+ (I + AT(t))�Q(t)(I + A(t))]x(t)
= xT(t)[(AT

R(t)− I )Q(t)+Q(t)(AR(t)− I )+ (AT
R(t)− I )Q(t)(AR(t)− I )

+ AT
R(t)�Q(t)AR(t)]x(t)

= xT(t)[AT
R(t)Q(t)−Q(t)+Q(t)AR(t)−Q(t)+ AT

R(t)Q(t)AR(t)

− AT
R(t)Q(t)−Q(t)AR(t)+Q(t)+ AT

R(t)�Q(t)AR(t)]x(t)
= xT(t)[−Q(t)+ AT

R(t)Q(t)AR(t)+ AT
R(t)�Q(t)AR(t)]x(t)

= xT(t)[−Q(t)+ AT
R(t)Q(t)AR(t)+ AT

R(t)(Q(t + 1)−Q(t))AR(t)]x(t)
= xT(t)[AT

R(t)Q(t + 1)AR(t)−Q(t)]x(t),
where

AT
R(t)Q(t + 1)AR(t)−Q(t)= −M, M =MT,

is the well-known discrete matrix recursion equation[9,20,25]for the recursive system (3.5).
This shows that the unified time scalematrix dynamic equationmerges into the continuous and discrete

cases easily because of the time varying graininess
(t). This unified time scale matrix dynamic equation
not only unifies the two special cases of continuous and discrete time, it also extends these notions for
arbitrary time scalesT, and as such plays a crucial role in our analysis.

3.1. Uniform stability

In this section, we introduce the criteria for uniform stability of system (3.1). The criteria introduced
in Theorem 3.1 is a generalization of the Lyapunov criteria for uniform stability of discrete and contin-
uous linear systems that can be found in the famous papers in[19,20]. Uniform stability involves the
boundedness of all solutions of system (3.1) and in the following theorem we derive sufficient conditions
for uniform stability of the system. The strategy is to state requirements on the matrixQ(t) so that the
corresponding quadratic form yields uniform stability of the system.

Theorem 3.1. The time varying linear dynamic system(3.1) is uniformly stable if for allt ∈ T, there
exists a symmetric matrixQ(t) ∈ C1rd(T,Rn×n) such that

(i) �I�Q(t)�
I ,
(ii) AT(t)Q(t)+ (I + 
(t)AT(t))(Q�(t)+Q(t)A(t)+ 
(t)Q�(t)A(t))�0,

where�, 
 ∈ R+.

Proof. For anyt0 andx(t0)= x0, by (ii) and[5, Definition 1.71],

xT(t)Q(t)x(t)− xT(t0)Q(t0)x(t0)=
∫ t

t0

[xT(s)Q(s)x(s)]�s�s�0

for t� t0. Using (i),

�‖x(t)‖2�xT(t)Q(t)x(t)�xT(t0)Q(t0)x(t0)�
‖x(t0)‖2,
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which implies

‖x(t)‖ �
√




�
‖x(t0)‖.

Since this last statement holds for allt0 andx(t0)= x0, Eq. (3.1) is uniformly stable.�

To illustrate this theorem, we present an example.

Example 3.1. Consider the time varying linear dynamic system

x�(t)=
[−2 1

−1 −a(t)
]
x(t),

wherea(t) ∈ Crd(T,R) for all t ∈ T. ChooseQ(t) = I , so thatxT(t)Q(t)x(t) = xT(t)x(t) = ‖x(t)‖2.
In Theorem 3.1, (i) is satisfied when� = 
 = 1. To satisfy the second requirement, we see forQ(t)= I ,
Q�(t)= 0 so

AT(t)Q(t)+ (I + 
(t)AT(t))(Q�(t)+Q(t)A(t)+ 
(t)Q�(t)A(t))�0

becomes

AT(t)+ A(t)+ 
(t)AT(t)A(t)�0.

Now

A(t)=
[−2 1

−1 −a(t)
]
, AT(t)=

[−2 −1
1 −a(t)

]

and


(t)AT(t)A(t)= 
(t)

[
5 a(t)− 2

a(t)− 2 a(t)2 + 1

]
,

so

AT(t)+ A(t)+ 
(t)AT(t)A(t)=
[

5
(t)− 4 (a(t)− 2)
(t)
(a(t)− 2)
(t) (a(t)2 + 1)
(t)− 2a(t)

]
.

For any 2× 2 matrix

M =
[
m11 m12
m21 m22

]

to be negative semidefinite, we need−m11,−m22�0 and det(M)�0. For our matrix

A∗(t) : =AT(t)+ A(t)+ 
(t)AT(t)A(t),

we need

− a∗
11= 4− 5
(t)�0 which implies 0�
(t)� 4

5,

− a∗
22= −((a(t)2 + 1)
(t)− 2a(t))�0
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and

det(A∗(t))= 4
(t)2a(t)2 − 4
(t)a(t)2 + 4
(t)2a(t)

− 10
(t)a(t)+ 8a(t)+ 
(t)2 − 4
(t)�0.

It is easy to confirm that for each 0�
(t)� 4
5, the interval in which−a∗

22�0 always contains the interval
in which det(A∗(t))�0. Thus, we only need to concern ourselves with the latter inequality. If
(t)= 4

5,
the only possible value that the functiona(t)may be is 2. If we let
(t)= 1

2, we see that a window emerges
for the allowable values of the functiona(t) : 1

2�a(t)� 7
2. Letting
(t)= 2

5, we see that another window
develops for the allowable values of the functiona(t) : 1

3�a(t)� 9
2. It is quite interesting to note that as


(t) → 0, the window opens up to infinite length, bounded below by 0. Therefore, whenT = R, the only
requirement fora(t) is that it is positive for allt ∈ T.

3.2. Uniform exponential stability

We now introduce sufficient criteria for uniform exponential stability of system (3.1). The criteria
introduced in Theorem 3.2 is again a generalization of the Lyapunov criteria for uniform exponential
stability of discrete and continuous linear systems, which can be found in the companion papers in
[19,20], as well as the classic text by Hahn[13]. There is a slight, but very powerful variation from
uniform stability to uniform exponential stability. By requiringQ(t) ∈ C1rd(T,Rn×n) to be symmetric,
positive definite, and bounded above and below by positive definitematrices, alongwith a strictly negative
definite delta derivative, i.e.

[xT(t)Q(t)x(t)]�� − �xT(t)x(t)

for some�>0, we will show that all solutions of (3.1) are bounded above by a decaying exponential and
go to zero ast → ∞. Uniform exponential stability does imply that system (3.1) is uniformly stable, but
the converse is not true.

Theorem 3.2. The time varying linear dynamic system(3.1) is uniformly exponentially stable if there
exists a symmetric matrixQ(t) ∈ C1rd(T,Rn×n) such that for allt ∈ T

(i) �I�Q(t)�
I
(ii) AT(t)Q(t)+ (I + 
(t)AT(t))(Q�(t)+Q(t)A(t)+ 
(t)Q�(t)A(t))� − �I ,

where�, 
, � ∈ R+ and −�

 ∈ R+.

Proof. For any initial conditiont0 andx(t0)= x0 with corresponding solutionx(t) of (3.1), we see that
for all t� t0, (ii) yields

[xT(t)Q(t)x(t)]�� − �‖x(t)‖2.
Also, for all t� t0, (i) implies

xT(t)Q(t)x(t)�
‖x(t)‖2.
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Thus

[xT(t)Q(t)x(t)]��
−�



xT(t)Q(t)x(t),

for all t� t0. Since−�

 ∈ R+, we can employ the time scale version of Gronwall’s inequality[5] to obtain

xT(t)Q(t)x(t)�xT(t0)Q(t0)x(t0)e−�


(t, t0), t� t0. (3.7)

By (i), �I�Q(t) which is equivalent to�‖x(t)‖2�xT(t)Q(t)x(t) and division by� along with (3.7)
yields

‖x(t)‖2�
1

�
xT(t)Q(t)x(t)�

1

�
xT(t0)Q(t0)x(t0)e−�



(t, t0), t� t0.

SincexT(t0)Q(t0)x(t0)�
‖x(t0)‖2, this implies
‖x(t)‖2�




�
‖x(t0)‖2e−�



(t, t0),

which yields

‖x(t)‖�‖x(t0)‖
√




�
e−�



(t, t0), t� t0.

This holds for arbitraryt0 andx(t0). Thus, uniform exponential stability is obtained.�

We present another example to show the difference between uniform and exponential stability.

Example 3.2. Consider again the time varying linear dynamic system

x�(t)=
[−2 1

−1 −a(t)
]
x(t),

where we now leta(t) = sin(t) + 2 which is obviously in Crd(T,R) for all t ∈ T. We note that sin(t)
is the usual sine function that gives the sine value of each point inT and it isnot the time scale function
sin1(t,0).
Again, chooseQ(t)= I , so thatxT(t)Q(t)x(t)= xT(t)x(t)= ‖x(t)‖2. In Theorem 3.1, (i) is satisfied

when� = 
 = 1. To satisfy the second requirement, we seeQ(t)= I , soQ�(t)= 0 and thus

AT(t)Q(t)+ (I + 
(t)AT(t))(Q�(t)+Q(t)A(t)+ 
(t)Q�(t)A(t))� − �I

becomes

AT(t)+ A(t)+ 
(t)AT(t)A(t)� − �I.

For any 2× 2 matrix

M =
[
m11 m12
m21 m22

]
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to be negative definite, we need−m11>0 and det(M)>0. For our matrix

A∗(t) : =AT(t)+ A(t)+ 
(t)AT(t)A(t),

we need−a∗
11= 4− 5
(t)>0 which implies that 0�
(t)< 4

5 and

det(A∗(t))= 4 sin2(t)
(t)2 + 20 sin(t)
(t)2 + 25
(t)2

− 4 sin2(t)
(t)− 26 sin(t)
(t)− 40
(t)+ 8 sin(t)+ 16>0.

We note that det(A∗(t))>0 for all t ∈ T as long as 0�
(t)< 1
2.

For instance, lettingT = P.6,.4 = ⋃∞
k=0[k, k + .6], in this time scale


(t)=
{
0 if t ∈ ⋃∞

k=0[k, k + .6)
.4 if t ∈ ⋃∞

k=0{k + .6}
Here,
(t)� 1

2 for all t ∈ T. From the previous example, we see that the allowable values are1
2 <a(t)<

7
2,

which is satisfied for allt ∈ T.
For anyt , the eigenvalues of the matrixA∗(t) have a maximum value less than−1

2 when
(t)< 1
2. As


(t) decreases to 0, the maximum value decreases. Therefore, the maximum of all of the eigenvalues of
the matrixA∗(t) is less than−1

2. SoA
∗(t) is negative definite. Thus, we can set� = 1

2.
Checking that− �


 =−1
2 ∈ R+, we now know that the norm of any solutionx(t)with initial valuex(t0)

is bounded above by the always positive decaying time scale exponential function‖x(t0)‖
√
e−1

2
(t, t0).

By lettingQ(t)= I , the matrixA∗(t)meets the criteria (i), (ii) in Theorem (3.2). Thus, the system above
is uniformly exponentially stable.

3.3. Finding the matrixQ(t)

First, we give a closed form for the unique, symmetric, and positive definite solution matrix to thetime
scale Lyapunov matrix equation

AT(t)Q(t)+Q(t)A(t)+ 
(t)AT(t)Q(t)A(t)= −M. (3.8)

Remark. We note that the time scale Lyapunov matrix equation is the unification (withB(t) ≡ AT(t))

of the Sylvester matrix equation[3]

XA(t)+ B(t)X = −M
for the caseT = R and the Stein equation

B(t)XA(t)−X = −M
for the caseT = Z. The Stein matrix equation above is written assuming that one is using recursive form.
It can easily be transformed into an equivalent difference form

XA(t)+ B(t)X + B(t)XA(t)= −M.

To prove that the matrixQ(t) is a solution to the time scale Lyapunov matrix equation (3.8), we first
state the following theorem and corollary that can be found in[5].
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Theorem 3.3. SupposeA ∈ R(T,Rn×n) andC is differentiable. If C is a solution of the matrix dynamic
equation

C� = A(t)C − C	A(t)

then

C(t)eA(t, s)= eA(t, s)C(s).

Corollary 3.1. SupposeA ∈ R andC is a constant matrix. If C commutes withA(t), thenC commutes
with eA(t). In particular, if A(t) is constant matrix with respect toeA(t), thenA(t) commutes witheA(t).

Now we present one of the main results of the paper.

Theorem 3.4. If then× n matrixA(t) has all eigenvalues in the corresponding Hilger circle for every
t� t0, then for eacht ∈ T, there exists some time scaleS such that integration overI : =[0,∞)S yields
a unique solution to(3.8)given by

Q(t)=
∫
I

eAT(t)(s,0)MeA(t)(s,0)�s. (3.9)

Moreover, if M is positive definite, thenQ(t) is positive definite for allt� t0.

Proof. First, we fix an arbitraryt ∈ T. Since all eigenvalues ofA(t) are in the corresponding Hilger
circle, [23] shows (3.9) converges, so thatQ(t) is well defined. We now show for each fixedt ∈ T,Q(t)
is a solution of (3.8).

CaseI: 
(t)>0. Since
(t) is a positive number, we define the time scaleS = 
(t)N0. So for each
s ∈ S, we have that
(s) ≡ 
(t); in other words,S has constant graininess. Now substituting (3.9) in the
following with integration overI = [0,∞)S we obtain

AT(t)Q(t)+Q(t)A(t)+ 
(t)AT(t)Q(t)A(t)

=
∫
I

AT(t)eAT(t)(s,0)MeA(t)(s,0)�s

+
∫
I

eAT(t)(s,0)MeA(t)(s,0)A(t)�s

+ 
(t)

∫
I

AT(t)eAT(t)(s,0)MeA(t)(s,0)A(t)�s

=
∫
I

AT(t)eAT(t)(s,0)MeA(t)(s,0)[I + 
(t)A(t)]�s

+
∫
I

eAT(t)(s,0)MeA(t)(s,0)A(t)�s

=
∫
I

AT(t)eAT(t)(s,0)M[I + 
(t)A(t)]eA(t)(s,0)�s

+
∫
I

eAT(t)(s,0)MA(t)eA(t)(s,0)�s.
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Since
(t)= 
(s), we continue with the last line as

=
∫
I

AT(t)eAT(t)(s,0)M[I + 
(s)A(t)]eA(t)(s,0)�s

+
∫
I

eAT(t)(s,0)MA(t)eA(t)(s,0)�s

=
∫
I

[eAT(t)(s,0)]�sMe	
A(t)(s,0)�s

+
∫
I

eAT(t)(s,0)M[eA(t)(s,0)]�s�s

=
∫
I

[eAT(t)(s,0)MeA(t)(s,0)]�s�s
= [eAT(t)(s,0)MeA(t)(s,0)]|∞0
= −M.

CaseII: 
(t)=0. Since
(t)=0, we define the time scaleS=R. Now substituting (3.9) in the following
with integration overI = [0,∞) we obtain,

AT(t)Q(t)+Q(t)A(t)+ 
(t)AT(t)Q(t)A(t)

= AT(t)Q(t)+Q(t)A(t)

=
∫
I

AT(t)eAT(t)(s,0)MeA(t)(s,0)�s +
∫
I

eAT(t)(s,0)MeA(t)(s,0)A(t)�s

=
∫
I

AT(t)eA
T(t)·sMeA(t)·s ds +

∫
I

eA
T(t)·sMeA(t)·sA(t)ds

=
∫
I

d

ds
[eAT(t)·s]MeA(t)·s + eA

T(t)·sM d

ds
[eA(t)·s]ds

=
∫
I

d

ds
[eAT(t)·sMeA(t)·s]ds

= [eAT(t)·sMeA(t)·s]|∞0
= −M.

Sincet ∈ T was arbitrary, but fixed, we see thatQ(t) defined as in (3.9) is a solution of (3.8) for each
t ∈ T. Now, to show thatQ(t) is unique, suppose thatQ∗(t) is another solution to (3.8). Then

AT(t)[Q∗(t)−Q(t)] + [Q∗(t)−Q(t)]A(t)+ 
(t)AT(t)[Q∗(t)−Q(t)]A(t)= 0,

which implies

eAT(t)(s,0)A
T(t)[Q∗(t)−Q(t)]eA(t)(s,0)+ eAT(t)(s,0)[Q∗(t)−Q(t)]A(t)eA(t)(s,0)

+ 
(t)eAT(t)(s,0)A
T(t)[Q∗(t)−Q(t)]A(t)eA(t)(s,0)= 0, s�0.

From this we obtain

[eAT(t)(s,0)[Q∗(t)−Q(t)]eA(t)(s,0)]�s = 0, s�0. (3.10)
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Integrating both sides of (3.10) over[0,∞)S, we have

[eAT(t)(s,0)[Q∗(t)−Q(t)]eA(t)(s,0)]|∞0 = −(Q∗(t)−Q(t))= 0,

which implies thatQ∗(t)=Q(t).
Lastly, suppose thatM is positive definite. Recall thatM positive definite impliesxTMx >0, for all

n × 1 vectorsx �= 0. Clearly,Q(t) is symmetric. To prove thatQ(t) is positive definite, we notice that
for any nonzeron× 1 vectorx(t),

xT(t)Q(t)x(t)=
∫
I

xT(t)eAT(t)(s,0)MeA(t)(s,0)x(t)�s >0

which is true sinceM is positive definite. Hence,Q(t) is positive definite. �

4. Slowly varying systems

The placement of eigenvalues in the complex plane of a time invariant matrix is a necessary and
sufficient condition to ensure the stability and/or exponential stability of the system. This is a well-known
fact in the theory of differential equations and difference equations, and it is investigated in depth in the
landmark paper on the stability of time invariant linear systems on time scales in[23].
However, eigenvalue placement alone is neither necessary nor sufficient in the general case of any

time varying linear dynamic system. Texts such as[6,7,25]give examples of time varying systems with
“frozen” (time invariant) eigenvalues with negative real parts as well as bounded systemmatrices that still
exhibit instability. The classic papers[8,24], and a recent paper[26] demonstrate this fact for systems of
differential equations, but they do show that under certain conditions, such as a bounded and sufficiently
slowly varying systemmatrix, exponential stability can be obtained with correct eigenvalue placement in
the complex plane. Desoer also published a similar paper[9] (a discrete analog to[8]) which illustrates the
same instability characteristic of time varying systems in the discrete setting, but remedies the situation
in essentially the same manner, with a bounded and sufficiently slow varying system matrix.
To begin, we state a definition from[23], in which the stability region for time invariant linear systems

on time scales is introduced. This definition essentially says if the time average of the constant� ∈ C

is negative and 1+ 
(t)� �= 0 for all t ∈ T�, then� resides in theregressive set of exponential stability
S(T), defined below. This definition is an integral part of the requirement for exponential stability of a
time invariant linear system on an arbitrary time scale. If�i ∈ S(T) for all i=1, . . . , n, and are uniformly
regressive (seeAppendix), then system (2.1), withA(t) ≡ A constant, is uniformly exponentially stable,
(i.e. there exists an�>0 such that for anyt0 ∈ T, �>0 can be chosen independently oft0 such that
‖�A(t, t0)‖�‖x(t0)‖�e−�(t−t0)).

Definition 4.1 (Pötzsche et al.[23] ). Theregressive set of exponential stabilityfor the dynamic system
(2.1) whenA(t) ≡ A is a constant is defined to be the set

S(T)=
{
� ∈ C : lim sup

T→∞
1

T − t0

∫ T

t0

lim↘
(�)

log |1+ s�|
s

��<0

}
.

The regressive set of exponential stability is contained in{� ∈ C : Re(�)<0} at all times. The reader is
referred to[23] for more explanation.
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In the main theorem that follows, we require the eigenvalues�i(t) of the time varying matrixA(t) to
reside in the corresponding Hilger circle for allt� t0 andi = 1, . . . , n. We note that the Hilger circle is
defined as the set{

� ∈ C :
∣∣∣∣ 1


(t)
+ �(t)

∣∣∣∣< 1


(t)

}
⊂ S(T).

Finally, we introduce the definition of the Kronecker product for use in Theorem 4.1. The Kronecker
product allows the multiplication of any two matrices, regardless of the dimensions. This operation is
an integral part of the theorem since it offers an unusual way to represent a matrix equation as a vector
valued equation from which we can easily obtain bounds on the solution matrix. Some useful properties
are given in Lemma 4.1.

Definition 4.2. TheKronecker productof the nA × mA matrix A and thenB × mB matrix B is the
nAnB ×mAmB matrix

A⊗ B =

 a11B · · · a1mAB

...
. . .

...

anA1B · · · anAmAB


 . (4.1)

Lemma 4.1(Zhang[27] ). AssumeA ∈ Rm×m andB ∈ Rn×n with complex valued entries.

(i) (A⊗ In)(Im ⊗ B)= A⊗ B = (Im ⊗ B)(A⊗ In).
(ii) If �i and�j are the eigenvalues forA andB, respectively, with i = 1, . . . , m andj = 1, . . . , n, then

the eigenvalues ofA⊗ B are

�i�j , i = 1, . . . , m, j = 1, . . . , n,

and the eigenvalues of(A⊗ In)+ (Im ⊗ B) are

�i + �j , i = 1, . . . , m, j = 1, . . . , n.

We now present the theorem for uniform exponential stability of slowly time varying systems which
involves an eigenvalue condition on the time varying matrixA(t) as well as the requirement thatA(t) is
norm bounded and varies at a sufficiently slow rate (i.e.‖A�(t)‖��, for some positive constant� and all
t ∈ T).

Theorem 4.1(Exponential stability for slowly time varying systems). Suppose for the regressive time
varying linear dynamic system(3.1)with A(t) ∈ C1rd(T,Rn×n) we have
max, 
�

max<∞, there exists
a constant�>0 such that‖A(t)‖��, and there exists a constant0<ε< 1


max
� 1


(t) such that for every

pointwise eigenvalue�i(t)ofA(t), Re
[�i(t)]�−ε <0.Then there exists a�>0such that if‖A�(t)‖��,
(3.1) is uniformly exponentially stable.

Proof. For eacht ∈ T, letQ(t) be the solution of

AT(t)Q(t)+Q(t)A(t)+ 
(t)AT(t)Q(t)A(t)= −I. (4.2)
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By Theorem 3.4, existence, uniqueness, and positive definiteness ofQ(t) for eacht is guaranteed. We
also note that for eacht ∈ T, the solution of (4.2) is

Q(t)=
∫
I

eAT(t)(s,0)eA(t)(s,0)�s,

whereI : = [0,∞)S andS =
(t)N0. For the remaining part of the proof, we show thatQ(t) can be used
to satisfy the requirements of Theorem 3.2, so that uniform exponential stability of (3.1) follows. First,
we use the Kronecker product and some of its properties to show the boundedness of the matrixQ(t).
We letvi denote theith column ofI , andqi(t) denote theith column ofQ(t). We then define then2 × 1
vectors

v =

v1...
vn


 , q(t)=


q1(t)...
qn(t)


 .

It can be computed to confirm that then × n matrix equation (4.2) can be written as then2 × 1 vector
equation

[(AT(t)⊗ I )+ (I ⊗ AT(t))+ 
(t)(AT(t)⊗ AT(t))]q(t)= −v. (4.3)

We now prove thatq(t) is bounded above and that there exists a positive constant
 such thatQ(t)�
I ,
for all t ∈ T. SinceA(t) ∈ R, this implies that the pointwise eigenvalues�1(t), . . . , �n(t) of A(t) are
also regressive.We also note thatI ∈ R. The pointwise eigenvalues ofAT(t)⊗ I andI ⊗AT(t) are also
�1(t), . . . , �n(t), by previously mentioned properties of the Kronecker product in Lemma 4.1. Because
(R(T,Rn2×n2),⊕) is a group we have that(AT(t)⊗ I ), (I ⊗ AT(t)) ∈ R yields

(AT(t)⊗ I )⊕ (I ⊗ AT(t))

= (AT(t)⊗ I )+ (I ⊗ AT(t))+ 
(t)(AT(t)⊗ I )(I ⊗ AT(t))

= (AT(t)⊗ I )+ (I ⊗ AT(t))+ 
(t)(AT(t)⊗ AT(t)) ∈ R

for all t ∈ T.
Now, we show that(AT(t)⊗ I )⊕ (I ⊗AT(t)) has no eigenvalues equal to zero, so that det[(AT(t)⊗

I )⊕ (I ⊗ AT(t))] �= 0. Then2 pointwise eigenvalues of(AT(t)⊗ I )⊕ (I ⊗ AT(t)) = (AT(t)⊗ I ) +
(I ⊗ AT(t))+ 
(t)(AT(t)⊗ AT(t)) are:

�i,j (t)= �i(t)⊕ �j (t)= �i(t)+ �j (t)+ 
(t)�i(t)�j (t) ∈ R

for all i, j = 1, . . . , n.
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Recall that since Re
[�i(t)]� − ε we have that|1+ 
(t)�i(t)|<1. Observe

Re
[�i(t)⊕ �j (t)] = |1+ 
(t)(�i(t)⊕ �j (t))| − 1


(t)

= |(1+ 
(t)�i(t))‖(1+ 
(t)�j (t))| − 1


(t)

<
|(1+ 
(t)�j (t))| − 1


(t)
=Re
[�j (t)]
� − ε

for all t ∈ T and alli, j = 1, ..., n.
Therefore, Re
[�i(t) ⊕ �j (t)]< − ε <0 for 0<ε< 1


max
� 1


(t) and we also have the relationship
0<ε� |Re
[�i(t)⊕ �j (t)]|� |�i(t)⊕ �j (t)|.
Thus

|det[(AT(t)⊗ I )⊕ (I ⊗ AT(t))]| =
∣∣∣∣∣∣

n∏
i,j=1

[�i(t)⊕ �j (t)]
∣∣∣∣∣∣ �εn

2
, t ∈ T. (4.4)

Now it is clear that(AT(t)⊗ I )⊕ (I ⊗ AT(t)) is invertible at eacht ∈ T since the determinant in (4.4)
is nonzero and bounded away from zero for allt . SinceA(t) and
(t) are bounded above,AT(t)⊗ I is
bounded above, and hence the inverse

[(AT(t)⊗ I )⊕ (I ⊗ AT(t))]−1

is also bounded for allt ∈ T. Since the right-hand side of (4.3) is constant, we conclude thatq(t) is
bounded for allt ∈ T and hence there exists a positive constant
 such thatQ(t)�
I for all t ∈ T.
Clearly,Q(t) ∈ C1rd(T,Rn×n) and is symmetric. Now we show that there exists a�>0 such that

AT(t)Q(t)+ (I + 
(t)AT(t))Q(t)A(t)+ (I + 
(t)A(t))TQ�(t)(I + 
(t)A(t))� − �I

for all t ∈ T. SinceQ(t) satisfies (4.2), the above inequality is equivalent to

(I + 
(t)A(t))TQ�(t)(I + 
(t)A(t))�(1− �)I,

which gives

Q�(t)�(1− �)(I + 
(t)AT(t))−1(I + 
(t)A(t))−1. (4.5)

Delta differentiating (4.2) with respect tot , we obtain

AT	
(t)Q�(t)+ AT�

(t)Q(t)+Q�(t)A	(t)+Q(t)A�(t)

+ 
�(t)AT(t)Q(t)A(t)+ 
	(t)AT�
(t)Q(t)A(t)

+ 
	(t)AT	
(t)Q�(t)A(t)+ 
	(t)AT	

(t)Q	(t)A�(t)= 0.
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RecallingQ	(t)= 
(t)Q�(t)+Q(t) the above becomes

AT	
(t)Q�(t)+ AT�

(t)Q(t)+Q�(t)A	(t)+Q(t)A�(t)

+ 
�(t)AT(t)Q(t)A(t)+ 
	(t)AT�
(t)Q(t)A(t)

+ 
	(t)AT	
(t)Q�(t)A(t)+ 
(t)
	(t)AT	

(t)Q�(t)A�(t)

+ 
	(t)AT	
(t)Q(t)A�(t)= 0.

Therefore,

AT	
(t)Q�(t)+Q�(t)A	(t)+ 
	(t)AT	

(t)Q�(t)A(t)+ 
(t)
	(t)AT	
(t)Q�(t)A�(t)

= −AT�
(t)Q(t)−Q(t)A�(t)− 
�(t)AT(t)Q(t)A(t)− 
	(t)AT�

(t)Q(t)A(t)

− 
	(t)AT	
(t)Q(t)A�(t).

Transforming only the left-hand side, we have

AT	
(t)Q�(t)+Q�(t)A	(t)+ 
	(t)AT	

(t)Q�(t)A(t)+ 
(t)
	(t)AT	
(t)Q�(t)A�(t)

= AT	
(t)Q�(t)+Q�(t)A	(t)+ 
	(t)AT	

(t)Q�(t)(A(t)+ 
(t)A�(t))

= AT	
(t)Q�(t)+Q�(t)A	(t)+ 
	(t)AT	

(t)Q�(t)A	(t).

Thus, we now have

AT	
(t)Q�(t)+Q�(t)A	(t)+ 
	(t)AT	

(t)Q�(t)A	(t)

= −AT�
(t)Q(t)−Q(t)A�(t)− 
�(t)AT(t)Q(t)A(t)− 
	(t)AT�

(t)Q(t)A(t)

− 
	(t)AT	
(t)Q(t)A�(t). (4.6)

For simplicity, let

X = AT�
(t)Q(t)+Q(t)A�(t)+ 
�(t)AT(t)Q(t)A(t)

+ 
	(t)AT�
(t)Q(t)A(t)+ 
	(t)AT	

(t)Q(t)A�(t).

Then the solution,Q�(t), of the matrix equation (4.6) can be written as

Q�(t)=
∫
I 	
eAT	

(t)(s,0)XeA	(t)(s,0)�s, t ∈ T� = T,

whereI	 : = [0,∞)S	 andS	 = 
	(t)N0. Now, to obtain a bound onQ�(t), we use the boundedness of
Q(t),Q	(t), A(t), A�(t), 
max, and
�

max. For anyn× 1 vectorx and anyt ,

|xTeAT	
(t)(s,0)XeA	(t)(s,0)x|

= |xTeAT	
(t)(s,0)[AT�

(t)Q(t)+Q(t)A�(t)+ 
�(t)AT(t)Q(t)A(t)

+ 
	(t)AT�
(t)Q(t)A(t)+ 
	(t)AT	

(t)Q(t)A�(t)]eA	(t)(s,0)x|
�‖AT�

(t)Q(t)+Q(t)A�(t)+ 
�(t)AT(t)Q(t)A(t)

+ 
	(t)AT�
(t)Q(t)A(t)+ 
	(t)AT	

(t)Q(t)A�(t)‖xTeAT	
(t)(s,0)eA	(t)(s,0)x.
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Thus

|xTQ�(t)x| =
∣∣∣∣
∫
I 	
xTeAT	

(t)(s,0)XeA	(t)(s,0)x�s

∣∣∣∣
�‖AT�

(t)Q(t)+Q(t)A�(t)+ 
�(t)AT(t)Q(t)A(t)+ 
	(t)AT�
(t)Q(t)A(t)

+ 
	(t)AT	(t)Q(t)A�(t)‖xTQ	(t)x

�(2�‖Q(t)‖ + 
�
max�

2‖Q(t)‖ + 2
max��‖Q(t)‖)xTQ	(t)x

= ‖Q(t)‖(2� + �2
�
max+ 2��
max)x

TQ	(t)x.

We now maximize the right-hand side over allx such that‖x‖ = 1 to obtain

|xTQ�(t)x|�‖Q(t)‖‖Q	(t)‖(2� + �2
�
max+ 2��
max)

and after maximizing the left-hand side over allx such that‖x‖ = 1 we have

‖Q�(t)‖�
2(2� + �2
�
max+ 2��
max), t ∈ T�.

Using�, 
max, 

�
max, and the norm bound
 onQ(t) andQ	(t), the bound� on ‖A�(t)‖ can be chosen

so that we can create a bound forQ�(t) which in turn yields a value for� in (4.5).
Lastly, we show that there exists a positive constant� such that�I�Q(t), for all t ∈ T. For anyt and

anyn× 1 vectorx,

[xTeAT(t)(s,0)eA(t)(s,0)x]�s
= xT[AT(t)eAT(t)(s,0)eA(t)(s,0)+ eAT(t)(s,0)eA(t)(s,0)A(t)

+ 
(t)AT(t)eAT(t)(s,0)eA(t)(s,0)A(t)]x
= xTeAT(t)(s,0)[AT(t)+ A(t)+ 
(t)AT(t)A(t)]eA(t)(s,0)x
�(−2� − 
max�

2)xTeAT(t)(s,0)eA(t)(s,0)x.

As s → ∞, we know thateA(t)(s,0) → 0, so that

−xTx =
∫
I

[xTeAT(t)(s,0)eA(t)(s,0)x]�s�s�(−2� − 
max�
2)xTQ(t)x.

But of course this is equivalent to

Q(t)�
1

(2� + 
max�
2)
I, t ∈ T.

So we set� = 1
(2�+
max�2)

. �

5. Perturbation results

It is also useful to consider state equations that are “close” to another linear state equation that is
uniformly stable. In[19,20], as well as[25], if the stability of system (3.1) has already been determined
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by an appropriate Lyapunov function, then certain conditions on the perturbation matrixF(t) guarantee
stability of the perturbed linear system

z�(t)= [A(t)+ F(t)]z(t). (5.1)

Theorem 5.1. Suppose the linear state equation(3.1) is uniformly stable. Then the perturbed linear
dynamic equation(5.1) is uniformly stable if there exists some��0 such that for all�∫ ∞

�
‖F(s)‖�s��. (5.2)

Proof. For anyt0 andz(t0)= z0, by TheoremA.6 the solution of (5.1) satisfies

z(t)= �A(t, t0)z0 +
∫ t

t0

�A(t, 	(s))F (s)z(s)�s, (5.3)

where�A(t, t0) is the transition matrix for system (3.1). By the uniform stability of (3.1), there exists a
constant�>0 such that‖�A(t, �)‖��, for all t, � ∈ T with t��. By taking the norms of both sides of
(5.3), we have

‖z(t)‖��‖z0‖ +
∫ t

t0

�‖F(s)‖‖z(s)‖�s, t� t0. (5.4)

By Gronwall’s Inequality in[5], a result in[10], and the inequality (5.2), we obtain

‖z(t)‖��‖z0‖e�‖F‖(t, t0)

= �‖z0‖exp
(∫ t

t0

Log(1+ 
(s)�‖F(s)‖)

(s)

�s

)

��‖z0‖exp
(∫ ∞

t0

Log(1+ 
(s)�‖F(s)‖)

(s)

�s

)

��‖z0‖exp
(∫ ∞

t0

�‖F(s)‖�s

)
��‖z0‖e��, t� t0.

Since� can be used for anyt0 andz(t0), the state equation (5.1) is uniformly stable.�

6. Instability criterion

We can also employ the unified timescale quadratic Lyapunov function to determine if system (3.1) is
unstable. This is a very useful result in the casewhere the development of a suitablematrixQ(t) is difficult
and the possibility of an unstable system begins to arise. One type of instability criteria is developed in
the next theorem.
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Theorem 6.1. Suppose there exists ann× n matrixQ(t) ∈ C1rd that is symmetric for allt ∈ T and has
the following two properties:

(i) ‖Q(t)‖�
,
(ii) AT(t)Q(t)+ (I + 
(t)AT(t))(Q�(t)+Q(t)A(t)+ 
(t)Q�(t)A(t))� − �I ,

where
, �>0.Also suppose that there exists someta ∈ T such thatQ(ta) is not positive semidefinite.
Then the linear dynamic equation(3.1) is not uniformly stable.

Proof. Suppose thatx(t) is the solution of (3.1) with initial conditionst0 = ta andx(t0) = x(ta) = xa
with xTa Q(ta)xa <0. Then

xT(t)Q(t)x(t)− xT0Q(t0)x0 =
∫ t

t0

[xT(s)Q(s)x(s)]�s�s

� − �

∫ t

t0

xT(s)x(s)�s�0, t� t0.

From this inequality,

xT(t)Q(t)x(t)�xT0Q(t0)x0<0, t� t0.

With assumption (ii) we obtain

−
‖x(t)‖2�xT(t)Q(t)x(t)�xT(t0)Q(t0)x(t0)<0, t� t0,

which leads to

‖x(t)‖2�
1



|xT(t)Q(t)x(t)|>0, t� t0. (6.1)

Again by employing assumption (ii),

�

∫ t

t0

xT(s)x(s)�s�xT0Q(t0)x0 − xT(t)Q(t)x(t)

� |xT0Q(t0)x0| + |xT(t)Q(t)x(t)|
�2|xT(t)Q(t)x(t)|, t� t0.

Using (6.1), we finally obtain

∫ t

t0

xT(s)x(s)�s�
2


�
‖x(t)‖2, t� t0. (6.2)

To end the proof, we show thatx(t) is unbounded. With an unbounded solution, we can conclude
that (3.1) is not uniformly stable. Suppose there exists some�>0 so that‖x(t)‖�� for all t� t0.
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Then (6.2) implies∫ t

t0

xT(s)x(s)�s�
2
�2

�
, t� t0.

By this last inequality,‖x(t)‖ → 0 ast → ∞, which contradicts (6.1). Thus, the solutionx(t) cannot be
bounded, which shows that (3.1) is not uniformly stable.�
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Appendix A. A time scales primer

A.1. What are time scales?

A thorough introduction to dynamic equations on time scales is beyond the scope of this appendix.
In short, the theory springs from the 1988 doctoral dissertation of Stefan Hilger[15] that resulted in his
seminal paper[14] in 1990. These works aimed to unify and generalize various mathematical concepts
from the theories of discrete and continuous dynamical systems. Afterwards, the body of knowledge
concerning time scales advanced fairly quickly, culminating in the excellent introductory text in[5] and
their more recent advanced monograph[4]. The material in this Appendix is drawn mainly from[5]. A
succinct survey on time scales can be found in[2].
A time scaleT is any nonempty closed subset of the real numbersR. Thus time scales can be any of the

usual integer subsets (e.g.Z or N), the entire real lineR, or any combination of discrete points unioned
with continuous intervals. The majority of research on time scales so far has focused on expanding and
generalizing the vast suite of tools available to the differential and difference equation theorist. We now
briefly outline the portions of the time scales theory that are needed for this paper to be as self-contained
as is practically possible.
Theforward jump operator ofT, 	(t) : T → T, is given by	(t)= inf s∈T{s > t}. Thebackward jump

operator ofT,
(t) : T → T, is given by
(t)=sups∈T{s < t}. Thegraininess function
(t) : T → [0,∞)

is given by
(t)=	(t)− t . Here we adopt the conventions inf∅=supT (i.e.	(t)= t if T has a maximum
elementt), and sup∅ = inf T (i.e.
(t)= t if T has a minimum elementt). For notational purposes, the
intersection of a real interval[a, b] with a time scaleT is denoted by[a, b] ∩ T : = [a, b]T.
A point t ∈ T is right-scatteredif 	(t)> t andright denseif 	(t) = t . A point t ∈ T is left-scattered

if 
(t)< t and left denseif 
(t) = t . If t is both left-scattered and right-scattered, we sayt is isolated.
If t is both left-dense and right-dense, we sayt is dense. The setT� is defined as follows: ifT has a
left-scattered maximumm, thenT� = T − {m}; otherwise,T� = T. If f : T → R is a function, then the
compositionf (	(t)) is often denoted byf 	(t).
For f : T → R andt ∈ T�, definef �(t) as the number (when it exists), with the property that, for

anyε >0, there exists a neighborhoodU of t such that

|[f (	(t))− f (s)] − f �(t)[	(t)− s]|��|	(t)− s|, ∀s ∈ U.
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The functionf � : T� → R is called thedelta derivativeor theHilger derivativeof f onT�. We sayf
is delta differentiableonT� providedf �(t) exists for allt ∈ T�.
The following theorem establishes several important observations regarding delta derivatives.

TheoremA.1. Supposef : T → R andt ∈ T�.
(i) If f is delta differentiable att , thenf is continuous att .
(ii) If f is continuous att and t is right-scattered, thenf is delta differentiable att and f �(t) =

f (	(t))−f (t)

(t) .

(iii) If t is right-dense, thenf is delta differentiable att if and only if lims→t
f (t)−f (s)

t−s exists. In this

case, f �(t)= lims→t
f (t)−f (s)

t−s .
(iv) If f is delta differentiable att , thenf (	(t))= f (t)+ 
(t)f �(t).

Note thatf � is preciselyf ′ from the usual calculus whenT = R. On the other hand,f � = �f =
f (t + 1) − f (t) (i.e. the forward difference operator) on the time scaleT = Z. These are but two
very special (and rather simple) examples of time scales. Moreover, the realms of differential equa-
tions and difference equations can now be viewed as but special, particular cases of more general
dynamic equations on time scales, i.e. equations involving the delta derivative(s) of some unknown
function.
A function f : T → R is rd-continuousif f is continuous at every right dense pointt ∈ T, and its

left hand limit exists at each left dense pointt ∈ T. The set of rd-continuous functionsf : T → R

will be denoted by Crd = Crd(T) = Crd(T,R). A functionF : T → R is called a (delta)antiderivative
of f : T → R providedF�(t) = f (t) holds for allt ∈ T�. TheCauchy integralor definite integralis
given by

∫ b
a
f (t)�t =F(b)−F(a), for all a, b ∈ T, whereF is any (delta) antiderivative off . Suppose

that supT = ∞. Then theimproper integralis defined to by
∫ ∞
a
f (t)�t = limb→∞F(t)|ba for all a ∈ T.

We remark that the delta integral can be defined in terms of a Lebesgue type integral[4] or a Riemann
integral[5].

TheoremA.2 (Existence of antiderivatives).
(i) Every rd-continuous function has an antiderivative. If t0 ∈ T, thenF(t)= ∫ t

t0
f (�)��, t ∈ T, is an

antiderivative off .
(ii) If f ∈ Crd andt ∈ T�, then

∫ 	(t)
t

f (�)�� = f (t)
(t).
(iii) Supposea, b ∈ T andf ∈ Crd.
(a) If T = R, then

∫ b
a
f (t)�t = ∫ b

a
f (t)dt (the usual Riemann integral).

(b) If [a, b]T consists of only isolated points, then

∫ b

a

f (t)�t =
{∑

t∈[a,b)Tf (t)
(t), a < b,

0, a = b,

−∑
t∈[b,a)Tf (t)
(t), a > b.

The last result above reveals that in the continuous case,T=R, definite integrals are the usual Riemann
integrals from calculus. WhenT = Z, definite integrals correspond to definite sums from the difference
calculus; see[21].
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Fig. 1. Left: The Hilger complex plane. Right: The cylinder (A.1) and inverse cylinder (A.2) transformations map the familiar
stability region in the continuous case to the interior of the Hilger circle in the general time scale case.

A.2. The Hilger complex plane

For h>0, define theHilger complex numbers, theHilger real axis, theHilger alternating axis, and
theHilger imaginary circleby

Ch : =
{
z ∈ C : z �= −1

h

}
, Rh : =

{
z ∈ R : z>− 1

h

}
,

Ah : =
{
z ∈ R : z<− 1

h

}
, Ih : =

{
z ∈ C :

∣∣∣∣z+ 1

h

∣∣∣∣ = 1

h

}
,

respectively. Forh= 0, letC0 : =C,R0 : =R,A0 : =∅, andI0 : =iR. SeeFig. 1.
Let h>0 andz ∈ Ch. TheHilger real part of zis defined by Reh(z) : =|zh+1|−1

h
, and theHilger

imaginary part of zis defined by Imh(z) : =Arg(zh+1)
h

, where Arg(z) denotes the principal argument of
z (i.e.,−�<Arg(z)��). SeeFig. 1.
Forh>0, define the stripZh : ={z ∈ C : −�

h
< Im(z)� �

h
}, and forh= 0, setZ0 : =C. Then we can

define thecylinder transformation�h : Ch → Zh by

�h(z)= 1

h
Log(1+ zh), h>0, (A.1)

where Log is the principal logarithm function. Whenh = 0, we define�0(z) = z, for all z ∈ C. It then
follows that theinverse cylinder transformation�−1

h : Zh → Ch is given by

�−1
h (z)= ezh − 1

h
. (A.2)

SeeFig. 1.
Since the graininess may not be constant for a given time scale, we will interchangeably subscript

various quantities (such as� and�−1) with 
 = 
(t) instead ofh to reflect this.
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A.3. Generalized exponential functions

The functionp : T → R is regressiveif 1 + 
(t)p(t) �= 0 for all t ∈ T�, and this concept motivates
the definition of the following sets:

R = {p : T → R : p ∈ Crd(T) and 1+ 
(t)p(t) �= 0 ∀t ∈ T�},
R+ = {p ∈ R : 1+ 
(t)p(t)>0 for all t ∈ T�}.

The functionp : T → R is uniformly regressiveon T if there exists a positive constant� such that
0< �−1� |1+ 
(t)p(t)|, t ∈ T�. A matrix is regressive if and only if all of its eigenvalues are inR.
Equivalently, the matrixA(t) is regressive if and only ifI + 
(t)A is invertible for allt ∈ T�.
If p ∈ R, then we define thegeneralized time scale exponential functionby

ep(t, s)= exp

(∫ t

s

�
(�)(p(�))��

)
for all s, t ∈ T.

The following theorem is a compilation of properties ofep(t, t0) (some of which are counterintuitive)
that we need in the main body of the paper.

TheoremA.3. The functionep(t, t0) has the following properties:
(i) If p ∈ R, thenep(t, r)ep(r, s)= ep(t, s) for all r, s, t ∈ T.
(ii) ep(	(t), s)= (1+ 
(t)p(t))ep(t, s).
(iii) If p ∈ R+, thenep(t, t0)>0 for all t ∈ T.
(iv) If 1+ 
(t)p(t)<0 for somet ∈ T�, thenep(t, t0)ep(	(t), t0)<0.

(v) If T = R, thenep(t, s)= e
∫ t
s p(�) d�. Moreover, if p is constant, thenep(t, s)= ep(t−s).

(vi) If T = Z, thenep(t, s)= ∏t−1
�=s (1+ p(�)). Moreover, if T = hZ, with h>0 andp is constant, then

ep(t, s)= (1+ hp)(t−s)/h

If p ∈ R andf : T → R is rd-continuous, then the dynamic equation

y�(t)= p(t)y(t)+ f (t) (A.3)

is calledregressive.

TheoremA.4(Variation of constants). Let t0 ∈ T andy(t0)= y0 ∈ R.Then the regressive IVP(A.3) has
a unique solutiony : T → Rn given by

y(t)= y0ep(t, t0)+
∫ t

t0

ep(t, 	(�))f (�)��.

We say then× 1-vector-valued system

y�(t)= A(t)y(t)+ f (t) (A.4)

is regressiveprovidedA ∈ R andf : T → Rn is a rd-continuous vector-valued function.
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Let t0 ∈ T and assume thatA ∈ R is ann × n-matrix-valued function. The unique matrix-valued
solution to the IVP

Y�(t)= A(t)Y (t), Y (t0)= In, (A.5)

whereIn is then× n-identity matrix, is called thetransition matrixand it is denoted by�A(t, t0).
In this paper, we denote the solution to (A.5) as�A(t, t0) whenA(t) is time varying and denote the

solution aseA(t, t0) ≡ �A(t, t0) (thematrix exponential, as in[5]) only whenA(t) ≡ A is a constant
matrix. Also, ifA(t) is a function onT and the time scale matrix exponential function is a function on
some other time scaleS, thenA(t) is constant with respect toeA(t)(�, s), for all �, s ∈ S andt ∈ T. The
following lemma lists some properties of the transition matrix.

TheoremA.5. SupposeA,B ∈ R are matrix-valued functions onT.
(i) Then the semigroup property�A(t, r)�A(r, s)= �A(t, s) is satisfied for allr, s, t ∈ T.
(ii) �A(	(t), s)= (I + 
(t)A(t))�A(t, s).
(iii) If T = R andA is constant, then�A(t, s)= eA(t, s)= eA(t−s).
(iv) If T = hZ, with h>0,andA is constant, then�A(t, s)= eA(t, s)= (I + hA)(t−s)/h.

We now present a theorem that guarantees a unique solution to the regressiven × 1-vector-valued
dynamic IVP (A.4).

Theorem A.6 (Variation of constants). Let t0 ∈ T andy(t0) = y0 ∈ Rn. Then the regressive IVP(A.4)
has a unique solutiony : T → Rn given by

y(t)= �A(t, t0)y0 +
∫ t

t0

�A(t, 	(�))f (�)��. (A.6)
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