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Abstract

We study conditions under which the solutions of a time varying linear dynamic system of thefaee A () x (¢)
are stable on certain time scales. We give sufficient conditions for various types of stability, including Lyapunov-type
stability criteria and eigenvalue conditions on “slowly varying” systems that ensure exponential stability. Finally,
perturbations of the unforced system are investigated, and an instability criterion is also developed.
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1. Introduction

It is widely known that the stability characteristics of an autonomous linear system of differential or
difference equations can be characterized completely by the placement of the eigenvalues of the system
matrix [1,13]. Recently, Potzsche et §23] authored a landmark paper which developed necessary and
sufficient conditions for the stability of time invariant linear systems on arbitrary time scales. Their
characterization included the sufficient condition that the eigenvalues of the system matrix be contained
in the possibly disconnected set of stabilityT) ¢ C—, which may change for each time scale on which
the system is studied. The subsequent papfiGhexamined the stability characteristics of time varying
and time invariant scalar dynamic equations on time scales and was the first paper to characterize the
behavior of a time varying first order dynamic equation on arbitrary time scales.
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The intent of this paper is to extend the current results of autonomous linear dynamic systems to the
more general case of nonautonomous linear dynamic systems on a large class of time scales (i.e. those tim
scales with bounded graininess and gug co). We show that, in general, the placement of eigenvalues
of the system matrix does not guarantee the stability or exponential stability of the time varying system,
as is the case with autonomous linear systems of differential and difference eqUiétid)%9,20,25]
and dynamic equations on time scdl23]. We unify and extend the theorems of eigenvalue placementin
the proper region of the complex plane for sufficiently slow varying system matrices of continuous and
discrete nonautonomous systems, which yields exponential stability of the system, as in the classic papers
[8,9,24] and the relatively recent pad@6]. To develop this theory for nonautonomous systems, we unify
the theorems of uniform stability, uniform exponential stability, and uniform asymptotic stability for time
varying systems by implementing a generalized time scales version of the “second (direct) method” of
Lyapunov22], a Russian mathematician and engineer, as in the standard papers on stability of continuous
and discrete dynamical systemq19,20]

In his dissertation of 1892, Lyapunov developed two methods for analyzing the stability of differential
equations. His “second (direct) method” has become the most widely used tool for stability analysis of
linear and nonlinear systems in both differential and difference equations. The idea is very straightforward
and it involves measuring the energy of the system, usually the norm of the state variables, as the system
evolves in time. The objective of the so-called “second (direct) method” of Lyapunov igthéiswer
guestions of stability of differential and difference equatjanitizing the given form of the equations but
without explicit knowledge of the solutiorihe principal idea of the second method is contained in the
following physical reasoning: If the rate of chang&,@)/dz, of the energyE (x) of an isolated physical
system is negative for every possible statexcept for a single equilibrium statg, then the energy will
continually decrease until it finally assumes its minimum valige). In other words, a system that is
perturbed from its equilibrium state will always return to it. This is the intuitive concept of stability. It
follows that the mathematical counterpart of the preceding statement is the folldwilygramic system
is stable(in the sense that it returns to equilibrium after any perturbatidgrand only if there exists
a “Lyapunov functiofi i.e., some scalar functiov (x) of the state with the propertie¢a) V (x) > 0,

V(x) <0,whenx # xe, and(b) V (x) = V(x) = 0 whenx = x¢ [19].

In engineering applications and applied mathematics problems, a solution usually is neither readily
available nor easily calculated. As in adaptive control, which was born from a desire to stabilize certain
classes of linear continuous systems without the need to explicitly identify the unknown system param-
eters, even a knowledge of the system matrix itself may not be fully available. The inherent beauty and
elegance of the “second method” of Lyapunov is that knowledge of the exact solution is not necessary.
The qualitative behavior of the solution to the system (i.e. the stability or instability) can be investigated
without computing the actual solution.

By unifying and extending Lyapunov’s “second method” to nonautonomous linear systems on time
scales, we encounter the possibility of a time domain consisting of nonuniform distance between suc-
cessive points. This proves to be a nontrivial issue and hence is seldom dealt with in the literature. It is,
however, a rapidly rising theme in many engineering applications, such as the [i#@p®]which deal
with high-gain adaptive controllers, digital systems, as well as very recent resultgfioh?] which
give new algorithms for adaptive controllers and bandwidth reduction using controller area networks. The
time scale methods introduced and developed in this paper allow the examination and manipulation of
the stability characteristics of dynamical systems without regard to the particular domain of the system,
i.e. continuous, discrete, or mixed.
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This paper is organized as follows. In Section 2, we give general definitions of our matrix norms,
matrix definiteness, as well as stability definitions and characterizations so thatthe paper is reasonably self-
contained. Section 3 introduces the unified theorems of uniform stability and uniform exponential stability
of linear systems on time scales, as well as illustrations of these theorems in examples. Section 4 gives
conditions on the eigenvalues of a sufficiently “slowly varying” system matrix which ensures exponential
stability of the system solution. In Section 5, the stability properties of systems with perturbations are
investigated. Finally, Section 6 demonstrates how the quadratic Lyapunov function developed in Section
3 can also be used to determine the instability of a system. We give a brief summary of the theory of time
scales in the Appendix.

2. General definitions

We start by introducing definitions and notation that will be employed in the sequel.
TheEuclidean nornof ann x 1 vectorx(z) is defined to be a real-valued functionsadnd is denoted

by

x| = vxT(@)x(1).
Theinduced nornmof anm x n matrix A is defined to be

[All = max [[Ax]|.
lxll=1

The norm ofA induced by the Euclidean norm above is equal to the nonnegative square root of the
absolute value of the largest eigenvalue of the symmetric matrix. Thus, we define this norm next.
Thespectral normof anm x n matrix A is defined to be

1/2
A = [ max xTATAxi| .
lx[=1

This will be the matrix norm that is used in the sequel and will be denoted tjy

A symmetric matrixM is defined to b@ositive semidefinitéfor all n x 1 vectorsc we havex"Mx >0
and it ispositive definitdf xT Mx >0, with equality only whenr = 0. Negative semidefiniteness and
definiteness are defined in terms of positive definitenessiéf

We now define the concepts of uniform stability and uniform exponential stability. These two concepts
involve the boundedness of the solutions of the regressive time varying linear dynamic equation

x4y = AMx (1), x(t0)=x0, fo€T. (2.1)

Definition 2.1. The time varying linear dynamic equation (2.1)isiformly stableaf there exists a finite
constant > 0 such that for anyp andx (7o), the corresponding solution satisfies

xI<yllx@)ll, =10 (2.2)

For the next definition, we define a stability property that not only concerns the boundedness of a
solutions to (2.1), but also the asymptotic characteristics of the solutions as well. If the solutions to (2.1)



384 J.J. DaCunha / Journal of Computational and Applied Mathematics 176 (2005) 381—-410

possess the following stability property, then the solutions approach zero exponentially as (i.e.
the norms of the solutions are bounded above by a decaying exponential function).

Definition 2.2. The time varying linear dynamic equation (2.1) is calledformly exponentially stable
if there exist constants /> 0 with —/ € 2™ such that for anyp andx(zp), the corresponding solution
satisfies

x (DI <llx(t)llye—:(t, t0), =10 (2.3)

It is obvious by inspection of the previous definitions that we must havé. By using the word
uniform, it is implied that the choice gfdoes not depend on the initial timg
The last stability definition given uses a uniformity condition to conclude exponential stability.

Definition 2.3. The linear state equation (2.1) is defined toupéformly asymptotically stabl# it is
uniformly stable and given any> 0, there exists & > 0 so that for anyp andx (zp), the corresponding
solutionx () satisfies

xI<dlx()ll, 1=t0+T. (2.4)

Itis noted that the tim& that must pass before the norm of the solution satisfies (2.4) and the constant
0 > 0 is independent of the initial timg.

We now state and prove four theorems, the first three of which characterize uniform stability and uniform
exponential stability in terms of the transition matrix for system (2.1). The fourth theorem illustrates the
relationship between uniform asymptotic stability and uniform exponential stability.

Theorem 2.1. The time varying linear dynamic equatig¢®.1) is uniformly stable if and only if there
exists ay > 0 such that

@Az, 10) I <y

forall t > witht, 19 € T.

Proof. Suppose that (2.1) is uniformly stable. Then, there js=80 such that for anyg, x(zp), the
solutions satisfy

[x@®I<yllx@)ll, t>t0.

Given anyrg andz, >1g, let x, be a vector such that
Ixall =1,  Pa(ta, to)xall = |1Pa(ta, 10)|| [ Xall = |PA (L4, 10)]]

So the initial stater (19) = x, gives a solution of (2.1) that at timg satisfies
Ix )l = 1Pa(tas t0)Xall = [1PA(ta, ) I Xall <VlXall.

Since|lx, || = 1, we see thalt® 4 (1,, t0) || <7. Sincex, can be selected for anmy andz, > 19, we see that
@Az, to)|| <y foralls, roeT.
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Now suppose that there exists auch that| @4 (¢, 70)|| <y for all 1, 1o € T. For anyrg andx (zg) = xo,
the solution of (2.1) satisfies

x@l = 1@a(t, to)xoll < I Pa(t, t0) | Ixoll <7llx0ll, #>10.
Thus, uniform stability of (2.1) is established

Theorem 2.2. The time varying linear dynamic equatig¢®.1) is uniformly exponentially stable if and
only if there exist., y >0 with —1 € 2™ such that

@Az, t0)|| <ye_;(t, to)
forall t > witht, 19 € T.

Proof. First suppose that (2.1) is exponentially stable. Then theresgxist 0 with —1 € 2 such that
for anyzg andxg = x(fo), the solution of (2.1) satisfies

x|l = llxollye—i(t, t0), t>to.

So for anyrg andt, > 1, let x, be a vector such that
Ixall =1,  Pa(ta, t0)xall = | PA(ta, 10)]] [[Xall = | DA (L, 10)]]-

Then the initial state (r9) = x, gives a solution of (2.1) that at timg satisfies
x| = @A (ta, to)Xall = [|Pa (e, 10) l|xa |l < [ Xallye—i(2, 10).

Since||x,|| =1 and—i € 2T, we have||®(t, to) || <ye_; (¢, to). Sincex, can be selected for amy and
t, >1o, We see thall @4 (¢, ro) || <ye_,(t, ro) forall 7, 19 € T.

Now suppose there exigt > 0 with —1 € %™ such that]|®4 (¢, t0) || <ye_;(t, to) for all ¢, 79 € T.
For anyrg andx (zg) = xo, the solution of (2.1) satisfies

xOI<IIPA, 10)x0ll < P2, t0) I x0ll < llx0llve—;(t, t0), 1210,

and thus uniform exponential stability is attained.

Theorem 2.3. Suppose there exists a constasuch that for allk € T, || A(¢) || <e. Then the linear state
equation(2.1)is uniformly exponentially stable if and only if there exists a constasich that

t
f |Pa(t, a(s))|As <P (2.5)
forall r,t € T with7>0a(1).

Proof. Suppose that the state equation (2.1) is uniformly exponentially stable. By Theorem 2.2, there
existy, 4> 0 with —2 € 2™ so that

|Pa(t, D) <ye—,(t, 1)
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forall ¢, t € T with # >7. So we now see that by a result[By p. 64, Theorem 2.39]

t t
f DAt 5(5) | As < / ye_i(t, o(s))As
= e y(t.1) — e_s(t, D]
AL

Y
=-[1—-e_;( D]
A
<!
A

for all > o(z). Thus, we have established (2.5) with= f
Now suppose that (2.5) holds. We see that we can represent the state transition matrix as

t t
Dp(t,71)=1— / [Pal(r, s)]ASAS =1 —i—/ Du(t, 0(s))A(s)As,

so that, with||A(?) || <=,

I|<17A(t,f)||<1+/ [Pz, o(sHIITA()IAs <1+ aff

forallz,t € T withz>0s(1).
To complete the proof,

t
||¢A(t»f)||(t—f)=/ [@a(, D)I|As

t
< f 1BaGt (DI [ Ba(o(s). DAs
<B(L+ ap) (2.6)

forall 1 >a(1).
Now, choosingl’ with T >28(1+ «f) andr =t + T € T, we obtain

loat, DI<3, tceT. 2.7)

Using the bound from Egs. (2.6) and (2.7), we have the following set of inequalities on intervals in the
time scale of the fornfic + kT, t + (k + 1)T), with arbitraryz:

[Palt,D)|<1+af, tellt,t+ T),
[@a(t, Dl = @a(t, T+ T)Pa(x+ T, )|
<@at, c+ D[ Palz+ T,
1
< 2w,teh+ﬂr+ﬂﬁ,
[@a(t, Dl = Pa(t, 1+ 2T)Pa(t + 2T, 1+ T)Pa(r + T, 7)||
<N @a(t, 1+ 2D)||[|@a(t 4+ 2T, t + D|[|Pa(x + T, 1) ||

1+ ap
\T’

te[t+2T, t+3T)g.
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In general, for any € T, we have

1+
||¢A(I,T)||<Taﬁ7 telt+kT,t+ (k+DT)y.

We now choose the bounds to obtain a decaying exponential bound-2€t+ o) and define the positive
(possibly piecewise defined) functidry) (with —/(r) € #T) as the solutionte_,(¢, 1) >e_,; (1 + (k +
T, 1) = zk—ﬁl fort e [t +kT,t+ (k+ 1) T)y with k € Ng. Then for all, € T with ¢ > 1, we obtain
the decaying exponential bound

Pa(t, D) <ye—,i(t, 7).

Therefore, by Theorem 2.2, we have uniform exponential stability.

For example, whefi = R, the solution to

1

A=) < o A RADT—0) _ o AG+DT) _
€ =€ =€ = 1

with k € No andz € [t + kT, v+ (k + DT)yis i = — % In(3).
WhenT = Z, the solution to

L= T2 Q= HTEITT = (- ET = g

with k € Noands € [t + kT, v+ (k+ DT)risi=1— ()" Y7, and—1 e 2T onT =Z.

Theorem 2.4. The linear state equatigf2.1)is uniformly exponentially stable if and only if it is uniformly
asymptotically stable

Proof. Suppose thatsystem (2.1) is uniformly exponentially stable. This implies that there exist constants
y, >0 with —1 € 2% so that||®4 (¢, 7)|| <ye_,(t, 1) for t > 1. Clearly, this implies uniform stability.

Now, given ad > 0, we choose a sufficiently large positive consténe T so thatrg + 7 € T and
e_)(to+ T, 1)< ‘,—3 Then for anyrg andxg, and: >T + rowithz € T,

lx@)Il = lI®a(t, r0)xoll
<[@a(t, to)|lllxoll
<ye—;(t, o) ||l xoll
<ye_;(to+ T, to) || xoll
<Ollxoll, 1210+ T.
Thus, (2.1) is uniformly asymptotically stable.

Now suppose the converse. By definition of uniform asymptotic stability, (2.1) is uniformly stable.
Thus, there exists a constant 0 so that

[@a(t, Dl<y forallz>1. (2.8)

Choosings = % let 7 be a positive constant so that 1o + T € T and (2.4) is satisfied. Givenrgand
letting x, be so that|x,|| = 1, we have

|@a(to+ T, t0)xqll = |Pa(to + T, t0)]l.
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Whenxg = x,, the solutiony (¢) of (2.1) satisfies
Ix@)] = llx(to + )| = [ @a(to+ T. to)xall = | Palto + T, t0) | lxall < 3lIxa -
From this, we obtain
|®a(to+ T, 10) | < 2. (2.9)

It is easy to see that for amyg there exists an, as claimed. Therefore, the above inequality holds
for any 1. Thus, by using (2.8) and (2.9) exactly as in Theorem 2.3, uniform exponential stability is
obtained. O

3. Stability of the time varying linear dynamic system

In this section, we investigate the stability of the regressive time varying linear dynamic system of the
form

x()=A@®)x(), x(to)=xo, foeT. (3.1)

Our goal is to assess the stability of the unforced system by observing the system’s total energy as the
state of the system evolves in time. If the total energy of the system decreases as the state evolves, ther
the state vector approaches a constant value (equilibrium point) corresponding to zero energy as time
increases. The stability of the system involves the growth characteristics of solutions of the state equation,
and these properties can be measured by a suitable (energy-like) scalar function of the state vector. In the
following two subsections, we discuss the boundedness properties and asymptotic behavioras
of solutions of system (3.1). The present issue is obtaining a proper scalar function.

We assume that the time scalas unbounded above. To start, we consider conditions that imply all
solutions of the linear state equation (3.1) are such [thét)|2 — 0 ast — oo. For any solution of
(3.1), the delta derivative of the scalar function

lx(@) 1% =xT(0)x (1)
with respect ta is:

[lx (011214
=x" (Ox() +x7 (0)xA (1)
=xTOATOx@) +xT(OT + p@AT1))A)x (1)
=x"O[AT(@) + A@) + n()AT () A@)]x (7). (3.2)

So if the quadratic form we obtained is negative definite AB(r) + A(r) + u(r)AT(t)A(r) is negative
definite at each, then||x(r)||? will decrease monotonically asincreases. We later show that if there
exists av > 0 so thatAT (r) + A(1) + u(r) AT (1) A(t) < — vI for all ¢, then||x(1)||2 — 0 ast — oo. To
formalize our discussion, we define time-dependent quadratic forms that are useful for analyzing stability.
We will refer to these quadratic formsasified time scale quadratic Lyapunov functiolRgr a symmetric

matrix Q(t) € Crld(T, R™**") we write the general quadratic Lyapunov functiondg) Q (1)x (¢). If x(r)

is a solution to (3.1), and sine€ (1) Q(¢)x(¢) has a scalar output, our interest lies in the behavior of the
quantityx T () Q(t)x(¢) for ¢ > rg. With this we now define one of the main ideas of this paper.
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Definition 3.1. Let Q(r) be a symmetric matrix such th@i(s) e Crld(T, R"*"). A unified time scale
quadratic Lyapunov functiois given by

XTHOWx(t), t=to, (3.3)
with delta derivative

T QOx1" =xT(OHIAT() Q1)
+ (I + AT @) (O (1) + QA + p(t) Q4 (1) A))]x (1)
=x"O[AT) Q1) + QA®) + (AT () O () A(r)
+ (L + AT @) 0O + ) A1) 1x ().

The matrix dynamic equation that is obtained by differentiating (3.3) with respeds iven by
AT Q@) + QAW + p()AT () QA1)
+ (I +uAT) QU + p)A@) =—M,  M=M".

One can easily see that it merges with the familiar continuous matrix differential equatieriRj and
discrete [=7) difference (recursive) equation obtained from the respective quadratic Lyapunov functions
in RandZ.

For the continuous case, we observe t@j = 0 whenT = R. Thus, from (3.1) we now have the
continuous system

x(t)=At)x(), t=to. (3.4)

The derivative of the quadratic Lyapunov function that emerges from (3.4) is

d )
a[xT(t)Q(t)X(t)] =x"(OIAT() Q) + QA1) + Q(D)]x(1),
where
ATHOM) + QAN + Q) =—M, M=M",

is the familiar matrix differential equatidi6,8,19,24,25Herived from the continuous system (3.4).
For the discrete case= 7, we note that systems of difference equationz are traditionally written
in recursive form

x(t+1)=Ar(®)x(t), t>to, (3.5)
while the difference form is written

A=A =xt+1) —x@t) = A@)x @), =10 (3.6)
Thus, changing from difference form to recursion just requires a unit shift on the magtiixthat is,

x(t+1) =+ A@)x ()= Ar(0)x(1),
whereAg = (I + A).
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Now we see that with the unified time scale quadratic Lyapunov function above, noting that when in
Z, u(t) = 1, we obtain
xXTOIAT(O Q) + QAW + AT QAW + (I + ATA)AQM U + A(t)1x (1)
=xT(OIAR®) — DO + QW(AR®) — I) + (AR(t) — DO (Ag(t) — 1)
+ AR(DAQ(AR(D]x (1)
=x  (D[AR(D Q) — Q1) + Q) AR(t) — Q(t) + AR(1) Q) AR(t)
— AR Q1) — Q(OARD) + Q1) + AR(DAQ(D) AR(D)]x (1)
=x' (D[ 0(1) + A1) Q) AR(t) + AR(DAQH) AR (D)]x (1)
=x"(O[-0@1) + AR QM AR(H) + AR((Q(t + 1) — Q) AR(D)]x(1)
=xT(O[ARO QO + DAR®) — Q(D)]x (1),
where
ARMQ(t +DAR() — Q1) =—M, M=M",

is the well-known discrete matrix recursion equatjer20,25]for the recursive system (3.5).

This shows that the unified time scale matrix dynamic equation merges into the continuous and discrete
cases easily because of the time varying grainip&9sThis unified time scale matrix dynamic equation
not only unifies the two special cases of continuous and discrete time, it also extends these notions for
arbitrary time scale$, and as such plays a crucial role in our analysis.

3.1. Uniform stability

In this section, we introduce the criteria for uniform stability of system (3.1). The criteria introduced
in Theorem 3.1 is a generalization of the Lyapunov criteria for uniform stability of discrete and contin-
uous linear systems that can be found in the famous pap¢t®,ip0] Uniform stability involves the
boundedness of all solutions of system (3.1) and in the following theorem we derive sufficient conditions
for uniform stability of the system. The strategy is to state requirements on the r@dtyixso that the
corresponding quadratic form yields uniform stability of the system.

Theorem 3.1. The time varying linear dynamic systéfl)is uniformly stable if for all € T, there
exists a symmetric matri@ (¢) Crld(T, R™*™) such that

() nI<Q@)<pl,
(i) ATOO®) + U+ p®AT)N(Q (1) + QA1) + u(1) 04 (1) A(1)) <0,
wheren, p € R™.

Proof. For anyry andx(tg) = xo, by (ii) and[5, Definition 1.71]

t
xT (1) Q(0)x (1) — x " (10) Q(10)x (10) = / [xT(s)Q(s)x(s)]* As <O
10

for r > tg. Using (i),

nllx ()17 <xT () Q()x (1) <x(10) Q(t0)x (10) < pllx (t0) 12,
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which implies

x @l <\/gllxao)ll-

Since this last statement holds for gllandx (z9) = xo, Eq. (3.1) is uniformly stable. O
To illustrate this theorem, we present an example.

Example 3.1. Consider the time varying linear dynamic system

an [-2 1
x (t)—|:_1 —a(t)i|x(t)’

wherea(t) € Cq(T, R) for all r € T. ChooseQ(r) = I, so thatx ' (£) Q(1)x(t) = x " (t)x (1) = ||lx (1) ||°.
In Theorem 3.1, (i) is satisfied when= p = 1. To satisfy the second requirement, we seedar) = I,
04(t)=0so

AT O + (I + pAT@)(Q (1) + QO A) + (1) 0? (1) A1) <0
becomes

AT + A@) + u() AT () A1) <O.

[-2 1 o [-2 -1
A(t)_[—l —a(t)]’ A(’)_[l —a(t)]

Now

and

T . 5 a(t) — 2
ROATOA®) = (1) [a(t)_z 2 +1],

SO

ATt + AW + u() AT (DA@) = [ ou(t) —4 (a(t) —2)u() } '

(@) —2u®) (a(t)®+ Du(t) — 2a(r)

For any 2x 2 matrix

M= [mll m12j|
m21 m22
to be negative semidefinite, we neeth1, —m22>0 and detM) > 0. For our matrix
AX(t) 1 =AT(1) + A0 + p() AT () A®),
we need
— a}; = 4 — 5u(r) >0 which implies 0<u(r) < 2,
—ay=—((a(t)® 4+ Du(t) — 2a(1)) =0
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and

det(A* (1)) = 4u(r)?a(t)® — Au(t)a(t)® + 4u(r)?a(r)
— 10u(t)a(r) + 8a(r) + u(1)? — 4u(t) >0.

Itis easy to confirm that for eachQu(r) < 2, the interval in which-aj, >0 always contains the interval
in which detA*(r)) >0. Thus, we only need to concern ourselves with the latter inequaljty: = 4
the only possible value that the functie(r) may be is 2. If we leti(r) = % we see that a window emerges
for the allowable values of the functierir) : %ga(t) <2 Lettingu(z) = % we see that another window

develops for the allowable values of the functio) : %ga(r) <2 ltis quite interesting to note that as
u(®) — 0, the window opens up to infinite length, bounded below by 0. Therefore, WkeR, the only
requirement fow(¢) is that it is positive for alt € T.

3.2. Uniform exponential stability

We now introduce sufficient criteria for uniform exponential stability of system (3.1). The criteria
introduced in Theorem 3.2 is again a generalization of the Lyapunov criteria for uniform exponential
stability of discrete and continuous linear systems, which can be found in the companion papers in
[19,20], as well as the classic text by Halfit3]. There is a slight, but very powerful variation from
uniform stability to uniform exponential stability. By requirin@(z) € Crld(T, R**") to be symmetric,
positive definite, and bounded above and below by positive definite matrices, along with a strictly negative
definite delta derivative, i.e.

x () QX ()] < — exT (1)x(1)

for somes > 0, we will show that all solutions of (3.1) are bounded above by a decaying exponential and
go to zero ag — oo. Uniform exponential stability does imply that system (3.1) is uniformly stable, but
the converse is not true.

Theorem 3.2. The time varying linear dynamic systéB1) is uniformly exponentially stable if there
exists a symmetric matri@ (¢) Crld(T, R"*") such thatforallr € T

(i) nI<Q)<pl

@iy AT + (I + u@)AT®)(QA(1) + Q1 A(®) + u(t) Q4 (A1) < — v,
whereyn, p, v € RT and‘T" e R,

Proof. For any initial conditiorrg andx (o) = xp with corresponding solution(z) of (3.1), we see that
for all > 1, (ii) yields

T 0nx1)1 < — vllx ()%
Also, for all t > 19, (i) implies

X" OWx@) <pllx @)
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Thus
"0 () < %”x%) 0Nx (1),

forall t >1o. Since‘?" € 2", we can employ the time scale version of Gronwall’'s inequfiyto obtain
xT(t)Q(t)X(t)<xT(to)Q(to)X(to)€—7v(t,to), 1> 10, (3.7)

By (i), nI < Q(r) which is equivalent toy|lx(r)|2<xT(t)Q(r)x(¢) and division by along with (3.7)
yields

2_1 1 1
x@l <Zx (I)Q(t)x(t)ézx (t0) Q(to)x (t0)e —v (7, 10), 1 =1o.
p

Sincex T (19) O (t0)x (t0) < p||x (10) ||%, this implies
lx(n12< % I (t0) e~ ¢, 10).

which yields

P
IIX(I)IISIIX(IO)II,/Ee%(t,lo), 12>10.

This holds for arbitraryg andx(zg). Thus, uniform exponential stability is obtained.
We present another example to show the difference between uniform and exponential stability.

Example 3.2. Consider again the time varying linear dynamic system
A | —2 1
xA(t) = [_1 _a(t)} x(),

where we now let:(r) = sin(t) 4+ 2 which is obviously in ¢q(T, R) for all + € T. We note that si)
is the usual sine function that gives the sine value of each pointind it isnotthe time scale function
sini(z, 0).

Again, choos& () = I, so thate T (1) Q(1)x (1) = x T (t)x(¢) = ||x(¢)||2. In Theorem 3.1, (i) is satisfied
wheny = p = 1. To satisfy the second requirement, we gke) = I, soQ4(¢) = 0 and thus

AT Q@) + (I + u() AT())(QA (1) + Q()A(®) + u(t) Q4 () A1) < — vI
becomes
AT+ AQ) + u AT A@ < —vI.

For any 2x 2 matrix

m m
M= 11 12
m21  m22
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to be negative definite, we needn11 > 0 and detM) > 0. For our matrix
A1) =AT(@) + AW + p() AT AQ),
we need-aj; =4 — 5Su(t) > 0 which implies that & u(r) < g and
det(A* (1)) = 4 sirf(t) u(t)? + 20 sint)u(t)? + 25u(t)?
— 4sirf(t)u(t) — 26 sin(t)u(t) — 40u(t) + 8 sin(t) + 16> 0.

We note that dgtA*(¢)) >0 forallr € T aslong as & u(t) < %
For instance, letting = Pg 4= U,‘j‘;o[k, k + .6], in this time scale

) = 0 if r e Ugolk, k + .6)
U= V14 ifre U2tk + .6)

Here,u(r) <3 forallz € T. Fromthe previous example, we see that the allowable valuds-arg?) < 5,
which is satisfied for alt € T.
For anyr, the eigenvalues of the matrix* () have a maximum value less thar% whenu(r) < % As
u(t) decreases to 0, the maximum value decreases. Therefore, the maximum of all of the eigenvalues of
the matrixA*(z) is less than—%. S0A*(¢) is negative definite. Thus, we can set %

Checking that—% = —% e 2™, we now know that the norm of any solutiex) with initial valuex (to)
is bounded above by the always positive decaying time scale exponential fulhetiof| /e 1(z, to).
y ys p ying p / -3

By letting Q(r) = I, the matrixA*(¢) meets the criteria (i), (ii) in Theorem (3.2). Thus, the system above
is uniformly exponentially stable.

3.3. Finding the matri>Q ()

First, we give a closed form for the unique, symmetric, and positive definite solution matrixtimthe
scale Lyapunov matrix equation

AT Q1) + QMA@ + ut)AT () QD) A(t) = —M. (3.8)

Remark. We note that the time scale Lyapunov matrix equation is the unification @ith= AT (1))
of the Sylvester matrix equatidB]

XA({t)+B)X =—-M
for the casel = R and the Stein equation
BOXA({t) —X=-M

for the casel = Z. The Stein matrix equation above is written assuming that one is using recursive form.
It can easily be transformed into an equivalent difference form

XA()+B()X +Bt)XA(l)=—M.

To prove that the matrix) (¢) is a solution to the time scale Lyapunov matrix equation (3.8), we first
state the following theorem and corollary that can be foun@]in
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Theorem 3.3. Supposel € 2(T, R**") and( is differentiablelf C is a solution of the matrix dynamic
equation

C'=A@W)C — C°A(r)
then
C(t)ea(t,s) =ea(t,s)C(s).

Corollary 3.1. Supposet € # andC is a constant matrixif C commutes withi (¢), thenC commutes
with e (). In particular, if A(z) is constant matrix with respect tq,,), thenA(r) commutes witla 4 ;).

Now we present one of the main results of the paper.
Theorem 3.4. If then x n matrix A(¢) has all eigenvalues in the corresponding Hilger circle for every

t >1g, then for eachr € T, there exists some time sca&esuch that integration over : =[0, co)g Yields
a unique solution t¢3.8) given by

o@) = / eaT()(s, O)Me(r) (s, 0)As. (3.9)
1
Moreover if M is positive definitethen Q(¢) is positive definite for alt > rg.
Proof. First, we fix an arbitrary € T. Since all eigenvalues oi(z) are in the corresponding Hilger
circle, [23] shows (3.9) converges, so thatr) is well defined. We now show for each fixed T, Q(¢)
is a solution of (3.8).
Casel: u(t) > 0. Sinceu(r) is a positive number, we define the time scale- u(r)Ng. So for each

s € S, we have that(s) = u(r); in other words$S has constant graininess. Now substituting (3.9) in the
following with integration overd = [0, co)g we obtain

AT Q@) + Q(OA®@) + u() AT (1) Q1) A1)
= fl AT(1)e () (s, 0)Meaq (s, 0)As

+/I €470y (5, OMe (s, ) A(D)As
+u(r)/l AT(0)e a1 (s, 0)Meaq (s, 0)A(t)As
= [ AT @e iy (5 O My 5. OU +uOADIAS
+/I €470y (5, OMe (s, A1) As
:/I AT(0)e 7y (5, OOMII + p(t) A()]eaq) (s, 0)As

+ / eaT() (s, OMA(t)eaq) (s, 0)As.
I



396 J.J. DaCunha/ Journal of Computational and Applied Mathematics 176 (2005) 381-410
Sinceu(r) = u(s), we continue with the last line as
_ /1 AT(D)e 47y (5, OMII + () At)lea) (s, 0)As
+/1 eAT(t)(s, O)MA(t)ear) (s, 0)As
- /1 [eT () (5. 0)1 MeG (5, 0)As
+/1 AT (s, OO M[ear) (s, 0)]% As

— f [e4T () (s, O)Meaq (s, 0)1% As
1

= [eaT()(s, ) Meq) (s, 0)]Ig°

Casdl: u(t)=0. Sinceu(r) =0, we define the time scate= R. Now substituting (3.9) in the following
with integration over = [0, co) we obtain,

AT Q@) + QAW + u() AT (1) Q1) A(r)
= AT(1) Q1) + QA1)
= /1 AT(l‘)eAT(t)(S, O)Me () (s, O)As + /I eAT(t)(s, O Meaw (s, 0)A(t)As

_ / AT (e O peADs g 4 / ATOS BADS A1) dis
1 1

:/ i[eAT(t)-s]MeA(t)s_i_eAT(t)-sMi[eA(t)-s]ds
; ds ds
:/ di[eAT(’)"‘MeA(’)'s]ds

] us

_ [eAT(t)-sMeA(t)~s]|80
=—-M.

Sincer € T was arbitrary, but fixed, we see th@{r) defined as in (3.9) is a solution of (3.8) for each
t € T. Now, to show tha(¢) is unique, suppose th&*(r) is another solution to (3.8). Then

ATOIQ* (1) — Q]+ [Q* () — QIA®) + u(AT(H[Q* (1) — Q()]A() =0,
which implies

€m0 (5, AT (1) — Q)]eaq (s, 0) + a7 (s, OLO* (1) — Q(DIAD)eaq)(s, 0)
+ (0T (5, OATOIQ (1) — Q(]A@ea(s,00 =0, s>0.

From this we obtain

[esT ) (5, OLQ* (1) — Q(D)]ea (s, 0] =0, 5>0. (3.10)
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Integrating both sides of (3.10) ovgl, co)g, we have

[eaT() (s, OLQ™ (1) — Q(D]eaw (s, O)llg” = —(Q*(1) — Q1)) =0,

which implies thatQD*(¢) = Q(z).

Lastly, suppose tha¥ is positive definite. Recall thal positive definite implies:” Mx > 0, for all
n x 1 vectorsx # 0. Clearly,Q(¢) is symmetric. To prove thaD(z) is positive definite, we notice that
for any nonzera x 1 vectorx (),

X (D) Q(0)x(1) = / xT (et (s, 00 Meaq (s, 0)x(1)As > 0
1

which is true sincé is positive definite. Hencea) (¢) is positive definite. O

4. Slowly varying systems

The placement of eigenvalues in the complex plane of a time invariant matrix is a necessary and
sufficient condition to ensure the stability and/or exponential stability of the system. This is a well-known
fact in the theory of differential equations and difference equations, and it is investigated in depth in the
landmark paper on the stability of time invariant linear systems on time scd23]in

However, eigenvalue placement alone is neither necessary nor sufficient in the general case of any
time varying linear dynamic system. Texts suci&g,25]give examples of time varying systems with
“frozen” (time invariant) eigenvalues with negative real parts as well as bounded system matrices that still
exhibit instability. The classic pap€®,24], and a recent pap§26] demonstrate this fact for systems of
differential equations, but they do show that under certain conditions, such as a bounded and sufficiently
slowly varying system matrix, exponential stability can be obtained with correct eigenvalue placement in
the complex plane. Desoer also published a similar p@péa discrete analog {8]) which illustrates the
same instability characteristic of time varying systems in the discrete setting, but remedies the situation
in essentially the same manner, with a bounded and sufficiently slow varying system matrix.

To begin, we state a definition frof3], in which the stability region for time invariant linear systems
on time scales is introduced. This definition essentially says if the time average of the canstant
is negative and ¥ u(t)A # O for allr € T*, thenA resides in theegressive set of exponential stability
& (T), defined below. This definition is an integral part of the requirement for exponential stability of a
time invariant linear system on an arbitrary time scale; ¥ & (T) foralli =1, ..., n, and are uniformly
regressive (see Appendix), then system (2.1), With = A constant, is uniformly exponentially stable,

(i.e. there exists an > 0 such that for anyg € T, y > 0 can be chosen independentlysgfsuch that
1®a (1, 1)1l < lx (1) [lye~ ¢ 1),

Definition 4.1 (P6tzsche et a[23]). Theregressive set of exponential stabilitr the dynamic system
(2.1) whenA(¢) = A is a constant is defined to be the set

T log |1+ s/
/ im (09It +sA o} .
o \H(T) N

The regressive set of exponential stability is containeglia C : Re(1) < 0} at all times. The reader is
referred td23] for more explanation.

L(T) = {2 e C:lim sup
T—o0 T — o
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In the main theorem that follows, we require the eigenvalia&s of the time varying matrix(¢) to

reside in the corresponding Hilger circle for alt g andi =1, ..., n. We note that the Hilger circle is
defined as the set

{) eC: ‘——I—A(t)

<i} C £(T)
() '

Finally, we introduce the definition of the Kronecker product for use in Theorem 4.1. The Kronecker
product allows the multiplication of any two matrices, regardless of the dimensions. This operation is
an integral part of the theorem since it offers an unusual way to represent a matrix equation as a vector
valued equation from which we can easily obtain bounds on the solution matrix. Some useful properties
are given in Lemma 4.1.

Definition 4.2. The Kronecker producof then, x m4 matrix A and theng x mp matrix B is the
nang X mampg matrix

a;nB -+ aim,B
A®Q B = . (4.2)

ap 1B - apm.B
Lemma 4.1(Zhang[27]). Assumed € R™*™ and B € R**" with complex valued entries

() (AR L)Un®B)=A®B=(,QB) (AR I,).
(i) If 2; andy; are the eigenvalues fot and B, respectivelywithi =1,...,mandj =1,...,n,then
the eigenvalues of ® B are

)Ll-yj, i=1,...,m, j=1,...,n,
and the eigenvalues oA ® I,,) + (I,, ® B) are
)L,-—i—yj, i=1...,m, j=1,...,n.

We now present the theorem for uniform exponential stability of slowly time varying systems which
involves an eigenvalue condition on the time varying matrix) as well as the requirement thatz) is
norm bounded and varies at a sufficiently slow rate [i4&!(r)| <, for some positive constayitand all
teT).

Theorem 4.1 (Exponential stability for slowly time varying systemSuppose for the regressive time
varying linear dynamic syste3.1) with A(¢) € C q(T, R™") we haveymax, :“max< 00, there exists

a constant: > 0 such that|| A7) || <«, and there eX|sts a constafi< ¢ <= L (I) such that for every

pointwise eigenvalug (1) of A(r), Re,[/; ()] < —e < 0.Thenthere eX|sts/a> Osuch thatif|| A4 (1) <p,
(3.1)is uniformly exponentially stable

Proof. Foreach € T, let Q(¢) be the solution of

AT Q1) + QM A@) + u() AT (1) Q) A(r) = —1. (4.2)
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By Theorem 3.4, existence, uniqueness, and positive definiten&®& pfor eachr is guaranteed. We
also note that for eache T, the solution of (4.2) is

o) 2/1 et (s, Qeaq) (s, 0)As,

wherel : =0, oo)g andS = u(r)Ng. For the remaining part of the proof, we show tigat) can be used

to satisfy the requirements of Theorem 3.2, so that uniform exponential stability of (3.1) follows. First,
we use the Kronecker product and some of its properties to show the boundedness of th@matrix
We letv; denote theth column ofI, andg; () denote theéth column ofQ(r). We then define the? x 1
vectors

v1 q1(1)
v=| |, qO)=| : |.
Un qn (1)
It can be computed to confirm that thex n matrix equation (4.2) can be written as thfex 1 vector
equation

(AT ® 1)+ (I ® AT (1) 4+ ut)(AT(1) @ AT(1)]g(t) = —v. (4.3)

We now prove thag (7) is bounded above and that there exists a positive constunth thatQ (r) <pl,

forall + € T. SinceA(t) € %, this implies that the pointwise eigenvaluas?), ..., 4,(¢t) of A(z) are

also regressive. We also note tliat %. The pointwise eigenvalues @f' (r) ® I andl ® AT (¢) are also

(), ..., (1), by previously mentioned properties of the Kronecker product in Lemma 4.1. Because

(T, R™*"*) @) is a group we have thatt T (1) ® 1), (I @ AT()) € 2 yields

ATH®DH &I ®AT())
=ATORID+URATM) +ut)AT() @ ) ® AT(1))
—ATORD+U®ATM) + ut)AT() @ AT(t)) € 2

forallz € T.

Now, we show thatAT (1) ® 1) ® (I ® AT (1)) has no eigenvalues equal to zero, so tha(det(r) ®
D@ (I®AT(t))] # 0. Then? pointwise eigenvalues a1 @ I @ I @ AT(1) = (AT @ I) +
(I ®AT(@)) + pe)(AT(1) ® AT (1)) are:

A, j (1) = 2; (1) @ Aj(t) = 2; () + Aj (1) + u(@)2; (1)2;(t) € #

foralli, j=1,...,n.
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Recall that since Rg4; (1)1 < — ¢ we have thatl + u(7)4;(¢)| < 1. Observe

Re, [ (1) ® 2;(1)] = 1+ w0 (;zt? 2] —1
QA+ uO LA+ u@)2; )] — 1
- ()
_ 1A+ 2@l -1
pu(t)
=Re,[2;(1)]
< —¢

forallt e Tandalli, j =1, ..., n.

Therefore, R/ (1) @ 7;(t)] < — e <0 for O<e < ﬁxgﬂ(—lﬂ and we also have the relationship
O0<e<|Re[4i (1) ® 2;(O]I<I4i (1) ® 4;(1)].

Thus

2
n
=€

[] 10 2m]

i,j=1

|def(AT(H @ 1) & (I ®AT(1)]| = . reT. (4.9)

Now it is clear that AT(r) ® 1) @ (I ® AT(¢)) is invertible at each € T since the determinant in (4.4)
is nonzero and bounded away from zero forralbinceA(r) andu(r) are bounded abovel (1) ® I is
bounded above, and hence the inverse

(AT @D eI ®A )]t

is also bounded for all € T. Since the right-hand side of (4.3) is constant, we concludegttratis
bounded for alk € T and hence there exists a positive constasiich thatQ (1) <pI forallr € T.
Clearly,Q(t) € C%d(WI, R"™™) and is symmetric. Now we show that there exists=a0 such that

ATOQM) + (I + p(AT () QAW + (I + pAW)T QU + u()A@M) < —vI
forall ¢ € T. SinceQ(¢) satisfies (4.2), the above inequality is equivalent to
(I + pAD)T QMO + uAW) <L =),
which gives
Q' (<AL= U + pOATO) M + pHA@) . (4.5)

Delta differentiating (4.2) with respect tpwe obtain

AT (0040 + AT ()01 + QY ()AT() + QAN ()
+ 1 OATH QAW + 1 ()AT (1) QA
+ 1 (OAT () QAW + k() AT (1) Q° (1) A (1) = 0.
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RecallingQ’ (1) = u(t) 0“(t) + Q(¢) the above becomes

AT 000 + AT (1) Q@) + 01 (DA () + Q1) AN (1)
+ i OATOQOAWD + 1 AT QWA
+ 7 OAT QMA@ + pt)p” (AT (1) Q4 (1) A (1)
+u (AT (1) Q) A1) = 0.
Therefore,
AT 00 (1) + Q' MA”(1) + AT (1) Q' (D AW) + ) (HAT (1) Q4 () A (1)
= AT 01 — QAW — AT QW AM) — 1 AT (1) QDA
— W(OAT () Q) AN (®).
Transforming only the left-hand side, we have
AT 00 (1) + Q' MA” (1) + 1 AT (1) O (D AW) + u)u (HAT (1) Q4 (1) A (1)
= AT ()0 () + Q' (A" (1) + 1 (AT (1) Q? (1) (A1) + u(t) A% (1))
= AT (041 + Q' MA() + 1 (AT (1) QY () A (1).
Thus, we now have
AT ()04 (1) + QA% () + 1 (AT (1) Q* (1) A (1)

=—AT (100 — QA (1) — w AT QNAW) — 1 AT () QWD A()
— 1 OATOQMNAND).

For simplicity, let

X =AT' ()0 + QW)AY () + 1 (VAT Q) At)
+ 1 OAT OQWAW) + 1 (AT () QM)A 1),

Then the solutionQ(¢), of the matrix equation (4.6) can be written as

04(t) =/ eate () (s, 0) Xeaor)(s,0)As, 1€ T =T,
IJ

401

(4.6)

wherel? : =[0, co)ss andS? = °()No. Now, to obtain a bound o@“(¢), we use the boundedness of

0(), 0°(t), A1), A1), pmax andud ... Foranyn x 1 vectorx and any,

IxTeATa(t)(s, 0)Xe o) (s, 0)x|
= xTe 10 (5. OLAT (1) Q1) + QA% (1) + 1 (AT Q) A1)
+ 1’ OAT (OQWA® + 1 (AT (1) Q)AL (D)]earr) (5. O)x]
<IAT ()M + QAW + 1 AT Q) A®)
+ 7 OAT OQOAWD + 1O AT ()W) A (1) xTe 4o (5, 0)ear(r (s, O)x.
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Thus

IxTQA(t)xI = '/N xTeATa(t)(s, 0)Xeao)(s, 0)xAs
<A™ ()0 1) + QA () + 1 AT () QAW + 1 (AT () Q) A®)
+ 10 OAT (OO AN IxT Q7 (1)x
<BIOWI 4 a1 Ol + 2umaxBl Q) DxT Q% (1)x
= 1012 + FPuhax+ 20Bpma)x " Q% (1)x.

We now maximize the right-hand side over.akuch that|x| = 1 to obtain
xT Qx| < QM Q7 ()I1(2B + o fpax + 22Bimay)

and after maximizing the left-hand side overaabuch thaf|x|| = 1 we have

10411 < p2(2B + o2l + 20Buman). ¢ € T".

USiNg &, fimax s @nd the norm boung on Q(¢) and Q(t), the bounds on | A4(¢)|| can be chosen
so that we can create a bound f@f (r) which in turn yields a value for in (4.5).
Lastly, we show that there exists a positive consiasuch thag/ < Q(z), for all ¢ € T. For anyr and
anyn x 1 vectorx,
[xTeat ) (s, 0eaq (s, 0)x1%
= x [AT (et (s, 0eaq) (s, 0) + e1( (s, Deaq (s, 0)At)
+ p() AT (e 47 (5, 0eaq (s, ) A x
= xTe 1) (5. OLAT (1) + A() + p() AT () A lea (5, O)x
>(—20 — umaxocz)xTeAT(t) (s,0)eaq) (s, 0)x.

As s — oo, we know that4 (s, 0) — 0, so that

—x'x= / [XTEAT(t)(S, Oea)(s, 0)x]% As > (—20 — ,umaxocz)xTQ(t)x.
1

But of course this is equivalent to

1
0t)y> —1, teT.
(20 + Hmax“z)
_ 1
So we sef) = Gt O

5. Perturbation results

It is also useful to consider state equations that are “close” to another linear state equation that is
uniformly stable. IN19,20], as well a§25], if the stability of system (3.1) has already been determined
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by an appropriate Lyapunov function, then certain conditions on the perturbation ratyiguarantee
stability of the perturbed linear system

() =[A@) + F()]z(1). (5.1)

Theorem 5.1. Suppose the linear state equati¢®1) is uniformly stable Then the perturbed linear
dynamic equatioifs.1) is uniformly stable if there exists somie: 0 such that for all

/ [F(s)|As <B. (5.2)

Proof. For anyrg andz(fg) = zo, by Theorem A.6 the solution of (5.1) satisfies

t

z(t) = P, fo)Zo-i-f D1, 0(5)) F(s)z(s)As, (5.3)

)

whered 4 (¢, tp) is the transition matrix for system (3.1). By the uniform stability of (3.1), there exists a
constanty > 0 such thaf|® (¢, )| <7y, for all z, T € T with ¢ ><. By taking the norms of both sides of
(5.3), we have

t

IIZ(t)||<V||Z0||+/ VIEG)z(s)|As, 1210 (5.4)

fo

By Gronwall’s Inequality in5], a result in10], and the inequality (5.2), we obtain

lz@ I <yllzolleyy ) (2, o)
/’ Log(1 + M(S)“/HF(S)II)As)
10 ,u(s)

<7llzoll eXp(/ Log(1+ u(S)yllF(s)”)AS)
fo u(s)

o
<vllzolleXp</ vIIF(S)IIAs)
[}

<ylizolle™,  t>10.

=7llzoll exp(

Sincey can be used for any andz(zp), the state equation (5.1) is uniformly stable.]

6. Instability criterion

We can also employ the unified timescale quadratic Lyapunov function to determine if system (3.1) is
unstable. This is a very useful result in the case where the development of a suitabledtatisxdifficult
and the possibility of an unstable system begins to arise. One type of instability criteria is developed in
the next theorem.
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Theorem 6.1. Suppose there exists anx n matrix Q(t) € CL, that is symmetric for ali € T and has
the following two properties

@) 1e®li<p,
(i) ATOQW) + I+ p@)AT0)(Q4 (1) + QAW + u(t) QYDA < — VI,

wherep, v > 0. Also suppose that there exists sagne T such thatQ(z,) is not positive semidefinite
Then the linear dynamic equati@8.1)is not uniformly stable

Proof. Suppose that(z) is the solution of (3.1) with initial conditiong = 7, andx(zg) = x(¢,) = x4
with xJQ(ta)xa <0.Then

t
xT (1) Q(0)x (1) — x§ Qt0)x0 = / [xT(s)Q(5)x(s)1¥ As
10

t
< - v/ xT(s)x(s)As <0, r>1.
10

From this inequality,
xT () Q)x (1) <xg Qto)xo <0, t>1o.
With assumption (ii) we obtain
—plx®1P<xT () QM)x (1) <xT (t0) Q(t0)x(f0) <0, 1 =>1o,
which leads to

lx(D)12=> l—l)le(t)Q(t)x(t)l >0, =1 (6.1)

Again by employing assumption (ii),

t
y / xT($)x(s)As <x§ Q(t0)x0 — x T (1) Q(1)x (1)
1

0
<|xg Q(to)xol + 1x T (1) Q(1)x (1)
LT o0, =10

Using (6.1), we finally obtain
LT 2p 2
/ x (Hx)As<—I[lx@%, =10 (6.2)
10 v

To end the proof, we show that(s) is unbounded. With an unbounded solution, we can conclude
that (3.1) is not uniformly stable. Suppose there exists spmé® so that||x(¢)|| <y for all 7 >1.
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Then (6.2) implies

2py°
v 9

t>1o.

t
/ xT(s)x(s)As <
1o
By this last inequality||x (¢)|| — 0 ast — oo, which contradicts (6.1). Thus, the solutio¢r) cannot be
bounded, which shows that (3.1) is not uniformly stablel
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Appendix A. A time scales primer
A.1. What are time scales?

A thorough introduction to dynamic equations on time scales is beyond the scope of this appendix.
In short, the theory springs from the 1988 doctoral dissertation of Stefan Hillgethat resulted in his
seminal papefl4] in 1990. These works aimed to unify and generalize various mathematical concepts
from the theories of discrete and continuous dynamical systems. Afterwards, the body of knowledge
concerning time scales advanced fairly quickly, culminating in the excellent introductory {&tand
their more recent advanced monogrdph The material in this Appendix is drawn mainly froisy]. A
succinct survey on time scales can be founf2in

A time scaleT is any nonempty closed subset of the real numBefhus time scales can be any of the
usual integer subsets (egor N), the entire real lin€k, or any combination of discrete points unioned
with continuous intervals. The majority of research on time scales so far has focused on expanding and
generalizing the vast suite of tools available to the differential and difference equation theorist. We now
briefly outline the portions of the time scales theory that are needed for this paper to be as self-contained
as is practically possible.

Theforward jump operator off, o(¢) : T — T, is given bya(¢) = infsc{s > 7}. Thebackward jump
operator ofT, p(¢) : T — T, is given byp(r) =sup..{s < t}. Thegraininess function(s) : T — [0, co)
is given byu(r) = a(t) — t. Here we adopt the conventions i supT (i.e.q(¢t) =1 if T has a maximum
element), and sup) = inf T (i.e. p(¢r) = ¢ if T has a minimum elemenm). For notational purposes, the
intersection of a real intervad, b] with a time scalel is denoted bya, b1 N T : =[a, blT.

A pointt € T isright-scatteredf ¢(¢) > ¢ andright densef o(z) = . A pointz € T is left-scattered
if p(t) <t andleft densdf p(¢r) =¢. If ¢ is both left-scattered and right-scattered, we s#yisolated
If 7 is both left-dense and right-dense, we sag dense The setT” is defined as follows: ifl has a
left-scattered maximum, thenT” =T — {m}; otherwise,T* =T. If f : T — Ris a function, then the
compositionf (a()) is often denoted by °(z).

For f : T — Randr e T, definef4(¢) as the number (when it exists), with the property that, for
anye > 0, there exists a neighborhodtof ¢ such that

ILf(c@)) = f()] = fAD)ot) —sl|<elot) —s|, Vs e U.
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The functionf4 : T — R s called thedelta derivativeor theHilger derivativeof f on T*. We sayf
is delta differentiableon T* provided f4(r) exists for allr € T*.
The following theorem establishes several important observations regarding delta derivatives.

Theorem A.1. Supposef : T — Randr € T .
(i) If f is delta differentiable at, then f is continuous at.

(i) If f is continuous at andt is right-scatteregdthen f is delta differentiable at and f4(r) =
fle@)—f ()
u(r) )

(iii) If z is right-densethen f is delta differentiable at if and only iflim,_,, % exists In this
case f4(t) = lim,_., {019
(iv) If fis delta differentiable at, then £ (a(1)) = f(t) + u(t) f4(1).

Note thatf“ is preciselyf’ from the usual calculus wheh = R. On the other handf? = Af =
f@+21 — f@ (i.e. the forward difference operator) on the time scale- 7. These are but two
very special (and rather simple) examples of time scales. Moreover, the realms of differential equa-
tions and difference equations can now be viewed as but special, particular cases of more general
dynamic equations on time scalés. equations involving the delta derivative(s) of some unknown
function.

A function f : T — R is rd-continuousf f is continuous at every right dense poing T, and its
left hand limit exists at each left dense point T. The set of rd-continuous functions: T — R
will be denoted by ¢ = Cq(T) = C¢(T, R). Afunction F : T — R is called a (deltaantiderivative
of f: T — R providedF4(t) = f(t) holds for allz € T*. The Cauchy integrabr definite integralis
given byfab f()At = F(b) — F(a), foralla, b € T, whereF is any (delta) antiderivative of. Suppose
that supl = oo. Then themproper integralis defined to byfaoo FOAt =limy_ o F(t)% foralla e T.
We remark that the delta integral can be defined in terms of a Lebesgue type iM¢grah Riemann
integral[5].

Theorem A.2 (Existence of antiderivativis
(i) Every rd-continuous function has an antiderivatilferg € T, thenF (¢) = f;; f(@) Az, t € T,isan
antiderivative off.
(i) If f € Craandr € T, then [*" () Ax = f())p().
(iif) Suppose, b € T and f € Cy.
(@) f T=R, thenfab f(t) At = fab £(t) dr (the usual Riemann integal
(b) If [a, b]t consists of only isolated pointihen

0, a=h,
= relb.ay, S Ou@), a>b.
The last result above reveals that in the continuous dase®, definite integrals are the usual Riemann

integrals from calculus. Whem = 7, definite integrals correspond to definite sums from the difference
calculus; se¢?1].

b Zte[a,b)Tf(t),u(t), a<b,
/ ft) At = {
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Fig. 1. Left: The Hilger complex plane. Right: The cylinder (A.1) and inverse cylinder (A.2) transformations map the familiar
stability region in the continuous case to the interior of the Hilger circle in the general time scale case.

A.2. The Hilger complex plane

For h > 0, define theHilger complex numberghe Hilger real axis the Hilger alternating axis and
theHilger imaginary circleby

1 1
Cp:=4{z€C:z#—, Rp:= zeR:z>—Z ,

h
I
Z nl = )

1
Ay :=3zeR: — =, lp:=qz€C:
’ { 2 < h} ' { :

respectively. Foh =0, letCq : =C, Rg : =R, Ag : =0, andlp : =iR. SeeFig. 1L
Let >0 andz € Cj. TheHilger real part of zis defined by Re(z) : =*1=1 and theHilger

w, where Arg(z) denotes the principal argument of

imaginary part of zs defined by Imj(z) : =
z (i.e.,—m <Arg(z) <m). SeeFig. 1
Forh > 0, define the striZ), : ={z € C: — <Im(z)< 7}, and forh = 0, setZo : =C. Then we can

define thecylinder transformatiort;, : C, — 7, by

1
(@)= Log(1+zh), h=>0, (A.1)

where Log is the principal logarithm function. Whén= 0, we defineZy(z) = z, for all z € C. It then
follows that theinverse cylinder transformatio‘f];l : Zp, — Cy is given by

h

h

&) = (A.2)

SeeFig. L
Since the graininess may not be constant for a given time scale, we will interchangeably subscript
various quantities (such &andé—1) with i = u(r) instead of: to reflect this.
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A.3. Generalized exponential functions

The functionp : T — Risregressivef 1 + u(t)p(t) # 0 for all ¢+ € T*, and this concept motivates
the definition of the following sets:

R={p:T—> R:peCq(T)and 1+ u(®)p(t) # 0 Vs € T"},

AT ={pe#:1+ult)pk)>0forallr e T}.
The functionp : T — R is uniformly regressiven T if there exists a positive constafitsuch that
0< o 1< |1+ u()p(r)|, ¢ € T*. A matrix is regressive if and only if all of its eigenvalues arezn

Equivalently, the matrixA(¢) is regressive if and only if 4+ u(¢) A is invertible for allz € T*.
If p € 2, then we define thgeneralized time scale exponential functimn

ep(t,s)zexp(/ é#(f)(p(r))m) forall s,z € T.

The following theorem is a compilation of propertieseg{z, 7o) (Ssome of which are counterintuitive)
that we need in the main body of the paper.

Theorem A.3. The functiore, (¢, o) has the following properties
(i) If p € Z,thene,(t,r)e,(r,s) =ep(t,s) forall r,s,t € T.

(i) ep(a(@),s) = A+ u@)p(r)ep(t,s).
(iii) If p € 2™, thene,(r,10) >0forall t € T.
(iv) If 14 u(t)p(t) < Ofor somer € T*, thene,(z, to)e, (a(t), to) <O.

(V) If T =R, thene,(t, s) = i PO Y Moreover if p is constantthene , (, s) = e? =),
(Vi) If T=2,thene,(r,s) = ]_[’T;i (1+ p(1)). Moreovet if T = hz, with h > 0 and p is constantthen
ep(t,s) = (L4 hp)=/"

If pe #2andf : T — Ris rd-continuous, then the dynamic equation
OENIONOENIO (A3)
is calledregressive

Theorem A.4(Variation of constan{s Letsg € T andy(70) = yo € R. Then the regressive IVA.3) has
a unique solutiory : T — R" given by

t
¥(0) = yoe, (1, 10) + / e (t, (9 F (DA,

10

We say the: x 1-vector-valued system

YA = AWy + f() (A.4)

is regressiveprovidedA € 2 and f : T — R" is a rd-continuous vector-valued function.
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Let#g € T and assume that € % is ann x n-matrix-valued function. The unique matrix-valued
solution to the IVP

YA =AY (1), Y(t0) = I, (A.5)

wherel, is then x n-identity matrix, is called théransition matrixand it is denoted by 4 (¢, tp).

In this paper, we denote the solution to (A.5)@g(z, 10) when A(r) is time varying and denote the
solution ase4(r, 19) = P4 (¢, tp) (the matrix exponentialas in[5]) only whenA(z) = A is a constant
matrix. Also, if A(¢) is a function onT and the time scale matrix exponential function is a function on
some other time scate, thenA(z) is constant with respect ) (z, s), forall 7, s € Sandt € T. The
following lemma lists some properties of the transition matrix.

Theorem A.5. Supposed, B € # are matrix-valued functions of.
(i) Then the semigroup proper®, (z, r)®4(r, s) = P4 (¢, s) is satisfied for all, s, ¢ € T.
(i) @a(a(t),s) =+ u@)A)Pa(t,s).

(i) If T=RandA is constantthend (¢, s) = e4(t, s) = eV =%),

(iv) If T=hz, withh >0,andA is constantthen® (¢, s) = e (t, s) = (I + hA) /",

We now present a theorem that guarantees a unique solution to the regressiiivector-valued
dynamic IVP (A.4).

Theorem A.6 (Variation of constanfs Letry € T andy(7g) = yo € R". Then the regressive IV{A.4)
has a unique solution : T — R" given by

t
ymzmmmm+/¢wmwmwm. (A6)

o
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