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Abstract

For � < 1 and ��0, let P�(�) denote the class of all normalized analytic functions f in the unit disc such that

Re

{
ei�
(

(1 − �)
f (z)

z
+ �f ′(z) − �

)}
> 0, z ∈ �,

for some � ∈ R. For f ∈ P�(�), we consider the integral transform

V�(f )(z) =
∫ 1

0
�(t)

f (tz)

t
dt ,

where �(t) is a real-valued nonnegative weight function so that
∫ 1

0 �(t) dt = 1. The main aim of this paper is
to find conditions such that V�(f ) ∈ P1(�) whenever f ∈ P�(�) for ��1. We also obtain conditions such that
V�(f ) ∈ P1(�

′) whenever f ∈ P0(�) for various choices of �(t). As a useful consequence, we find conditions for
certain hypergeometric functions to be univalent.
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1. Introduction and main results

LetA denote the class of analytic functions f in the unit disk �={z ∈ C : |z| < 1} with the normalization
f (0) = 0 = f ′(0) − 1. For � < 1 and ��0, let P�(�) denote the class of all analytic functions f in A such
that

Re

{
ei�
(

(1 − �)
f (z)

z
+ �f ′(z) − �

)}
> 0, z ∈ �,

for some � ∈ R. Set P0(�) =: P(�) and denote P(0) simply by P. For 0�� < 1, functions in P1(�) are
known to be univalent in �. For a general reference for the special classes of univalent functions we refer
to [6,8].

An immense number of papers have been published concerning operators on linear combinations of
f (z)/z and f ′(z) primarily because these combinations and their operators appear naturally in criteria
for univalency, subordination and positivity results on classes of functions. By allowing the parameters �,
� and � to vary in our class P�(�) we encompass a large number of the previous results. In particular, by
incorporating general properties of convolutions and several formulae involving hypergeometric functions
we are able to overcome many of the previous obstacles to obtain the general sought-after criteria.

The Gaussian hypergeometric function F(a, b; c; z) defined by the series

F(a, b; c; z) =
∞∑

n=0

(a, n)(b, n)

(c, n)(1, n)
zn (a, b, c ∈ C, c /∈ {0, −1, −2, . . .})

is analytic in the unit disc �. Here (a, 0) = 1 for a �= 0, and (a, n) is the shifted factorial function

(a, n) = a(a + 1)(a + 2) · · · (a + n − 1)

for n = 1, 2, . . . . This function has two different representations. If Re c > Re b > 0, then we have the
Euler integral representation

F(a, b; c; z) = �(c)

�(b)�(c − b)

∫ 1

0
tb−1(1 − t)c−b−1(1 − tz)−a dt . (1.1)

Moreover, if Re a > 0, Re b > 0, Re(c + 1) > Re(a + b), then we have the following representation [3,9]:

F(a, b; c; z) = �(c)

�(a)�(b)�(c − a − b + 1)

∫ 1

0
�1(t)

1

1 − tz
dt , (1.2)

where �1(t) = tb−1(1 − t)c−a−bF (c − a, 1 − a; c − a − b + 1; 1 − t). This representation has been quite
useful. For f ∈ A, we define the integral transform

V�(f )(z) =
∫ 1

0
�(t)

f (tz)

t
dt . (1.3)

Here �(t) is any real-valued nonnegative weight function normalized so that
∫ 1

0 �(t) dt = 1. This operator
contains some of well-known operators such as Libera, Bernardi and Komatu as its special cases. This
operator has been studied by a number of authors for various choices of �(t) [3,12,14,16,15,7].



640 R.W. Barnard et al. / Journal of Computational and Applied Mathematics 193 (2006) 638–651

We recall the following results which give conditions on �′ and �(t) so that:

(i) f ∈ P1(�) ⇒ V�(f ) ∈ P1(�
′) (see [7])

(ii) f ∈ P�(�), � ∈ [0, 1] ⇒ V�(f ) ∈ P�(�
′) (see [9])

(iii) f ∈ P�(�), � ∈ (0, 1] ⇒ f ∈ P(�′) (see [9]).

The special case concerning P1(�) mapping into P1(�
′), for �(t) = (1 + c)tc, has been considered in

[7]. We are interested in the following problem because of its applications to the classical problem of
determining when F(a, b; c; z) is univalent.

Problem 1.4. Find conditions so that

(i) f ∈ P�(�), � ∈ [1, ∞) ⇒ V�(f ) ∈ P1(�
′)

(ii) f ∈ P0(�) ⇒ V�(f ) ∈ P1(�
′).

We note that (ii) is particularly useful because it provides functions f ∈ A with their Maclaurin
coefficients an = O(1) such that the corresponding operator V�(f ) is univalent and a solution which has
not been available in the literature with an approach which previously had been difficult to use. Our first
result answers Problem 1.4(i) and the estimate here is sharp.

Theorem 1.5. Let � < 1, ��1 be given, and define � = �(�, �) by

� = 1 − 1 − �

2

{
1 − 1

�

∫ 1

0

�(t)

1 + t
dt +

(
1

�
− 1

)∫ 1

0
�(t)

(∫ 1

0

du

1 + tu�

)
dt

}−1

.

If f ∈ P�(�) then V�f ∈ P1(�). The value of � is sharp.

The proof of the main theorems will be supplied in Section 3. The case � = 1 of Theorem 1.5 gives

Corollary 1.6 (Fournier and Ruscheweyh [7]). Let � < 1, and define �(�) := �(�, 1) < 1 by

�(�) = 1 − (1 − �)

[
2

(
1 −

∫ 1

0

�(t)

1 + t
dt

)]−1

.

If f ∈ P1(�(�)) then V�f ∈ P1(�).

The counterpart of Theorem 1.5 for 0 < � < 1 is still open. On the other hand, for �(t) = (1 + c)tc,
we have

Theorem 1.7 (Barnard et al. [4, Theorem 4.4]). Let −1 < c�0 and

G(z) = 1 + c

zc

∫ z

0
tc−1f (t) dt .

Suppose that Re{ei�((f (z)/z) − �)} > 0, z ∈ �. Then we have

Re{ei�(G′(z) − �)} > 0,
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where � = 1 − 2(1 − �)(1 − �′) with

�′ = 1 + c

2
− c

∫ 1

0

dt

1 + t1/(1+c)
= 1 + c

2
− cF (1, 1 + c; 2 + c; −1).

In particular, we have

(1) Re ei�
(

f (z)
z

− 1−2�′
2(1−�′)

)
> 0 implies Re ei�G′(z) > 0,

(2) Re ei�
(

f (z)
z

− 1
2

)
> 0 implies Re ei�(G′(z) − �′) > 0.

This result motivates Problem 1.4(ii). In this paper, we also solve Problem 1.4(ii) for certain special
choices of �(t) and one of the results generalizes Theorem 1.7.

Theorem 1.8. Let 0 < a�1, b < c − a�1/a and H = Ha,b;c be the convolution operator defined by

Ha,b;c(f (z)) := [Ha,b;c(f )](z) = zF (a, b; c; z) ∗ f (z)

(see also (2.3)). Suppose that f ∈ P(�). Then we have H(f ) ∈ P1(�) where � = 1 − 2(1 − �)(1 − �′)
with

�′ = (1 − a)F (a, b; c; −1) + aF(a + 1, b; c; −1). (1.9)

The result is sharp. In particular, we have

(1) Re
{

ei�
(

f (z)
z

− 1−2�′
2(1−�′)

)}
> 0 implies Re{ei�H(f )′(z)} > 0,

(2) Re{ei�(
f (z)

z
− 1

2 )} > 0 implies Re{ei�(H(f )′(z) − �′)} > 0.

At this place it is interesting to recall the often studied class of functions f such that Re(f (z)/z) > 1
2 ,

z ∈ �. There exist sufficient conditions for a function f to be in this class. For example if f is in

U =
{

f ∈ A :
∣∣∣∣∣
(

z

f (z)

)2

f ′(z) − 1

∣∣∣∣∣< 1, z ∈ �

}
,

then [10]

Re

(
f (z)

z

)
>

2

4 + |f ′′(0)| , z ∈ �.

In particular, if f is in U2 = {f ∈ U : f ′′(0) = 0}, then Re(f (z)/z) > 1
2 , z ∈ �. Further, if f ∈ A and

Re(zf ′(z)/f (z)) > 1
2 , then it is well known that Re(f (z)/z) > 1

2 , z ∈ �. Note that every convex function
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is not necessarily in P1(0). Moreover, if f belongs to the class R(�) defined by

R(�) = {f ∈ A : |f ′(z) − 1| < �, z ∈ �},

then R(�)�S∗ if � > 2√
5

(see [17]).

Corollary 1.10. Let 0 < b�c−1�1 and h(z)=H1,b;c(f (z)) be defined by the Carlson–Shaffer operator
given by

h(z) = �(c)

�(b)�(c − b)

∫ 1

0
tb−1(1 − t)c−b−1 f (tz)

t
dt .

Suppose that f ∈ P(�). Then we have h ∈ P1(�), where �=1−2(1−�)(1−�′) with �′ =F(2, b; c; −1).
The constant � is sharp.

Proof. The case b < c−1�1 follows from Theorem 1.8 if we choose a =1. It remains to show the result
for c = b + 1. However, this case is actually Theorem 1.7. �

Suppose

G(z) := Gf (a, b; z) =
( ∞∑

n=1

(1 + a)(1 + b)

(n + a)(n + b)
zn

)
∗ f (z). (1.11)

Then, we have [14]

Gf (a, b; z) =
∫ 1

0
�(t)

f (tz)

t
dt (1.12)

where

�(t) =
⎧⎨
⎩ (a + 1)(b + 1)

(
ta(1 − tb−a)

b − a

)
for b �= a, a > − 1, b > − 1,

(a + 1)2ta log(1/t) for b = a, a > − 1.

This operator has been introduced in [11] and has been studied by a number of authors [15,3,2]. Because
of the symmetry, we may assume b > a if b �= a.

Theorem 1.13. Let −1 < a < 0, b > a and f ∈ P(�). Then G defined by (1.11) is in P1(�), where
� = 1 − 2(1 − �)(1 − �′) with

�′ =

⎧⎪⎨
⎪⎩

(a + 1)(b + 1)

b − a

∫ 1
0

(btb − ata)

1 + t
dt for b �= a,

(1 + a)2 ∫ 1
0

(1 + a log t)ta

1 + t
dt for b = a.
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As �′ > 0, the choice f (z) = z/(1 − z) (and hence � = 1
2 ) shows that the second order polylogarithm

given by

∞∑
n=1

(1 + a)(1 + b)

(n + a)(n + b)
zn

belongs to P1(�
′). Moreover, this function is convex in �.

Our next result concerns the following convolution operator discussed by Ponnusamy and Sabapathy
[16]:

Fa,p(z) =
( ∞∑

n=1

(1 + a)p

(n + a)p
zn

)
∗ f (z). (1.14)

Theorem 1.15. Let −1 < a�0, p > 1 and f (z) ∈ P(�). Then Fa,p defined by (1.14) belongs to P1(�),
where � = 1 − 2(1 − �)(1 − �′) with

�′ = (1 + a)p

�(p)

∫ 1

0
(log 1/t)p−2 ta

1 + t
(p − 1 − a log 1/t) dt .

As before, under the hypotheses of Theorem 1.15, the pth order polylogarithm given by

∞∑
n=1

(1 + a)p

(n + a)p
zn

belongs to P1(�
′). The convexity of this function is clear at least when p is a positive integer.

2. Main Lemmas

Lemma 2.1 (Ponnusamy [14]). Let �1 < 1 and �2 < 1. Then, for p, q analytic in � with p(0)=q(0)=1,
the conditions Re p(z) > �1 and Re ei�(q(z) − �1) > 0 imply Re ei�((p ∗ q)(z) − �) > 0, where 1 − � =
2(1 − �1)(1 − �2).

Lemma 2.2 (Balasubramanian et al. and Kim and RZnning [3,9]). Suppose that Re a > 0, Re b > 0, and
Re(c + 1) > Re(a + b). Then, for f ∈ A, we have

Ha,b;c(f (z)) := [Ha,b;c(f )](z) = zF (a, b; c; z) ∗ f (z) =
∫ 1

0
�(t)

f (tz)

t
dt , (2.3)

where

�(t) = �(c)

�(a)�(b)�(c − a − b + 1)
tb−1(1 − t)c−a−bF

(
c − a, 1 − a

c − a − b + 1
; 1 − t

)
.

The integral representation (2.3) has been obtained in [3,9] and the problem concerning its geometric
properties has been discussed for example in [3,9,13,2].
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3. Proofs of Theorems 1.5, 1.8, 1.13 and 1.15

3.1. Proof of Theorem 1.5

Define

(1 − �)
f (z)

z
+ �f ′(z) = p�(z).

Then, zp� ∈ P(�) is equivalent to f ∈ P�(�). Assume first that � �= 0. Then it is a simple exercise to
see that

f ′(z) = p�(z) ∗ F(2, 1/�; 1 + 1/�; z). (3.2)

In the case � = 0, we just write

f ′(z) = (zp�(z))
′ = p�(z) ∗ 1

(1 − z)2

which is actually the limiting case of (3.2):

lim
�→0

F(2, 1/�; 1 + 1/�; z) = lim
�→0

( ∞∑
n=0

n + 1

n� + 1
zn

)
= 1

(1 − z)2 .

Now, we let F(z) = V�(f )(z), where V�(f ) is defined by (1.3). Then for � �= 0 we can write

F ′(z) = f ′(z) ∗
∫ 1

0

�(t)

1 − tz
dt

= p�(z) ∗ F(2, 1/�; 1 + 1/�; z) ∗
∫ 1

0

�(t)

1 − tz
dt

= p�(z) ∗
[∫ 1

0
�(t)F (2, 1/�; 1 + 1/�; tz) dt

]
.

Again in the case � = 0, we just write

F ′(z) = p�(z) ∗
[∫ 1

0

�(t)

(1 − tz)2 dt

]

which is in fact the same as taking the limit � → 0 in the previous expression that is valid for � �= 0. Since
f ∈ P�(�), it follows that Re{ei�(p�(z) − �)} > 0 for some � ∈ R. Now, for each ��0, we first claim that

Re

[∫ 1

0
�(t)F (2, 1/�; 1 + 1/�; tz) dt

]
> 1 − 1 − �

2(1 − �)
, z ∈ �, (3.3)

which, by Lemma 2.1, implies that F ∈ P1(�) which will complete the proof. Therefore, it suffices to
verify the inequality (3.3). Using the identity (which can be checked by comparing the coefficients of zn

on both sides)

F(2, b; c; z) = (c − 1)F (1, b; c − 1; z) − (c − 2)F (1, b; c; z),
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it follows that

F(2, 1/�; 1 + 1/�; z) = 1

�(1 − z)
+
(

1 − 1

�

)∫ 1

0

du

1 − zu�
.

In view of this,∫ 1

0
�(t)F (2, 1/�; 1 + 1/�; tz) dt = 1

�

∫ 1

0

�(t)

1 − tz
dt +

(
1 − 1

�

)∫ 1

0
�(t)

(∫ 1

0

du

1 − tzu�

)
dt .

Therefore, for ��1, one has

Re

[∫ 1

0
�(t)F (2, 1/�; 1 + 1/�; tz) dt

]
>

1

�

∫ 1

0

�(t)

1 + t
dt +

(
1 − 1

�

)∫ 1

0
�(t)

(∫ 1

0

du

1 + tu�

)
dt .

The stated condition on � shows that the right-hand side of the last expression is

1 − 1 − �

2(1 − �)
.

To prove the sharpness, let f ∈ P�(�) be the function determined by

(1 − �)
f (z)

z
+ �f ′(z) = � + (1 − �)

1 + z

1 − z
.

Using a series expansion we see that we can write

f (z) = z + 2(1 − �)

∞∑
n=2

1

n� + 1 − �
zn.

Then we can write

F(z) = V�(f )(z) = z + 2(1 − �)

∞∑
n=2

	n

n� + 1 − �
zn,

where 	n = ∫ 1
0 �(t)tn−1 dt . From the given value of � in Theorem 1.5, it follows that

1

1 − �
= 2

1 − �

[
1 − 1

�

∫ 1

0

�(t)

1 + t
dt +

(
1

�
− 1

)∫ 1

0
�(t)

(∫ 1

0

du

1 + tu�

)
dt

]

= 2

1 − �

[
1 +

∫ 1

0
�(t)

{
−1

�

1

1 + t
+
(

1

�
− 1

)∫ 1

0

du

1 + tu�

}
dt

]

= 2

1 − �

∫ 1

0
�(t)

{ ∞∑
n=2

(−1)n−1tn−1
(

−1

�
+
(

1

�
− 1

)
1

n� + 1 − �

)}
dt

= − 2

1 − �

∞∑
n=2

(−1)n−1n	n

n� + 1 − �
.
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Finally, we see that

F ′(z) = 1 + 2(1 − �)

∞∑
n=2

n	n

n� + 1 − �
zn−1

which for z = −1 takes the value

1 + 2(1 − �)

∞∑
n=2

(−1)n−1n	n

n� + 1 − �
= 1 + 2(1 − �)

(
− 1 − �

2(1 − �)

)
= �.

This shows that the result is sharp. �

3.4. Proof of Theorem 1.8

We have H(z) = f (z) ∗ zF (a, b; c; z) and therefore,

H ′(z) = f (z)

z
∗ M(z),

where, by the derivative formula for the hypergeometric function,

M(z) = F(a, b; c; z) + z
ab

c
F (a + 1, b + 1; c + 1; z).

Using the contiguous relation [1, Eq. (2.5.5)] (which may be also verified by comparing the coefficient
of zn on both sides)

cF (a + 1, b; c; z) = bzF (a + 1, b + 1; c + 1; z) + cF (a, b; c; z),

we see that

M(z) = (1 − a)F (a, b; c; z) + aF(a + 1, b; c; z).

Now, we assume that c > a + b. In view of the integral representation (1.2), it is a simple exercise to
see that

M(z) = �(c)

�(a)�(b)�(c − a − b)

∫ 1

0
tb−1(1 − t)c−a−b−1 N(t)

1 − tz
dt ,
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where

N(t) = (1 − a)

c − a − b
(1 − t)F

(
c − a, 1 − a

c − a − b + 1
; 1 − t

)
+ F

(
c − a − 1, −a

c − a − b
; 1 − t

)

= 1 − a

c − a − b

∞∑
n=0

(c − a, n)(1 − a, n)

(c − a − b + 1, n)(1, n)
(1 − t)n+1 +

∞∑
n=0

(c − a − 1, n)(−a, n)

(c − a − b, n)(1, n)
(1 − t)n

= 1 +
∞∑

n=0

[
(1 − a)

(c − a, n)(1 − a, n)

(c − a − b, n + 1)(1, n)
− a

(c − a − 1, n + 1)(1 − a, n)

(c − a − b, n + 1)(1, n + 1)

]
(1 − t)n+1

= 1 +
∞∑

n=0

R(n)(1 − t)n+1.

Here

R(n) = (1 − a)
(c − a, n)(1 − a, n)

(c − a − b, n + 1)(1, n)
− a(c − a − 1)

(c − a, n)(1 − a, n)

(c − a − b, n + 1)(1, n + 1)

= (c − a, n)(1 − a, n)

(c − a − b, n + 1)(1, n + 1)
[(1 − a)n + 1 − a(c − a)]

which is clearly nonnegative for all n�0 as a ∈ (0, 1] and b < c − a�1/a. In particular, N(t)�0 for all
t ∈ [0, 1].

Now, for |z|�r (0 < r < 1) and 0� t �1, we have∣∣∣∣ 1

1 − tz
− 1

1 − r2t2

∣∣∣∣ �
rt

1 − r2t2 ,

which gives

1

1 + rt
�Re

1

1 − tz
�

1

1 − rt
.

Thus, for b < c − a�1 and 0 < a�1, we have Re M(z) > M(−1) and the estimate here is clearly sharp
as we see below. Finally, we assume that f ∈ P(�). Now, we choose

f (z)

z
= 
(z) = 1 + 2(1 − �)

z

1 − z
and M(z) = �(z) = 1 + 2(1 − �′) z

1 − z
.

Further, with � = 1 − 2(1 − �)(1 − �′), we have

f (z)

z
∗ M(z) = (
 ∗ �)(z) = 1 + 4(1 − �)(1 − �′) z

1 − z
= 1 + 2(1 − �)

z

1 − z
.

Finally, we note that

Re
f (z)

z
> � = 
(−1), Re M(z) > �′ = M(−1), Re

(
f (z)

z
∗ M(z)

)
> �

and the desired conclusion follows. �



648 R.W. Barnard et al. / Journal of Computational and Applied Mathematics 193 (2006) 638–651

3.5. Proof of Theorem 1.13

Case (i): Let a ∈ (−1, 0), b > a and G be defined by (1.11). It is a simple exercise to see that

G′(z) = M(z) ∗ f (z)

z

where

M(z) = (a + 1)(b + 1)

b − a

[
−a

∞∑
n=0

zn

n + a + 1
+ b

∞∑
n=0

zn

n + b + 1

]
.

In terms of the hypergeometric function, we can rewrite the last expression as

M(z) = 1

b − a
[−a(b + 1)F (1, a + 1; a + 2; z) + b(a + 1)F (1, b + 1; b + 2; z)] .

By a direct integration (also by Euler’s integral representation (1.1)), it is easy to see that

M(z) = (a + 1)(b + 1)

b − a

[∫ 1

0

1

1 − tz
(btb − ata) dt

]
.

As btb − ata is positive for a < 0, a < b and t ∈ (0, 1), the method of proof of Theorem 1.8 shows that

Re M(z) > M(−1) for |z| < 1.

Case (ii): For a = b, we have

G(z) =
( ∞∑

n=1

(1 + a)2

(n + a)2 zn

)
∗ f (z)

and, by a simple calculation, we see that

G′(z) = M(z) ∗ f (z)

z
, M(z) = (1 + a)2

∫ 1

0

(1 + a log t)ta

1 − tz
dt .

This representation may also be obtained by taking the limit b → a in the previous case b �= a. The
remaining part of the proof is as in the previous theorem. �

3.6. Proof of Theorem 1.15

For p > 0 and a > − 1, we recall the integral representation [16]

Fa,p(z) = (1 + a)p

�(p)

∫ 1

0
(log 1/t)p−1ta−1f (tz) dt . (3.7)

As in the proof of Theorems 1.8 and 1.13, we can easily obtain that

F ′
a,p(z) = f (z)

z
∗ M(z), M(z) =

∞∑
n=1

(1 + a)p(n + a − a)

(n + a)p
zn−1.
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A computation and the representation (3.7) gives that

M(z) = (1 + a)p

�(p)

∫ 1

0
(log 1/t)p−2 ta

1 − tz
(p − 1 − a log 1/t) dt .

For p > 1 and −1 < a�0, we conclude that Re M(z) > M(−1) and the conclusion is clear as in the proof
of Theorem 1.8. �

4. Univalency of hypergeometric functions

Choose

f (z) = z

[
1 + (1 − 2�)z

1 − z

]
with � = 1 − 2�′

2(1 − �′)

so that 2(1 − �) = 1/(1 − �′). Then, it is a simple exercise to see that

H(z) = f (z) ∗ zF (a, b; c; z) = z + 2(1 − �)z(F (a, b; c; z) − 1).

From the proof of Theorem 1.8, we observe that M(−1)= �′ > 0 because of the fact that the integrand in
the integral representation of M(−1) is positive on (0, 1). Thus we have the following result concerning
the combination of z and zF (a, b; c; z):

Corollary 4.1. Let 0 < a�1, b < c − a�1/a and �′ be given by (1.9). Then

H(z) = z

(
1 − 1

1 − �′
)

+ 1

1 − �′ zF (a, b; c; z)

satisfies the condition Re H ′(z) > �′ in �. In particular, H is univalent in �.

The question of univalency of a convex combination of two functions is dealt with in [18]. In fact,
Trimble [18] showed that if f is a normalized convex function, then the function F defined by

F(z) = �z + (1 − �)f (z)

is starlike of order � = (1 − 3�)/(2(2 + �)) provided 0��� 1
3 . Related problems were considered later

by a number of authors (e.g., [5,19]), by imposing an additional condition on f. Corollary 4.1 is a special
situation of Trimble. However, because �′ > 0, the choice f (z) = z/(1 − z) in Corollary 4.1 gives

Corollary 4.2. Let 0 < a�1, b < c − a�1/a and �′ be given by (1.9). Then for H(z) = zF (a, b; c; z),
we have Re H ′(z) > �′ in �. In particular, H is univalent in �.

Although it seems difficult to find a neat form of the value of �′ in general, for particular cases one
can state it in a precise form. To make this point more clear, for example, for c = a − b + 1, we recall that
[1, Corollary 3.1.2]

F(a, b; a − b + 1; −1) = 2−a
√

�
�(1 + a − b)

�((a + 1)/2)�(1 + a/2 − b)
(4.3)
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and the contiguous relation

c(1 − z)F (a, b; c; z) = cF (a − 1, b; c; z) + (b − c)zF (a, b; c + 1; z),

which for z = −1 and c = a − b gives

F(a, b; a − b; −1) = 1

2
F(a − 1, b; a − b; −1) + a − 2b

2(a − b)
F (a, b; a − b + 1; −1).

By (4.3), a simplification immediately gives

F(a, b; a − b; −1)

= 2−a
√

��(a − b)

{
1

�(a/2 − b)�((a + 1)/2)
+ a

2�((a + 1)2 − b)�(a/2 + 1)

}

so that

�′ = (1 − a)F (a, b; a − b + 1; −1) + aF(a + 1, b; a − b + 1; −1)

= 2−a
√

��(1 + a − b)

{
1 − a/2

�(1 + a/2 − b)�((a + 1)/2)
+ a/2

�((a + 1)/2 − b)�(a/2 + 1)

}
.

Corollary 4.4. For b > 0, b + 1 < c�2, H(z) = zF (1, b; c; z) is close-to-convex with respect to z (and
hence, univalent in �).

This corollary follows from Theorem 1.8. Indeed, according to Theorem 1.8 (with f (z) = z/(1 − z)

and a = 1), we have Re H ′(z) > �′ = F(2, b; c; −1) > 0, z ∈ �, where H(z) = zF (1, b; c; z). To provide
an estimate to �′, we use Euler’s transformation (see [1, Theorem 2.2.5]) and see that

F(2, b; c; z) = (1 − z)c−2−bF (c − 2, c − b; c; z).

The Euler integral representation (1.1) gives

F(2, b; c; z) = (1 − z)c−2−b �(c)

�(c − b)�(b)

∫ 1

0
tc−b−1(1 − t)b−1(1 − tz)−c+2 dt

for c > c − b > 0. Since this function is analytic in the cut plane C\[1, ∞], we can write

F(2, b; c; −1) = 2c−b−2�(c)

�(c − b)�(b)

∫ 1

0
tc−b−1(1 − t)b−1(1 + t)−c+2 dt. (4.5)

Using a well-known result that [1, p. 50]∫ 1

0
tx−1(1 − t)y−1 1

(t + p)x+y
dt = �(x)�(y)

�(x + y)(1 + p)xpy

(x > 0, y > 0, p > 0) it follows by using (1 + t)−c(1 + t)2 > (1 + t)−c that∫ 1

0
tc−b−1(1 − t)b−1(1 + t)−c+2 dt >

�(c − b)�(b)

�(c)

1

2c−b
.

In particular, by (4.5), this crude estimate implies that �′ = F(2, b; c; −1) > 1
4 .
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