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Abstract

In this paper, we study the convergence of both the multisplitting method and the relaxed multisplitting method associated with
SSOR multisplitting for solving a linear system whose coefficient matrix is an H -matrix. We also introduce an application of the
SSOR multisplitting method.
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1. Introduction

In this paper, we consider both the multisplitting method and the relaxed multisplitting method for solving a linear
system of the form

Ax = b, x, b ∈ Rn, (1)

where A ∈ Rn×n is a large sparse H -matrix. Multisplitting method was introduced by [6] and was further studied by
many authors [3–5,7,9]. The multisplitting method can be thought of as an extension and parallel generalization of the
classical block Jacobi method [2].

A matrix A=(aij ) ∈ Rn×n is called an M-matrix if aij �0 for i �= j and A−1 �0. The comparison matrix 〈A〉=(�ij )

of a matrix A = (aij ) is defined by

�ij =
{ |aij | if i = j,

−|aij | if i �= j.

A matrix A is called an H -matrix if 〈A〉 is an M-matrix. A representation A = M − N is called a splitting of A when
M is nonsingular. A splitting A = M − N is called regular if M−1 �0 and N �0, and weak regular if M−1 �0 and
M−1N �0.
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A collection of triples (Mk, Nk, Ek), k = 1, 2, . . . , �, is called a multisplitting of A if A = Mk − Nk is a splitting of
A for k = 1, 2, . . . , �, and Ek’s, called weighting matrices, are nonnegative diagonal matrices such that

∑�
k=1 Ek = I .

The multisplitting method associated with this multisplitting for solving the linear system (1) is as follows.

Algorithm 1. Multisplitting method

Given an initial vector x0
For i = 1, 2, . . ., until convergence

For k = 1 to �

Mkyk = Nkxi−1 + b,
xi =∑�

k=1 Ekyk .

The relaxed multisplitting method with a positive relaxation parameter � associated with a multisplitting of A,
(Mk, Nk, Ek), k = 1, 2, . . . , �, for solving the linear system (1) is as follows.

Algorithm 2. Relaxed multisplitting method

Given an initial vector x0
For i = 1, 2, . . . , until convergence

For k = 1 to �

Mkyk = Nkxi−1 + b,
xi = �

∑�
k=1 Ekyk + (1 − �)xi−1.

Notice that the loop k in Algorithms 1 and 2 can be executed in parallel by different processors.

In 1991, Deren [3] studied the convergence of both the multisplitting method and the relaxed multisplitting method
associated with AOR multisplitting for solving the linear system (1). In this paper, we study the convergence of both
the multisplitting method and the relaxed multisplitting method associated with SSOR multisplitting for solving the
linear system (1). This paper is organized as follows. In Section 2, we present some notation and well-known results.
In Section 3, we provide convergence results of both the multisplitting method and the relaxed multisplitting method
associated with SSOR multisplitting. In Section 4, we introduce an application of the SSOR multisplitting method.

2. Preliminaries

For a vector x ∈ Rn, x�0 (x > 0) denotes that all components of x are nonnegative (positive). For two vectors
x, y ∈ Rn, x�y (x > y) means that x − y�0 (x − y > 0). For a vector x ∈ Rn, |x| denotes the vector whose
components are the absolute values of the corresponding components of x. These definitions carry immediately over
to matrices. It follows that |A|�0 for any matrix A and |AB|� |A||B| for any two matrices A and B of compatible
size. Let diag(A) denote a diagonal matrix whose diagonal part coincides with the diagonal part of A, and let �(A)

denote the spectral radius of a square matrix A. Varga [8] showed that for any square matrices A and B, |A|�B implies
�(A)��(B). It is well known that if A�0 and there exists a vector x > 0 such that Ax < �x, then �(A) < � (see [1,8]).

The SSOR multisplitting to be used in this paper is defined as follows.

Definition 2.1. Let 0 < � < 2 and A = D − Lk − Uk for k = 1, 2, . . . , �, where D = diag(A), Lk’s are strictly lower
triangular matrices, and Uk’s are general matrices. (Mk(�), Nk(�), Ek), k=1, 2, . . . , �, is called the SSOR multisplitting
of A if (Mk(�), Nk(�), Ek), k=1, 2, . . . , �, is a multisplitting of A, Mk(�)=1/(�(2−�))(D−�Lk)D

−1(D−�Uk),
and Nk(�) = 1/(�(2 − �)) ((1 − �)D + �Lk) D−1((1 − �)D + �Uk).

3. Convergence results

We first consider convergence of the multisplitting method (Algorithm 1) associated with SSOR multisplitting for
solving the linear system (1). Algorithm 1 can be written as xi = Hxi−1 + Pb, i = 1, 2, . . . , where

H =
�∑

k=1

EkM
−1
k Nk and P =

�∑
k=1

EkM
−1
k .
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The H is called an iteration matrix for Algorithm 1, and it is well known that Algorithm 1 converges to the exact
solution of Ax =b for any initial vector x0 if and only if �(H) < 1. O’Leary and White [6] showed that �(H) < 1 when
A−1 �0 and the splittings A = Mk − Nk are weak regular.

Theorem 3.1. Let A ∈ Rn×n be an H -matrix. Let A=D −B =D −Lk −Uk (1�k��), where D = diag(A), Lk is a
strictly lower triangular matrix, and Uk is a general matrix, and let (Mk(�), Nk(�), Ek), k = 1, 2, . . . , �, be the SSOR
multisplitting of A. Assume that 〈A〉= |D|− |Lk|− |Uk| for k =1, 2, . . . , �. Then, the multisplitting method associated
with the SSOR multisplitting converges to the exact solution of Ax = b for any initial vector x0 if 0 < � < 2/(1 + �),
where � = �(|D|−1|B|).

Proof. Let H� =∑�
k=1 EkMk(�)−1Nk(�). Then, it suffices to show that �(H�) < 1 for 0 < � < 2/(1 + �). Clearly,

D − �Lk is an H -matrix for � > 0. Let C = D − �Uk . Then 〈C〉 = |D| − �|Uk|, which is a regular splitting of 〈C〉.
Since � < 1 and � < 2/(1 + �), � < 1/�. It follows that �(�|D|−1|Uk|)��(�|D|−1|B|)=�� < 1 and thus 〈C〉−1 �0.
That is, D − �Uk is an H -matrix for 0 < � < 2/(1 + �). Let

M̃k(�) = (|D| − �|Lk|)|D|−1(|D| − �|Uk|),
Ñ1

k (�) = ((1 − �)|D| + �|Lk|)|D|−1((1 − �)|D| + �|Uk|),

Ñ2
k (�) = ((� − 1)|D| + �|Lk|)|D|−1((� − 1)|D| + �|Uk|).

Since D − �Lk and D − �Uk are H -matrices, one obtains

|((D − �Lk)D
−1(D − �Uk) )−1|� |(D − �Uk)

−1| |D| |(D − �Lk)
−1|

�〈D − �Uk〉−1|D| 〈D − �Lk〉−1

= (|D| − �|Uk|)−1 |D| (|D| − �|Lk|)−1

= M̃k(�)−1. (2)

First, we consider the case of 0 < ��1. Using (2),

|H�|�
�∑

k=1

Ek|Mk(�)−1Nk(�)|�
�∑

k=1

EkM̃k(�)−1Ñ1
k (�). (3)

Note that M̃k(�) − Ñ1
k (�) = �(2 − �)〈A〉 for every k. Since �(2 − �)〈A〉 = M̃k(�) − Ñ1

k (�) is a regular splitting

of �(2 − �)〈A〉 for each k and 〈A〉−1 �0, �(
∑�

k=1 EkM̃k(�)−1Ñ1
k (�)) < 1. From (3), �(H�) < 1. Next, we consider

the case of 1 < � < 2/(1 + �). Using (2),

|H�|�
�∑

k=1

Ek|Mk(�)−1Nk(�)|�
�∑

k=1

EkM̃k(�)−1Ñ2
k (�). (4)

Let Ã = M̃k(�) − Ñ2
k (�). Then Ã = �(2 − �)|D| − �2|B|, which is a regular splitting of Ã. Since � < 2/(1 + �),

�(�/(2 − �)|D|−1|B|) = �/(2 − �)� < 1. It follows that Ã−1 �0. Since Ã = M̃k(�) − Ñ2
k (�) is a regular splitting

of Ã for each k, �(
∑�

k=1 EkM̃k(�)−1Ñ2
k (�)) < 1. From (4), �(H�) < 1. �

Corollary 3.2. Let A ∈ Rn×n be an M-matrix. Let A=D −B =D −Lk −Uk (1�k��), where D =diag(A), Lk �0
is a strictly lower triangular matrix, and Uk �0 is a general matrix, and let (Mk(�), Nk(�), Ek), k = 1, 2, . . . , �, be
the SSOR multisplitting of A. Then, the multisplitting method associated with the SSOR multisplitting converges to the
exact solution of Ax = b for any initial vector x0 if 0 < � < 2/(1 + �), where � = �(D−1B).

Proof. Since A is an M-matrix, A is an H -matrix and 〈A〉=A=D −Lk −Uk =|D|− |Lk|− |Uk| for k =1, 2, . . . , �.
By Theorem 3.1, the corollary follows.
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We next consider convergence of the relaxed multisplitting method (Algorithm 2) associated with SSOR multisplitting
for solving the linear system (1). Algorithm 2 can be written as xi = H�xi−1 + P�b, i = 1, 2, . . . , where

H� = �
�∑

k=1

EkM
−1
k Nk + (1 − �)I and P� = �

�∑
k=1

EkM
−1
k .

The H� is called an iteration matrix for Algorithm 2, and it is well known that Algorithm 2 converges to the exact
solution of Ax = b for any initial vector x0 if and only if �(H�) < 1. �

Theorem 3.3. Let A ∈ Rn×n be an H -matrix. Let A=D −B =D −Lk −Uk (1�k��), where D = diag(A), Lk is a
strictly lower triangular matrix, and Uk is a general matrix, and let (Mk(�), Nk(�), Ek), k = 1, 2, . . . , �, be the SSOR
multisplitting of A. Assume that 〈A〉= |D|− |Lk|− |Uk| for k = 1, 2, . . . , �. Let H�,� =�

∑�
k=1 EkMk(�)−1Nk(�)+

(1 − �)I be an iteration matrix of the relaxed multisplitting method associated with the SSOR multisplitting,
H(�) = |1 − �|I + �|D|−1|B| and � = �(|D|−1|B|). Then the following hold:

(a) if 0 < ��1 and 0 < � < 2
1+�(H(�))

, then �(H�,�) < 1,

(b) if 1 < � < 2
1+� and 0 < ��1, then �(H�,�) < 1,

(c) if 1 < � <

√
2

1+� and 0 < � < 2
�(1+�(H(�)))

, then �(H�,�) < 1.

Proof. Notice that |D| − �|Lk| and |D| − �|Uk| are M-matrices for 0 < � < 2/(1 + �) since D − �Lk and D − �Uk

are H -matrices for 0 < � < 2/(1 + �). Let

M̃k(�) = (|D| − �|Lk|)|D|−1(|D| − �|Uk|),
Ñ1

k (�) = ((1 − �)|D| + �|Lk|)|D|−1((1 − �)|D| + �|Uk|),
Ñ2

k (�) = ((� − 1)|D| + �|Lk|)|D|−1((� − 1)|D| + �|Uk|).
Since �(�|D|−1|Lk|) < 1 and �(�|D|−1|Uk|) < 1 for 0 < � < 2/(1 + �),

M̃k(�)−1|D| = (|D| − �|Uk|)−1|D|(|D| − �|Lk|)−1|D|
= (I − �|D|−1|Uk|)−1(I − �|D|−1|Lk|)−1 �I (5)

for 0 < � < 2/(1 + �). We first prove the part (a). Since M̃k(�) − Ñ1
k (�) = �(2 − �)〈A〉 for every k, one obtains

|H�,�|��
�∑

k=1

EkM̃k(�)−1Ñ1
k (�) + |1 − �|I

= �
�∑

k=1

EkM̃k(�)−1(M̃k(�) − �(2 − �)〈A〉) + |1 − �|I

= (� + |1 − �|)I − �(2 − �)�
�∑

k=1

EkM̃k(�)−1〈A〉

= (� + |1 − �|)I − �(2 − �)�
�∑

k=1

EkM̃k(�)−1|D|(I − |D|−1|B|)

�(� + |1 − �|)I − �(2 − �)�
�∑

k=1

EkM̃k(�)−1|D|(I − |D|−1|B| − �eeT), (6)

where � > 0 and e = (1, 1, . . . , 1)T. By the Perron–Frobenius theorem, for any � > 0 there exists a x� > 0 such that
(|D|−1|B| + �eeT)x� = ��x�, where �� = �(|D|−1|B| + �eeT). Since � < 1 and 0 < ��1, �(H(�)) = 1 − � + �� < 1.
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By continuity of the spectral radius, �� < 1 and 1 − � + ��� < 1 if � > 0 is sufficiently small. Let � > 0 be such a
sufficiently small number. Using (5) and (6) and the fact that �(2 − �)�� for 0 < ��1,

|H�,�|x� �(� + |1 − �|)x� − �(2 − �)�
�∑

k=1

EkM̃k(�)−1|D|(1 − ��)x�

�(� + |1 − �|)x� − �(2 − �)�(1 − ��)x�

�(� + |1 − �|)x� − ��(1 − ��)x�

= (|1 − �| + �(1 − � + ���))x�. (7)

If 0 < ��1, from (7) and 1 − � + ��� < 1 one obtains |H�,�|x� < x�. It follows that �(H�,�) < 1 for 0 < ��1. If
1 < � < 2/(1+�(H(�))), �(1+�(H(�)))=�(2−�+��) < 2. By continuity of the spectral radius, �(2−�+���) < 2
for sufficiently small � > 0. Using this fact and (7),

|H�,�|x� �(� − 1 + �(1 − � + ���))x�

= (�(2 − � + ���) − 1)x� < x�. (8)

From (8), �(H�,�) < 1 for 1 < � < 2/(1 + �(H(�))). Hence, part (a) is proved.

We next prove part (b). Let Ã = M̃k(�) − Ñ2
k (�). Then Ã = �(2 − �)|D| − �2|B| for every k, and thus one obtains

|H�,�|��
�∑

k=1

EkM̃k(�)−1Ñ2
k (�) + |1 − �|I

= �
�∑

k=1

EkM̃k(�)−1(M̃k(�) − Ã) + |1 − �|I

= (� + |1 − �|)I − ��
�∑

k=1

EkM̃k(�)−1|D|((2 − �)I − �|D|−1|B|)

�(� + |1 − �|)I − ��
�∑

k=1

EkM̃k(�)−1|D|((2 − �)I − �|D|−1|B| − ��eeT). (9)

Since 1 < � < 2/(1 + �), �(1 + �) < 2. By continuity of the spectral radius, �(1 + ��) < 2 if � > 0 is sufficiently small.
Using (5) and (9),

|H�,�|x� �(� + |1 − �|)x� − ��
�∑

k=1

EkM̃k(�)−1|D|(2 − � − ���)x�

�(� + |1 − �|)x� − ��(2 − � − ���)x�. (10)

Since 0 < ��1, from (10) |H�,�|x� �(1 − ��(2 − � − ���))x� < x�, which proves part (b).
Lastly, we prove part (c). Since 2/(1 + �) > 1,

√
2/1 + � < 2/(1 + �). Clearly, �(1 + �(H(�))) < 2 when

1 < � <
√

2/(1 + �). Thus, by part (b) it suffices to prove part (c) for 1 < � < 2/(�(1 + �(H(�)))). Since ��(1 +
�(H(�))) = ��2(1 + �) < 2, by continuity of the spectral radius ��2(1 + ��) < 2 if � > 0 is sufficiently small. Since
�2 − 2� + 2 < �2 for � > 1, from (10) one obtains

|H�,�|x� �(2� − 1 − ��(2 − � − ���))x�

= (�(�2 − 2� + 2 + �2��) − 1)x�

< (�(�2 + �2��) − 1)x�

= (��2(1 + ��) − 1)x� < x�. (11)

From (11), part (c) is proved. �

From Theorem 3.3, the following corollary can be easily obtained.



J.H. Yun / Journal of Computational and Applied Mathematics 217 (2008) 252–258 257

Corollary 3.4. Let A ∈ Rn×n be an M-matrix. Let A=D −B =D −Lk −Uk (1�k��), where D =diag(A), Lk �0
is a strictly lower triangular matrix, and Uk �0 is a general matrix, and let (Mk(�), Nk(�), Ek), k = 1, 2, . . . , �, be
the SSOR multisplitting of A. Let H�,� = �

∑�
k=1 EkMk(�)−1Nk(�) + (1 − �)I be an iteration matrix of the relaxed

multisplitting method associated with the SSOR multisplitting, H(�) = |1 − �|I + �D−1B and � = �(D−1B). Then
the following hold:

(a) if 0 < ��1 and 0 < � < 2
1+�(H(�))

, then �(H�,�) < 1.

(b) if 1 < � < 2
1+� and 0 < ��1, then �(H�,�) < 1.

(c) if 1 < � <

√
2

1+� and 0 < � < 2
�(1+�(H(�)))

, then �(H�,�) < 1.

4. Application of the SSOR multisplitting method

In this section, we consider an application of multisplitting method associated with the SSOR multisplitting for
solving a linear system Ax = b, where A is an M-matrix. As a typical application, we introduce how the SSOR
multisplitting can be used as inner splittings of two-stage multisplitting method which was proposed by Szyld and
Jones [7]. Let � denote the number of processors to be used. For simplicity of exposition, suppose that � = 3. Then, the
M-matrix A is partitioned into a 3 × 3 block matrix of the form

A =
(

A11 A12 A13
A21 A22 A23
A31 A32 A33

)
,

where the diagonal blocks Aii of A are square matrices. Let A = Q − R, where

Q =
(

A11 0 0
0 A22 0
0 0 A33

)
, R =

( 0 −A12 −A13
−A21 0 −A23
−A31 −A32 0

)
. (12)

Since A is an M-matrix, it is clear that A=Q−R is a regular splitting of A and Q is an M-matrix. Let Q=D−Lk −Uk

for k = 1, 2, 3, where D = diag(Q), Lk �0 is a strictly lower triangular matrix, and Uk �0 is a general matrix. Then,
it is easy to see that D, Lk and Uk are of the form

D =
(

D1 0 0
0 D2 0
0 0 D3

)
, Lk =

(
Lk1 0 0
0 Lk2 0
0 0 Lk3

)
, Uk =

(
Uk1 0 0

0 Uk2 0
0 0 Uk3

)
, (13)

where Di = diag(Aii), Lki is a nonnegative strictly lower triangular matrix, and Uki is a nonnegative general matrix
such that Aii = Di − Lki − Uki for k = 1, 2, 3. For each k, let

Mk(�) = 1

�(2 − �)
(D − �Lk)D

−1(D − �Uk),

Nk(�) = 1

�(2 − �)
((1 − �)D + �Lk)D

−1((1 − �)D + �Uk).

Let

E1 =
(

I 0 0
0 0 0
0 0 0

)
, E2 =

(0 0 0
0 I 0
0 0 0

)
, E3 =

(0 0 0
0 0 0
0 0 I

)
. (14)

Then, (Mk(�), Nk(�), Ek), k = 1, 2, 3, is the SSOR multisplitting of Q. When 0 < ��1, it is easy to show that
Q=Mk(�)−Nk(�) is a regular splitting of Q for each k. Since A=Q−R is a regular splitting of A and Q=Mk(�)−
Nk(�) is a regular splitting of Q when 0 < ��1, from [7] the two-stage multisplitting method using A = Q − R as an
outer splitting and the SSOR multisplitting of Q (i.e., Q = Mk(�) − Nk(�)) as inner splittings converges to the exact
solution of Ax = b when 0 < ��1. Notice that the two-stage multisplitting method can be fully parallelized without
increasing computational amount because of the special structure of D, Lk , Uk and Ek .



258 J.H. Yun / Journal of Computational and Applied Mathematics 217 (2008) 252–258

For various ranges of �, convergence of two-stage multisplitting method using an outer splitting and the SSOR
multisplitting as inner splittings for solving a linear system whose coefficient matrix is an M-matrix or an H -matrix
will be discussed in future work.
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