
Journal of Computational and Applied Mathematics 222 (2008) 477–486
www.elsevier.com/locate/cam

Some higher-order modifications of Newton’s method for solving
nonlinear equations

YoonMee Hama, Changbum Chunb,∗, Sang-Gu Leeb

a Department of Mathematics, Kyonggi University, Suwon 443-760, Republic of Korea
b Department of Mathematics, Sungkyunkwan University, Suwon 440-746, Republic of Korea

Received 15 April 2007; received in revised form 16 July 2007

Abstract

In this paper we consider constructing some higher-order modifications of Newton’s method for solving nonlinear equations
which increase the order of convergence of existing iterative methods by one or two or three units. This construction can be applied
to any iteration formula, and per iteration the resulting methods add only one additional function evaluation to increase the order.
Some illustrative examples are provided and several numerical results are given to show the performance of the presented methods.
c© 2008 Published by Elsevier B.V.

MSC: 65H05; 65B99

Keywords: Newton’s method; Modified Newton’s method; Iterative methods; Nonlinear equations; Order of convergence; Root-finding

1. Introduction

Solving a nonlinear equation is one of the most important problems in numerical analysis. In this paper, we consider
iterative methods to find a simple root α, i.e. f (α) = 0 and f ′(α) 6= 0, of a nonlinear equation f (x) = 0.

Newton’s method is the most frequently used iterative method to solve the nonlinear equation; it is defined by

xn+1 = xn −
f (xn)

f ′(xn)
, n = 0, 1, 2, . . . (1)

which, as is well known, converges quadratically in a sufficiently small neighbourhood of the root α, the desired one
to find to solve the nonlinear equation [17].

In recent years, numerous higher-order iterative methods have been developed and analysed for solving nonlinear
equations that improve some classical methods such as Newton’s, Euler’s, Chebyshev–Halley’s, etc., methods, in
order of convergence, most frequently composed of more than two existing formulas and derived in various manners,
see [1,2,4–16] and the references therein. The increased order of convergence is usually achieved at the expense of

∗ Corresponding author.
E-mail addresses: ymham@kyonggi.ac.kr (Y. Ham), cbchun64@yahoo.com (C. Chun), sglee@skku.edu (S.-G. Lee).

0377-0427/$ - see front matter c© 2008 Published by Elsevier B.V.
doi:10.1016/j.cam.2007.11.018

http://www.elsevier.com/locate/cam
mailto:ymham@kyonggi.ac.kr
mailto:cbchun64@yahoo.com
mailto:sglee@skku.edu
http://dx.doi.org/10.1016/j.cam.2007.11.018

478 Y. Ham et al. / Journal of Computational and Applied Mathematics 222 (2008) 477–486

additional function or derivative evaluations to carry out iterations, which may affect the efficiency of the method. It
has been shown that these methods are efficient in their performance, can compete with Newton’s method.

Motivated by the recent results in this area, in this paper we consider constructing higher-order modifications of
Newton’s method. Any existing method can be used in the construction and its order of convergence is increased by
one, two or three units by the expense of one additional function evaluation per iteration, this makes the computational
efficiency better. This will be explored in the following sections, together with numerical examples showing the
performance of some of the obtained methods.

2. Development of methods and convergence analysis

Throughout the paper, we assume that φp represents any iteration function whose order of convergence is at least
p, which means that the corresponding iterative method defined by

xn+1 = φp(xn), n = 0, 1, 2, . . . (2)

is of order p, that is, the error |α− xn+1| is proportional to |α− xn|
p as n→∞. A general study of iteration functions

can be found in [17].
To derive the new methods, we consider a two-step iteration scheme with any existing method of order p as the

first step and a corrected form of the first-step method depending on an unknown function as the second step, namely

zn = φp(xn), (3)

xn+1 = zn − H(xn, yn)
f (zn)

f ′(xn)
, (4)

where H(x, y) represents a two-variable function to be determined later and

yn = xn −
f (xn)

f ′(xn)
. (5)

Our concern here is to find H(x, y) for which the method defined by (3) and (4) has a higher order of convergence.
This can be answered in the following theorem, which gives a detailed analysis of convergence.

Theorem 2.1. Let α ∈ I be a simple zero of a sufficiently differentiable function f : I → R for an open interval I .
Let φp be any iteration function whose order of convergence is at least p. If H(x, y) satisfies condition

H(α, α) = 1, (6)

then the method defined by (3) and (4) is of order at least p + 1. If H(x, y) satisfies condition

H(α, α) = 1, Hx (α, α) =
f ′′(α)

f ′(α)
, (7)

then the method defined by (3) and (4) is of order at least p + 2; furthermore, if H(x, y) satisfies condition (7) and
also the following condition,

f ′′(α)

f ′(α)
Hy(α, α)+ Hxx (α, α) =

f (3)(α)

f ′(α)
, (8)

then it is of order at least p + 3.

Proof. Let α be a simple zero of f and let zn = φ3(xn). Throughout the proof, H(α, α) will be denoted by H ,
Hx (α, α) by Hx , Hy(α, α) by Hy , Hxx (α, α) by Hxx , Hxy(α, α) by Hxy , Hyy(α, α) by Hyy , and Hxxx (α, α) by Hxxx .

Using Taylor’s expansion and taking into account f (α) = 0, we have

f (xn) = f ′(α)[en + c2 e2
n + c3 e3

n + O(e4
n)], (9)

f ′(xn) = f ′(α)[1+ 2c2 en + 3c3 e2
n + 4c4 e3

n + O(e4
n)], (10)

where en = xn − α and ck =
f (k)(α)

k! f ′(α) , k = 2, 3, 4

Y. Ham et al. / Journal of Computational and Applied Mathematics 222 (2008) 477–486 479

Dividing (9) by (10) gives

yn = xn −
f (xn)

f ′(xn)
= α + c2 e2

n − 2(c2
2 − c3) e3

n + O(e4
n). (11)

By the Taylor expansion of f (zn) about α, we get

f (zn) = f ′(α)[zn − α + c2 (zn − α)
2
+ O((zn − α)

3)], (12)

then dividing it by (10) gives

f (zn)

f ′(xn)
= (zn − α)[1− 2c2 en + (4c2

2 − 3c3) e2
n + (c2(zn − α)+ (−8c3

2 + 12c2c3 − 4c4)) e3
n] + O(e7

n). (13)

Since φp is of order at least p, there exists a constant A such that

zn − α = Aep
n + O(ep+1

n). (14)

If we apply the 2-variable form of Taylor’s theorem around the point (α, α), then from (11), we obtain

H(xn, yn) = H + Hx (xn − α)+ Hy(yn − α)+ Hxx
(xn − α)

2

2
+ Hxy(xn − α)(yn − α)

+ Hyy
(yn − α)

2

2
+ Hxxx

(xn − α)
3

6
+ · · ·

= H + Hx en +

[
Hyc2 +

Hxx

2

]
e2

n +

[
(2c3 − 2c2

2)Hy + c2 Hxy +
Hxxx

6

]
e3

n + O(e4
n). (15)

Thus, from (13) and (15), we obtain

en+1 = (zn − α)− H(xn, yn)
f (zn)

f ′(xn)

= (zn − α)− (zn − α)

[
H + (−2c2 H + Hx)en

+

(
(4c2

2 − 3c3)H − 2c2 Hx + c2 Hy +
Hxx

2

)
e2

n + K6

]
+ O(e7

n), (16)

where

K6 = H [c2(zn − α)+ (−8c3
2 + 12c2c3 − 4c4)e

3
n] + (4c2

2 − 3c3)Hx e3
n

− [2Hyc2
2 + Hxx c2]e

3
n +

[
(2c3 − 2c2

2)Hy + c2 Hxy +
Hxxx

6

]
e3

n . (17)

Thus, if H = 1 then using (14), (16) reduces to

en+1 = A[2c2 − Hx]e
p+1
n + O(ep+2

n), (18)

which implies that the method defined by (3) and (4) is of order at least p + 1. Thus, if H = 1 and Hx = 2c2 then
using (14), (16) reduces to

en+1 = A

[
3c3 − c2 Hy −

Hxx

2

]
ep+2

n + O(ep+3
n), (19)

so that the method defined by (3) and (4) is of order at least p + 2. Furthermore, if H = 1, Hx = 2c2 and
c2 Hy +

Hxx
2 = 3c3, then using (14), (16) reduces to

en+1 = A

[
−(A + Hxy)c2 + 2Hyc2

2 − 2Hyc3 + 4c4 −
Hxxx

6

]
ep+3

n + O(ep+4
n), (20)

therefore the method defined by (3) and (4) is of order at least p + 3, this completes the proof. �

480 Y. Ham et al. / Journal of Computational and Applied Mathematics 222 (2008) 477–486

As a result of Theorem 2.1 the order of any existing iterative method may be improved to three more higher at
the expense of but one additional function evaluation, this also improving the computational efficiency of the method
much better.

3. Some iterative methods

Many new third-order, fifth-order, and sixth-order methods are special cases of Theorem 2.1. In this section, we
present some examples of the methods obtained as the special cases. It is not that difficult to find H(x, y) satisfying
conditions (6) or (7) or conditions (7) and (8), this can be possibly done with the help of mathematical packages such
as Maple, Mathematica; for example, in condition (6) case,

H(x, y) = 1, H(x, y) =
β f (x)+ γ f ′(x)

µ f (x)+ γ f ′(x)
, H(x, y) = 1+ x − ϕ(x), (21)

where ϕ is any iteration function with ϕ(α) = α, in condition (7) case,

H(x, y) =
f ′(y)

2 f ′(y)− f ′(x)
, H(x, y) =

f ′(x)

f ′(y)
, H(x, y) =

3 f ′(x)− f ′(y)

f ′(x)+ f ′(y)
, (22)

or in (7) and (8) case,

H(x, y) =
2 f ′2(y)

f ′2(x)− 4 f ′(x) f ′(y)+ 5 f ′2(y)
, H(x, y) =

f ′(x)+ f ′(y)

3 f ′(y)− f ′(x)
, (23)

H(x, y) = −
2 f ′2(x)

f ′2(x)− 4 f ′(x) f ′(y)+ f ′2(y)
, (24)

etc. Therefore, many higher-order methods are easily constructible by the approach proposed in this contribution.
Some of the above examples of H(x, y) will be used in the following examples. Throughout the rest of this section,
yn is defined by (5).

3.1. Some third-order methods

Example 3.1. For the function H defined by

H(x, y) =
β f (x)+ γ f ′(x)

µ f (x)+ γ f ′(x)
, (25)

where β,µ, γ (6= 0) ∈ R, we obtain the new third-order family of methods

zn = φ2(xn), (26)

xn+1 = zn −
β f (x)+ γ f ′(x)

µ f (x)+ γ f ′(x)

f (zn)

f ′(xn)
. (27)

If we take Newton’s iteration function, for example,

φ2(x) = x −
f (x)

f ′(x)
, (28)

then we obtain the new three-parameter third-order family of methods

zn = xn −
f (xn)

f ′(xn)
, (29)

xn+1 = zn −
β f (xn)+ γ f ′(xn)

µ f (xn)+ γ f ′(xn)

f (zn)

f ′(xn)
. (30)

Y. Ham et al. / Journal of Computational and Applied Mathematics 222 (2008) 477–486 481

We note that if β = µ = 0, then we obtain the well-known third-order iteration result [17],

zn = φ2(xn), (31)

xn+1 = zn −
f (zn)

f ′(xn)
. (32)

Example 3.2. For the function H defined by

H(x, y) = 1+ x − ϕ(x), (33)

where ϕ is any function with ϕ(α) = α, we obtain the new third-order class of methods

zn = φ2(xn), (34)

xn+1 = zn − [1+ x − ϕ(x)]
f (zn)

f ′(xn)
. (35)

If we take Newton’s iteration function, for example,

φ2(x) = x −
f (x)

f ′(x)
, (36)

and

ϕ(x) = x −
f (x) f ′(x)

f (x)2 + f ′(x)2
, (37)

which is the known iteration function of order two [8], then we obtain the new third-order method

zn = xn −
f (xn)

f ′(xn)
, (38)

xn+1 = zn −

[
f (xn)

2
+ f ′(xn)

2
+ f (xn) f ′(xn)

f (xn)2 + f ′(xn)2

]
f (zn)

f ′(xn)
. (39)

If we consider the definition of efficiency index [3] as p
1
m , where p is the order of the method and m is the

number of functional evaluations per iteration required by the method, we have that the methods obtained in the above

examples have the efficiency index equal to 3
1
3 ≈ 1.441, which is better than that of Newton’s method

√
2 ≈ 1.414.

3.2. Some fifth-order methods

Example 3.3. For the function H defined by

H(x, y) =
f ′(y)

2 f ′(y)− f ′(x)
, (40)

we obtain the new fifth-order scheme

zn = φ3(xn), (41)

xn+1 = zn −
f ′(yn)

2 f ′(yn)− f ′(xn)

f (zn)

f ′(xn)
. (42)

If we take [19], for example,

φ3(x) = x −
2 f (x)

f ′(x)+ f ′(y(x))
, (43)

482 Y. Ham et al. / Journal of Computational and Applied Mathematics 222 (2008) 477–486

where y(x) = x − f (x)/ f ′(x), then we obtain the new fifth-order method

zn = xn −
2 f (xn)

f ′(xn)+ f ′(yn)
, (44)

xn+1 = zn −
f ′(yn)

2 f ′(yn)− f ′(xn)

f (zn)

f ′(xn)
. (45)

Example 3.4. For function H defined by

H(x, y) =
3 f ′(x)− f ′(y)

f ′(x)+ f ′(y)
, (46)

we obtain the new fifth-order scheme

zn = φ3(xn), (47)

xn+1 = zn −
3 f ′(xn)− f ′(yn)

f ′(xn)+ f ′(yn)

f (zn)

f ′(xn)
. (48)

If we take [7], for example,

φ3(x) = x −
f (x)

2

[
1

f ′(x)
+

1
f ′(y(x))

]
, (49)

where y(x) = x − f (x)/ f ′(x), then we obtain the new fifth-order method

zn = xn −
f (xn)

2

(
1

f ′(xn)
+

1
f ′(yn)

)
, (50)

xn+1 = zn −
3 f ′(xn)− f ′(yn)

f ′(xn)+ f ′(yn)

f (zn)

f ′(xn)
. (51)

The methods obtained in the fifth-order examples have an efficiency index equal to 5
1
4 ≈ 1.4953, which is better

than that of Newton’s method
√

2 ≈ 1.414.

3.3. Some sixth-order methods

Example 3.5. For the function H defined by

H(x, y) =
2 f ′2(y)

f ′2(x)− 4 f ′(x) f ′(y)+ 5 f ′2(y)
, (52)

we obtain the new sixth-order class of methods

zn = φ3(xn), (53)

xn+1 = zn −
2 f ′2(yn)

f ′2(xn)− 4 f ′(xn) f ′(yn)+ 5 f ′2(yn)

f (zn)

f ′(xn)
. (54)

If we take [19], for example,

φ3(x) = x −
2 f (x)

f ′(x)+ f ′(y(x))
, (55)

where y(x) = x − f (x)/ f ′(x), then we obtain the new sixth-order method

zn = xn −
2 f (xn)

f ′(xn)+ f ′(yn)
(56)

xn+1 = zn −
2 f ′2(yn)

f ′2(xn)− 4 f ′(xn) f ′(yn)+ 5 f ′2(yn)

f (zn)

f ′(xn)
. (57)

Y. Ham et al. / Journal of Computational and Applied Mathematics 222 (2008) 477–486 483

Example 3.6. For the function H defined by

H(x, y) = −
2 f ′2(x)

f ′2(x)− 4 f ′(x) f ′(y)+ f ′2(y)
, (58)

we obtain the new sixth-order class of methods

zn = φ3(xn), (59)

xn+1 = zn +
2 f ′(xn) f (zn)

f ′2(xn)− 4 f ′(xn) f ′(yn)+ f ′2(yn)
. (60)

If we take [7], for example,

φ3(x) = x −
f (x)

2

(
1

f ′(x)
+

1
f ′(y(x))

)
, (61)

where y(x) = x − f (x)/ f ′(x), then we obtain the new sixth-order method

zn = xn −
f (xn)

2

(
1

f ′(xn)
+

1
f ′(yn)

)
(62)

xn+1 = zn +
2 f ′(xn) f (zn)

f ′2(xn)− 4 f ′(xn) f ′(yn)+ f ′2(yn)
. (63)

The presented sixth-order methods add only one evaluation of the function at the point iterated by the third-order

methods to obtain the sixth-order, so that they have the efficiency index equal to 6
1
4 ≈ 1.565, which is much better than

that of Newton’s method
√

2 ≈ 1.414. It should be pointed out that by considering many other possible combinations
of the third-order formulas for φ3 and the functions H satisfying condition (7) and (8), we can continuously derive
many new sixth-order methods.

We would like to mention that some existing methods can be obtained as special cases of Theorem 2.1. In the
sixth-order case, if we take, for example,

H(x, y) =
f ′(x)+ f ′(y)

3 f ′(y)− f ′(x)
, (64)

or

H(x, y) =
2 f ′(x) f ′(y)

f ′2(y)+ 2 f ′(x) f ′(y)− f ′2(x)
, (65)

then the sixth-order methods proposed by Kou [12] are obtained, so our results can also be viewed as an important
advance on the previously known results.

4. Numerical examples

All computations were done with the MAPLE using 256 digit floating point arithmetics (Digits := 256). We set
ε = 10−225 as an iteration tolerance number. We used the following test functions and display the approximate zeros
x∗ found up to the 28th decimal place.

f1(x) = x3
+ 4x2

− 10, x∗ = 1.3652300134140968457608068290,

f2(x) = sin2 x − x2
+ 1, x∗ = 1.4044916482153412260350868178,

f3(x) = x2
− ex
− 3x + 2, x∗ = 0.25753028543986076045536730494,

f4(x) = cos x − x, x∗ = 0.73908513321516064165531208767,

f5(x) = xex2
− sin2 x + 3 cos x + 5, x∗ = −1.2076478271309189270094167584,

f6(x) = x2 sin2(x)+ ex2 cos x sin x
− 28, x∗ = 4.6221041635528383439278532516,

484 Y. Ham et al. / Journal of Computational and Applied Mathematics 222 (2008) 477–486

Table 1
Comparison of various iterative methods and Newton’s method

f (x) NFE(COC)
NM WF3 IW5 IW6 HM3 IH5 IH6 KM3

f1, x0 = 0.8 18(2.0) 18(3.0) 16(4.999) 16(6.0) 18(3.0) 16(5.0) 16(6.0) 18(3.0)
f1, x0 = 1 18(2.0) 18(3.0) 16(5.0) 16(6.0) 15(3.0) 16(5.0) 16(6.0) 15(3.0)

f2, x0 = 2.3 20(2.0) 18(3.0) 20(5.0) 16(6.0) 18(3.0) 16(5.0) 16(6.0) 18(3.0)
f2, x0 = 1 20(2.0) 18(3.0) 20(5.0) 16(6.0) 18(3.0) 16(5.004) 16(5.99) 18(3.0)

f3, x0 = 0 16(2.0) 15(3.0) 16(5.0) 12(6.0) 15(3.0) 16(5.0) 12(5.983) 15(3.0)
f3, x0 = 1 16(2.0) 18(3.0) 16(5.0) 16(6.0) 18(3.0) 16(5.0) 16(6.0) 18(3.0)

f4, x0 = 1.7 16(2.0) 18(3.0) 16(5.0) 16(6.0) 18(3.0) 16(5.0) 16(6.0) 18(3.0)
f4, x0 = 0 18(2.0) 18(3.0) 16(4.999) 16(6.0) 18(3.0) 16(4.999) 16(6.0) 18(3.0)

f5, x0 = −1 18(2.0) 18(3.0) 16(5.0) 16(6.0) 18(3.0) 16(5.0) 16(6.0) 21(3.0)
f5, x0 = −0.5 26(2.0) 42(3.0) 20(5.0) 16(5.598) 18(3.0) 24(5.0) 20(6.0) 21(3.0)

f6, x0 = 3.5 18(2.0) 18(3.0) 20(5.0) 16(6.0) 18(3.0) 16(5.0) 16(6.0) 18(3.0)
f6, x0 = 4.5 22(2.0) 21(3.0) 52(4.998) 20(6.0) 21(3.0) 20(5.0) 20(6.0) 24(3.0)

f7, x0 = 3.5 32(2.0) 33(3.0) 352(5.0) 32(6.0) 27(3.0) 28(5.0) 24(5.998) 33(3.0)
f7, x0 = 3.2 24(2.0) 24(3.0) 32(5.0) 20(6.001) 21(3.0) 20(5.0) 20(6.0) 24(3.0)

f8, x0 = 1.4 746(1.297) 708(1.176) div 688(1.104) 561(1.121) 640(1.09) 580(1.072) 792(1.205)
f8, x0 = 1.2 750(1.297) 711(1.176) div 692(1.104) 564(1.121) 644(1.09) 584(1.072) 795(1.205)

f9, x0 = 1.1 744(1.297) 705(1.176) div 688(1.104) 558(1.121) 636(1.09) 576(1.072) 789(1.205)
f9, x0 = 0.9 742(1.297) 705(1.176) div 684(1.104) 558(1.121) 636(1.09) 576(1.072) 789(1.205)

f7(x) = ex2
+7x−30

− 1, x∗ = 3,

f8(x) = (x
3
+ 4x2

− 10)2, x∗ = 1.3652300134140968457608068290,

f9(x) = (x − 1)2ex , x∗ = 1.

We present some numerical test results for various iterative schemes and the Newton method in Table 1. Compared
were the Newton method (NM), the method of Weerakoon and Fernando (WF3) defined by (43), the method of
Homeier (HM3) defined by (49), the fifth-order variant of WF (45) (IW5), the sixth-order variant of WF3 (57) (IW6),
the fifth-order variant of HM3 (51) (IH5), the sixth-order variant of HM3 (63) (IH6) and the third-order method
defined by (39) (KM3) newly obtained in the present contribution. We note that these methods do not require the
computation of second derivatives to carry out iterations.

Displayed in Table 1 are the number of function evaluations (NFE) required such that | f (xn)| < ε and the
computational order of convergence (COC) in parentheses. Here, COC is defined by [19]

ρ ≈
ln |(xn+1 − α)/(xn − α)|

ln |(xn − α)/(xn−1 − α)|
.

In the table ‘div’ means that the sequence of approximate zeros produced from the corresponding method doesn’t
converge within the maximum iteration number.

The numerical results in Table 1 show that they are well in accordance with the theory developed in this paper;
for almost all of the test functions, the proposed methods improve the corresponding third-order methods, achieve
higher computational efficiency and can compete with Newton’s method. Besides, we can see that the new third-order
method KM3 has at least equal performance as the other existing third-order methods. Numerical results also confirm
that the methods have local convergence property depending on choice of initial approximations. Moreover, it can
be observed that for the functions f8 and f9 having repeated zeros, all the methods under consideration show linear
convergence even if the initial guesses are rather close to the zero as in Newton’s method, which is well known.

We also present some numerical test results for various fifth-order convergent iterative schemes in Table 2.
Compared were Grau et al.’s method in [5] (GM), Grau-Sanchez’s method [6] (SM) defined by

Y. Ham et al. / Journal of Computational and Applied Mathematics 222 (2008) 477–486 485

Table 2
Comparison of various fifth-order convergent iterative methods

f (x) NFE
GM SM KM1 KM2 VM NM HM1 HM2

f1, x0 = 1.5 16 16 16 16 16 16 16 16
f1, x0 = 1 20 16 16 16 16 16 16 16

f2, x0 = 2 20 16 16 16 16 16 16 16
f2, x0 = 1 132 20 24 16 20 16 20 16

f3, x0 = 0 16 16 16 16 16 16 16 16
f3, x0 = −0.5 16 16 16 16 16 16 16 16

f4, x0 = 1.5 16 16 16 16 16 16 16 16
f4, x0 = −0.5 div 16 div 16 28 20 16 20

f5, x0 = −1 20 16 20 16 16 16 16 16
f5, x0 = −1.4 16 16 16 20 16 16 16 16

f6, x0 = 5 div div div 44 28 24 124 div
f6, x0 = 4 88 div 24 24 20 20 32 div

f7, x0 = 3.5 32 28 div div 28 28 352 28
f7, x0 = 2.9 div 24 div 20 40 20 20 20

zn = xn −
2 f (xn)

f ′(xn)+ f ′(yn)
(66)

xn+1 = zn −
f (zn)

f ′(yn)
, (67)

where yn is defined by (5), the method of Kou et al. with β = 1, γ = −1 in [10] (KM1), Kou et al.’s method in with
β = 1 [9] (KM2), Vy’s method [18] (VM) defined by

xn+1 = yn −
f (yn)

f ′
(

yn −
f (yn)

2 f ′(xn)

) , (68)

where yn is defined by (5), Noor’s method [16] (NM) defined by

xn+1 = yn −
2 f (xn) f (yn) f ′(yn)

2 f (xn) f ′2(yn)− f ′2(xn) f (yn)+ f ′(xn) f ′(yn) f (yn)
, (69)

where yn is defined by (5), and the methods (44) and (45) (HM1), and (50) and (51) (HM2) introduced in the present
contribution.

Displayed in Table 2 are the number of function evaluations (NFE) required such that | f (xn)| < ε. The test result
indicates that the proposed fifth-order methods have at least equal performance as compared with the other methods
of the same order. It also confirms that the considered methods have local convergence depending on choice of initial
approximations. We refer the reader to [9,10] for some numerical results showing that the Kou et al. methods can
compete with Newton’s method.

5. Conclusion

In this work we considered developing some higher-order modifications of Newton’s method for solving nonlinear
equations. The proposed methods add only one function evaluation at the point iterated by the existing iteration
formula but they increase the order of the existing method to one, two or three units higher. Some of the presented
methods were compared in their performance to some known methods of the same order; it was observed that they can
be competitive to those methods and also improve the existing methods. Our approach can be continuously applied in
order to improve any existing iteration formula.

486 Y. Ham et al. / Journal of Computational and Applied Mathematics 222 (2008) 477–486

Acknowledgements

The authors would like to thank the referees for their constructive comments and suggestions which substantially
improved the quality of this paper. The work of the first author was supported by University of Northern Iowa. The
work of the third author was supported by the SRC/ERC programme of MOST/KOSEF R11-1999-054 & BK21.

References

[1] C. Chun, Construction of Newton-like iteration metods for solving nonlinear equations, Numer. Math. 104 (2) (2006) 297–315.
[2] C. Chun, Y. Ham, Some sixth-order variants of Ostrowski root-finding methods, Appl. Math. Comput. 193 (2) (2007) 389–394.
[3] W. Gautschi, Numerical Analysis: An Introduction, Birkhäuser, 1997.
[4] M. Grau, J.L. Dı́az-Barrero, An improvement to Ostrowski root-finding method, Appl. Math. Comput. 173 (1) (2006) 450–456.
[5] M. Grau, J.L. Dı́az-Barrero, An improvement of the Euler–Chebyshev iterative method, J. Math. Anal. Appl. 315 (1) (2006) 1–7.
[6] M. Grau-Sánchez, Improvements of the efficiency of some three-step iterative like-Newton methods, Numer. Math. 107 (1) (2007) 131–146.
[7] H.H.H. Homeier, On newton-type methods with cubic convergence, J. Comput. Appl. Math. 176 (2) (2005) 425–432.
[8] M.V. Kanwar, V.K. Kukreja, S. Singh, On a class of quadratically convergent iteration formulae, Appl. Math. Comput. 66 (3) (2006) 633–637.
[9] J. Kou, Y. Li, X. Wang, A family of fifth-order iterations composed of Newton and third-order methods, Appl. Math. Comput. 186 (2) (2007)

1258–1262.
[10] J. Kou, Y. Li, The improvements of Chebyshev–Halley methods with fifth-order convergence, Appl. Math. Comput. 188 (1) (2007) 143–147.
[11] J. Kou, Y. Li, Modified Chebyshev–Halley methods with sixth-order convergence, Appl. Math. Comput. 188 (1) (2007) 681–685.
[12] J. Kou, The improvements of modified Newton’s method, Appl. Math. Comput. 189 (1) (2007) 602–609.
[13] J. Kou, Y. Li, X. Wang, Some new sixth-order methods for solving non-linear equations, Appl. Math. Comput. 189 (1) (2007) 647–651.
[14] M.A. Noor, K.I. Noor, Fifth-order iterative methods for solving nonlinear equations, Appl. Math. Comput. 188 (1) (2007) 406–410.
[15] K.I. Noor, M.A. Noor, Predictor–corrector Halley method for nonlinear equation, Appl. Math. Comput. 188 (2) (2007) 1587–1591.
[16] M.A. Noor, W.A. Khan, A. Hussain, A new modified Halley method without second derivatives for nonlinear equation, Appl. Math. Comput.

189 (2) (2007) 1268–1273.
[17] J.F. Traub, Iterative Methods for the Solution of Equations, Chelsea Publishing Company, New York, 1977.
[18] D.T. Vy, A fifth-order iterative method for solving equations, Acta Math. Hungar. 49 (1–2) (1987) 129–137.
[19] S. Weerakoon, T.G.I. Fernando, A variant of Newton’s method with accelerated third-order convergence, Appl. Math. Lett. 13 (8) (2000)

87–93.

	Some higher-order modifications of Newton's method for solving nonlinear equations
	Introduction
	Development of methods and convergence analysis
	Some iterative methods
	Some third-order methods
	Some fifth-order methods
	Some sixth-order methods

	Numerical examples
	Conclusion
	Acknowledgements
	References

