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a b s t r a c t

In this article, a reduced optimizing finite difference scheme (FDS) based on singular value
decomposition (SVD) and proper orthogonal decomposition (POD) for Burgers equation
is presented. Also the error estimates between the usual finite difference solution and the
POD solution of reduced optimizing FDS are analyzed. It is shown by considering the results
obtained for numerical simulations of cavity flows that the error between the POD solution
of reduced optimizing FDS and the solution of the usual FDS is consistent with theoretical
results.Moreover, it is also shown that the reduced optimizing FDS is feasible and efficient.
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1. Introduction

LetΩ ⊂ R2 be a bounded, connected and polygonal domain. Consider the following Burgers equation.

Problem (I). Find (u, v) such that, for T > 0,

∂u
∂t
+
u∂u
∂x
+
v∂u
∂y
=
1
Re

(
∂2u
∂x2
+
∂2u
∂y2

)
+ f1, (x, y, t) ∈ Ω × (0, T ),

∂v

∂t
+
u∂v
∂x
+
v∂v

∂y
=
1
Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+ f2, (x, y, t) ∈ Ω × (0, T ),

u(x, y, t) = ϕ(x, y, t), v(x, y, t) = ψ(x, y, t), (x, y, t) ∈ ∂Ω × (0, T ),
u(x, y, 0) = v(x, y, 0) = 0, (x, y) ∈ Ω,

(1.1)

where (u, v) represents the velocity vector, T the total time, Re the Reynolds number, and ϕ(x, y, t) and ψ(x, y, t) are
two given functions. For the sake of convenience, without loss of generality, we may as well suppose that ϕ(x, y, t) =
ψ(x, y, t) = 0 in the following theoretical analysis.
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Burgers equation (1.1) is an important physical equation in atmospheric dynamicswhich hasmany applied backgrounds.
Though the finite difference scheme (FDS) is one of the most effective approaches in computing a numerical solution
for Burgers equation (see [1–3]), a fully discrete system of FDS solutions for Burgers equation includes many degrees of
freedom. Thus, an important problem is how to simplify the computational load and save time-consuming calculations
and resource demands in the actual computational process in a sense that guarantees a sufficiently accurate numerical
solution. Proper orthogonal decomposition (POD), also known as Karhunen–Loève expansions in signal analysis and pattern
recognition (see [4]), or principal component analysis in statistics (see [5]), or the method of empirical orthogonal functions
in geophysical fluid dynamics (see [6,7]) or meteorology (see [8]), is a technique offering adequate approximation for
representing fluid flow with reduced number of degrees of freedom, i.e., with lower dimensional models (see [9]) so as
to alleviate the computational load and memory requirements savings.
Although the basic properties of the POD method have been well established and have widely been applied in

computations of statistics and fluid dynamics [4–20], it is mainly used to perform principal component analysis and search
the main behavior of a dynamic system. Some reduced optimizing order finite difference models and mixed finite element
formulations and error estimates for the upper tropical Pacific oceanmodel based on POD (see, [21–25]) are developed. Also
an FDS based on POD for the non-stationary Navier–Stokes equations has been presented but its error analysis has not been
derived (see [26]). To the best of our knowledge, there are no published results to address when POD is used to reduce the
formulation of FDS for Burgers equation and the error estimates between the solution of the usual FDS and POD solution of
reduced optimizing FDS.
In this paper, singular value decomposition (SVD) and POD are used to reduce the formulation of FDS for Burgers equation

and the error estimates between the solution of the usual FDS and POD solution of reduced optimizing FDS are derived. It is
shown by considering the results obtained for numerical simulations of cavity flows that the error between the POD solution
of the reduced optimizing FDS based POD technique and the solution of the usual FDS is consistent with theoretical results.
Moreover, it is also shown that the reduced FDS based on SVD and POD is feasible and efficient in computing the numerical
solution for Burgers equation.
Though Kunisch and Volkwein have presented some Galerkin POD methods for parabolic problems and a general

equation in fluid dynamics in References [27,28], and the SVD approach combined with the POD technique is used to treat
Burgers equation in Reference [29] and the cavity flow problem in Reference [12], the error estimates have not completely
been derived, especially a reduced optimizing formulation of FDS for Burgers equation has not been derived. Our method
here is different from their approaches, whose methods consist of Galerkin projection approaches where original variables
are substituted for a linear combination of POD basis and their POD basis is generated with the solutions of the physical
system at all time instances. While the basis ideal of our reduced optimizing technique is that ensembles of data are first
compiled from transient solutions computed from the equation system derived with the usual FDS for Burgers equation or
from physics system trajectories via drawing samples of experiments and interpolation (or date assimilation), a group of
POD basis is next obtainedwith SVD, and then the unknowns of the usual FDS are substitutedwith the linear combination of
POD basis to derive a reduced optimizing FDS for Burgers equation. Especially, we prove theoretically that it is unnecessary
to take the solutions of the physical system at all time instances as snapshots in the reduced optimizing formulation of FDS.
Nothing remains but to take the solutions of the physical system at a few time instances as snapshots so that our method
could reduce the computational load finding the POD basis. It is shown that the presentmethod has improved and innovated
the existing methods.
The paper is organized as follows. Section 2 is to derive the usual FDS for Burgers equation and to generate snapshots

from transient solutions computed from the equation system derived by the usual FDS. In Section 3, a group of optimal
orthonormal basis is reconstructed from the elements of the snapshots with SVD and POD and a reduced optimizing FDS
with lower dimensional number based on SVD and POD for Burgers equation is developed. In Section 4, error estimates
between solutions of the usual FDS and POD solutions of the reduced optimizing FDS are derived. In Section 5, some
numerical examples are presented illustrating that the errors between the reduced optimizing FDS solutions and the usual
FDS solutions are consistent with previously obtained theoretical results, thus validating the feasibility and efficiency of the
POD method. Section 6 provides the main conclusions and future tentative ideas.

2. Usual FDS for Burgers and generate snapshots

Let 1x and 1y be the spatial step increment in the x-direction and y-direction, respectively, and 1t be the time step
increment, un

j+ 12 ,k
and vn

j,k+ 12
denote function values of u and v at point (xj+ 12 , yk, tn) and (xj, yk+ 12 , tn)(0 ≤ j ≤ J, 0 ≤ k ≤

K , 0 ≤ n ≤ N = T/1t), respectively.
In the following, we apply staggered net (see Fig. 1) FDS to solving Problem (I).

(1) Discretizing all terms of the momentum equation

∂u
∂t
+
u∂u
∂x
+
v∂u
∂y
=
1
Re

(
∂2u
∂x2
+
∂2u
∂y2

)
+ f1 (2.1)

on the x-direction at point (xj+ 12 , yk, tn) yields
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Fig. 1. Staggered mesh graphics.

un+1
j+ 12 ,k
= un

j+ 12 ,k
− F n

j+ 12 ,k
+1tf n

1,j+ 12 ,k
, (2.2)

where

F n
j+ 12 ,k

=
1t
1x
un
j+ 12 ,k

(unj+1,k − u
n
j,k)+

1t
1y
vn
j+ 12 ,k

(un
j+ 12 ,k+

1
2
− un

j+ 12 ,k−
1
2
)

−
1t
Re

[
uj+ 12 ,k−1 − 2uj+ 12 ,k + uj+ 12 ,k+1

1y2
+

uj− 12 ,k − 2uj+ 12 ,k + uj+ 32 ,k
1x2

]n
. (2.3)

(2) Expanding the momentum equation

∂v

∂t
+
u∂v
∂x
+
v∂v

∂y
=
1
Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+ f2 (2.4)

on the y-direction at point (xj, yk+ 12 , tn) yields

vn+1
j,k+ 12
= vn

j,k+ 12
− Gn

j,k+ 12
+1tf n

2,j,k+ 12
, (2.5)

where

Gn
j,k+ 12

=
1t
1x
un
j,k+ 12

(vn
j+ 12 ,k+

1
2
− vn

j− 12 ,k+
1
2
)+

1t
1y
vn
j,k+ 12

(vnj,k+1 − v
n
j,k)

−
1t
Re

[
vj−1,k+ 12

− 2vj,k+ 12 + vj+1,k+ 12
1x2

+

vj,k− 12
− 2vj,k+ 12 + vj,k+ 32

1y2

]n
. (2.6)

Using the same approaches as the proof of the convergence and stability of finite difference equations of the non-
stationary Navier–Stokes equation in [1] or [2], if 0.25(|u|2 + |v|2)1t · Re ≤ 1, 1t ≤ 0.25Re1x2, and 1t ≤ 0.25Re1y2, it
is not difficult to prove the convergence and stability of the usual FDS (2.2) and (2.5) for Burgers equation. We conclude the
following result.

Theorem 1. The usual FDS (2.2) and (2.5) for Burgers equation has the following error estimates

|En(unj+ 12 ,k
, vn
j,k+ 12

)| = ‖(u(xj+ 12 , yk, tn), v(xj, yk+ 12 , tn))− (u
n
j+ 12 ,k

, vn
j,k+ 12

)‖ = O(1t,1x2,1y2), 1 ≤ n ≤ N, (2.7)

where ‖ · ‖ denotes the usual normal of the vector.

Proof. First, by expanding all terms of (2.2) at point (xj+ 12 , yk, tn) and using the Taylor expansion, we obtain that

un+1
j+ 12 ,k

= un
j+ 12 ,k
+1t

(
∂u
∂t

)n
j+ 12 ,k
+
(1t)2

2!

(
∂2u
∂t2

)n
j+ 12 ,k
+
(1t)3

3!

(
∂3u
∂t3

)n
j+ 12 ,k
+ · · · , (2.8)

[uj+ 12 ,k−1 − 2uj+ 12 ,k + uj+ 12 ,k+1]
n
= [uj+ 12 ,k−1 − uj+ 12 ,k]

n
+ [uj+ 12 ,k+1 − uj+ 12 ,k]

n
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= −1y
(
∂u
∂y

)n
j+ 12 ,k
+
(1y)2

2!

(
∂2u
∂y2

)n
j+ 12 ,k
−
(1y)3

3!

(
∂3u
∂y3

)n
j+ 12 ,k
+
(1y)4

4!

(
∂4u
∂y4

)n
j+ 12 ,k
+ · · · +1y

(
∂u
∂y

)n
j+ 12 ,k

+
(1y)2

2!

(
∂2u
∂y2

)n
j+ 12 ,k
+
(1y)3

3!

(
∂3u
∂y3

)n
j+ 12 ,k
+
(1y)4

4!

(
∂4u
∂y4

)n
j+ 12 ,k
+ · · ·

= (1y)2
(
∂2u
∂y2

)n
j+ 12 ,k
+
(1y)4

12

(
∂4u
∂y4

)n
j+ 12 ,k
+ · · · , (2.9)

[uj− 12 ,k − 2uj+ 12 ,k + uj+ 32 ,k]
n
= [uj− 12 ,k − uj+ 12 ,k]

n
+ [uj+ 32 ,k − uj+ 12 ,k]

n

= −1x
(
∂u
∂x

)n
j+ 12 ,k
+
(1x)2

2!

(
∂2u
∂x2

)n
j+ 12 ,k
−
(1x)3

3!

(
∂3u
∂x3

)n
j+ 12 ,k

+
(1x)4

4!

(
∂4u
∂x4

)n
j+ 12 ,k
+ · · · +1x

(
∂u
∂x

)n
j+ 12 ,k
+
(1x)2

2!

(
∂2u
∂x2

)n
j+ 12 ,k

+
(1x)3

3!

(
∂3u
∂x3

)n
j+ 12 ,k
+
(1x)4

4!

(
∂4u
∂x4

)n
j+ 12 ,k
+ · · ·

= (1x)2
(
∂2u
∂x2

)n
j+ 12 ,k
+
(1x)4

12

(
∂4u
∂x4

)n
j+ 12 ,k
+ · · · , (2.10)

un
j+ 12 ,k+

1
2
− un

j+ 12 ,k−
1
2
= un

j+ 12 ,k+
1
2
− un

j+ 12 ,k
+ un

j+ 12 ,k
− un

j+ 12 ,k−
1
2

=
1y
2

(
∂u
∂y

)n
j+ 12 ,k
+
1
2!

(
1y
2

)2 (
∂2u
∂y2

)n
j+ 12 ,k

+
1
3!

(
1y
2

)3 (
∂3u
∂y3

)n
j,k
+ · · · +

1y
2

(
∂u
∂y

)n
j+ 12 ,k

−
1
2!

(
1y
2

)2 (
∂2u
∂y2

)n
j+ 12 ,k
+
1
3!

(
1y
2

)3 (
∂3u
∂y3

)n
j+ 12 ,k
− · · ·

= 1y
(
∂u
∂y

)n
j+ 12 ,k
+
(1y)3

24

(
∂3u
∂y3

)n
j+ 12 ,k
+ · · · , (2.11)

unj+1,k − u
n
j,k = u

n
j+1,k − u

n
j+ 12 ,k
+ un

j+ 12 ,k
− unj,k

=
1x
2

(
∂u
∂x

)n
j+ 12 ,k
+
1
2!

(
1x
2

)2 (
∂2u
∂x2

)n
j+ 12 ,k

+
1
3!

(
1x
2

)3 (
∂3u
∂x3

)n
j,k
+ · · · +

1x
2

(
∂u
∂x

)n
j+ 12 ,k

−
1
2!

(
1x
2

)2 (
∂2u
∂x2

)n
j+ 12 ,k
+
1
3!

(
1x
2

)3 (
∂3u
∂x3

)n
j+ 12 ,k
− · · ·

= 1x
(
∂u
∂x

)n
j+ 12 ,k
+
(1x)3

24

(
∂3u
∂x3

)n
j+ 12 ,k
+ · · · . (2.12)

Inserting (2.8)–(2.12) into (2.2) yields

[
∂u
∂t
+
u∂u
∂x
+
v∂u
∂y
+
∂p
∂x
−
1
Re

(
∂2u
∂x2
+
∂2u
∂y2

)
− f1

]n
j+ 12 ,k

= −
1t
2!

(
∂2u
∂t2

)n
j+ 12 ,k
+
(1x)2

24

(
u∂3u
∂x3

)n
j+ 12 ,k
+
(1y)2

24

(
v∂3u
∂y3

)n
j+ 12 ,k

+
(1x)2

24

(
∂3p
∂x3

)n
j+ 12 ,k
+
(1x)2

12Re

(
∂4u
∂x4

)n+1
j,k
+
(1y)2

12Re

(
∂4v

∂y4

)n+1
j,k
+ · · · . (2.13)
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Therefore, the truncation error that (2.2) approximates to (2.1) is

TE1 = O(1t,1x2,1y2). (2.14)

Next, using the same approach as in (2.14), the truncation errors that (2.5) approximates to (2.4) are given by

TE2 = O(1t,1x2,1y2). (2.15)

Therefore, the error of numerical solutions (un
j+ 12 ,k

, vn
j,k+ 12

) (1 ≤ n ≤ N , 0 ≤ j ≤ J , 0 ≤ k ≤ K ) for Problem (I) obtained by

(2.2) and (2.5) is that

|En(unj+ 12 ,k
, vn
j,k+ 12

)| = ‖(u(xj+ 12 , yk, tn), v(xj, yk+ 12 , tn))− (u
n
j+ 12 ,k

, vn
j,k+ 12

)‖2

= O(1t,1x2,1y2), (2.16)

which completes the proof of Theorem 1.

Thus, if Reynolds number Re, time step increment 1t , and spatial step increment 1x and 1y in the x-direction and y-
direction are given, by solving (2.2) and (2.5) one could obtain un

j+ 12 ,k
and vn

j,k+ 12
(0 ≤ j ≤ J, 0 ≤ k ≤ K , 1 ≤ n ≤ N).

Write uni = u
n
j+ 12 ,k

and vni = v
n
j,k+ 12

(i = k(J + 1)+ j+ 1,m = JK , 1 ≤ i ≤ m, 0 ≤ j ≤ J , 0 ≤ k ≤ K , 1 ≤ n ≤ N). L× m

group of values consisting of the ensemble {unli , v
nl
i }
L
l=1(1 ≤ i ≤ m) (usually L� N), known as ‘‘snapshots’’ which is useful

and of interest to us, are chosen from the N ×m group of {uni , v
n
i }
N
n=1(1 ≤ i ≤ m).

Remark 1. When one computes actual problems, one may obtain the ensemble of snapshots from physical system
trajectories via drawing samples of experiments and interpolation (or date assimilation). For example for aweather forecast,
one can use the previous weather results to structure the ensemble of snapshots, then restructure the optimal basis for the
ensemble of snapshots by the following SVD and POD, and finally combine with the POD projection to derive a reduced
optimizing dynamical system. Thus, the situation of future weather change can be quickly simulated and the future weather
change can be forecast, which is of major importance for actual real-life applications.

3. Reduced optimizing FDS based POD for Burgers equation

In this section, we first derive the POD basis to employ SVD, and then use the POD basis to develop a reduced optimizing
FDS for Burgers equation.

3.1. Singular value decomposition and POD basis

The ensemble of snapshots {unli , v
nl
i }
L
l=1(1 ≤ i ≤ m) can be expressed as twom× Lmatrices Au and Av as follows:

Au =


un11 un21 · · · unL1
un12 un22 · · · unL2
...

...
...

...
un1m un2m · · · unLm

 , Av =


v
n1
1 v

n2
1 · · · v

nL
1

v
n1
2 v

n2
2 · · · v

nL
2

...
...

...
...

vn1m vn2m · · · vnLm

 . (3.1)

In order to obtain optimal representation forAu (Av is similar),we employed SVD to research the FDS for Burgers equation,
which is an important tool for finding optimal basis of optimization approximation. For matrix Au ∈ Rm×L, there exists the
SVD

Au = Uu

(
Su 0
0 0

)
V Tu , (3.2)

where Uu ∈ Rm×m and Vu ∈ RL×L are all orthogonal matrices, Su = diag{σu1, σu2, . . . , σu`} ∈ R`×` is the diagonal matrix
corresponding to Au, and σui (i = 1, 2, . . . , `) are the positive singular values. The matrices Uu = (φu1,φu2, . . . ,φum) ∈
Rm×m and Vu = (ϕu1,ϕu2, . . . ,ϕuL) ∈ R

L×L contain the orthogonal eigenvectors to the AuATu and ATuAu, respectively. The
columns of these eigenvector matrices are organized such that corresponding to the singular values σui are comprised in Su
in a non-decreasing order. And the singular values of the decomposition are connected to the eigenvalues of the matrices
AuATu and A

T
uAu in a manner such that λui = σ

2
ui (i = 1, 2, . . . , `). Since the number of mesh points is far larger than that of

transient moment points, i.e., m � L, that is also that the order m for matrix AuATu is far larger than the order L for matrix
ATuAu. However, their null eigenvalues are identical, therefore, wemay first solve the eigenequation corresponding tomatrix
ATuAu to find the eigenvectors ϕuj (j = 1, 2, . . . , L), and then by the relationship

φuj =
1
σuj

Auϕuj, j = 1, 2, . . . , `, (3.3)

we may obtain ` (` ≤ L) eigenvectors corresponding to the non-null eigenvalues for matrix AuATu.
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Define matrix norm ‖ · ‖α,β as ‖Au‖α,β = supx6=0 ‖Ax‖α/‖x‖β (where ‖ · ‖α and ‖ · ‖β are the norm of the vector). Let
AMu =

∑Mu
i=1 σuiφuiϕ

T
ui, φui (i = 1, 2, . . . ,Mu) and ϕuj (j = 1, 2, . . . ,Mu) areMu first column vectors of matrices Uu and Vu,

respectively. Then, by the relationship properties between spectral radius and ‖·‖2,2 for thematrix, ifMu < r = rankAu (r ≤
` ≤ L), then there is the following equation

min
rank(B)≤Mu

‖Au − B‖2,2 = ‖Au − AMu‖2,2 = σu(Mu+1), (3.4)

which shows that AMu is an optimal representation of Au, i.e., AMu is an optimal approximation of Au and the error is
σu(Mu+1) =

√
λu(Mu+1).

Denote the L column vectors of matrices Au by alu = (u
nl
1 , u

nl
2 , . . . , u

nl
m)
T(l = 1, 2, . . . , L), and εl(l = 1, 2, . . . , L) by unit

column vectors except that the lth component is 1, while the other components are 0. Then by the compatibility of the norm
for matrices and vectors, we obtain that

‖alu − PMu(a
l
u)‖2 = ‖(Au − AMu)εl‖2 ≤ ‖Au − AMu‖2,2‖εl‖2 =

√
λu(Mu+1), (3.5)

where PMu(alu) =
∑Mu
j=1(φuj, a

l
u)φuj, (φuj, a

l
u) are the canonical inner products for vector φuj and vector a

l
u. Inequality (3.5)

shows that PMu(alu) are the optimal approximations to a
l
u, whose errors are all

√
λu(Mu+1). Thus, a group of optimal basis is

found in the construction ofAMu . By the property of the eigenvector, it iswell known that8u = (φu1,φu2, . . . ,φMu)(Mu � L)
is an orthonormal matrix and {φuj}

Mu
j=1 is a group of optimal basis, which is known as a group of POD basis.

By the same approach as the above (3.5), if alv = (v
nl
1 , v

nl
2 , . . . , v

nl
m )
T(l = 1, 2, . . . , L) are the L column vectors of matrices

Av , then PMv (alv) =
∑Mv
j=1(φvj, a

l
v)φvj are the optimal approximations to a

l
v , whose errors are all

√
λv(Mv+1), i.e.,

‖alv − PMv (a
l
v)‖2 ≤

√
λv(Mv+1), (3.6)

where λv(Mv+1) is the (Mv+1)th eigenvalue for AvATv , and8v = (φv1,φv2, . . . ,φvMv ) is an orthonormal matrix and {φvj}
Mv
j=1

is a group of optimal basis corresponding to Av .

3.2. Reduced optimizing FDS based on POD for Burgers equation

In the following, we use the POD basis to derive a reduced optimizing FDS for Burgers equation.
Write

um(t) = (u1(t), u2(t), . . . , um(t))T,
vm(t) = (v1(t), v2(t), . . . , vm(t))T,

(3.7)

where ui = uj+ 12 ,k and vi = vj,k+ 12 (1 ≤ i ≤ m, i = k(J + 1) + j + 1,m = KJ, 0 ≤ j ≤ J, 0 ≤ k ≤ K). Thus, (2.2) and (2.5)
are written as the following vector formulation(

un+1m , vn+1m

)T
=
(
unm, v

n
m

)T
+1t F̃(unm, v

n
m), 0 ≤ n ≤ N, (3.8)

where F̃(unm, v
n
m) = (F̃1(u

n
m, v

n
m), F̃2(u

n
m, v

n
m))

T is the vector function following from (2.2) and (2.5). Put(
unm, v

n
m

)T
=
(
Φuα

n
Mu ,8vβ

n
Mv

)T
, (3.9)

where unm = (un1, u
n
2, . . . , u

n
m)
T and vnm = (vn1, v

n
2, . . . , v

n
m)
T. Inserting (3.9) into (3.8) and noting that 8u and 8v are

orthogonal matrices, we may obtain a reduced optimizing model which hasMu +Mv(Mu,Mv � L� m) unknown values:(
αn+1Mu
βn+1Mv

)
=

(
αnMu
βnMv

)
+1t

(
8TuF̃1(8uα

n
Mu ,8vβ

n
Mv )

8Tv F̃2(8uα
n
Mu ,8vβ

n
Mv )

)
, (3.10)

where n = 0, 1, 2, . . . ,N , initial values are α0Mu = 8
T
uu
0
m and β

0
Mv = 8

T
vv
0
m.

After one has obtainedαnMu andβ
n
Mv from (3.10), one obtains the PODoptimal solutionswhich arewritten asu

∗n
i = Φuα

n
Mu

and v∗ni = 8vβ
n
Mv for Problem (I) by (3.9). Thus, we get the optimal numerical solutions which are written as (u

∗n
j+ 12 ,k

, v∗n
j,k+ 12

)

(0 ≤ j ≤ J − 1, 0 ≤ k ≤ K − 1, 0 ≤ n ≤ N) for Problem (I), where u∗n
j+ 12 ,k
= u∗ni , v

∗n
j,k+ 12
= v∗ni (j = i− 1− k(J + 1) ≥ 0, 1 ≤

i ≤ m = KJ, 0 ≤ k ≤ K − 1, 0 ≤ n ≤ N).

Remark 2. Formula (3.10) with (3.9) is the reduced optimizing FDS based on SVD and POD for Problem (I), since it only
includes (Mu+Mv)×N (Mu,Mv � L� m) degrees of freedomwhile the usual FDS (2.2) and (2.5) includes 2m×N . When
one computes actual problems, one may obtain the ensemble of snapshots from physical system trajectories by drawing
samples from experiments and interpolation (or data assimilation), then restructures the POD basis for the ensemble of
snapshots, and finally combines it with POD projection to derive a reduced optimizing FDS, i.e., one needs only to solve the
above formula (3.10) with (3.9) which has only a few degrees of freedom, but it is unnecessary to solve the usual FDS (2.2)
and (2.5). Thus, the computational load and memory requirements can be greatly alleviated.
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4. Error analysis of reduced optimizing FDS

This section is devoted to discussing the error estimates of the reduced optimizing FDS (3.9) and (3.10) for Problem (I).
Let

Xu = span{φu1,φu2, . . . ,φMu},
Xv = span{φv1,φv2, . . . ,φvMv }.

(4.1)

Then, for column vectors alu (1 ≤ l ≤ L) of Au, by (3.5) we have that a
l
u = unlm , and there is a PMu(u

nl
m) = PMu(alu) =∑Mu

j=1(φuj, a
l
u)φuj =

∑Mu
j=1(φuj, u

nl
m)φuj ∈ Xu such that

‖unlm − PMu(u
nl
m)‖2 ≤

√
λu(Mu+1), 1 ≤ l ≤ L. (4.2)

While n ∈ {n1, n2, . . . , nL}, u∗nm = PMu(u
n
m) =

∑Mu
j=1(φuj, u

n
m)φuj obtained by (3.9) and (3.10), therefore, we obtain that

‖unm − u∗nm ‖2 ≤
√
λu(Mu+1), n ∈ {n1, n2, . . . , nL}. (4.3)

Using the same approach as (4.3), we could obtain that

‖vnm − v∗nm ‖2 ≤
√
λv(Mv+1), if n ∈ {n1, n2, . . . , nL}. (4.4)

When n 6∈ {n1, n2, . . . , nL}, we may as well let tn ∈ (tnl , tnl+1) and tn be the nearest point to tnl . Comparing (3.9) and (3.10)
with (3.8), (3.9) and (3.10) can be written similarly in forms of (2.2) and (2.5) as follows

u∗n+1
j+ 12 ,k
= u∗n

j+ 12 ,k
− F∗n

j+ 12 ,k
+1tf n

1,j+ 12 ,k
, (4.5)

where

F∗n
j+ 12 ,k

=
1t
1x
u∗n
j+ 12 ,k

(u∗nj+1,k − u
∗n
j,k)+

1t
1y
v∗n
j+ 12 ,k

(u∗n
j+ 12 ,k+

1
2
− u∗n

j+ 12 ,k−
1
2
)

−
1t
Re

[u∗n
j+ 12 ,k−1

− 2u∗n
j+ 12 ,k
+ u∗n

j+ 12 ,k+1

1y2
+

u∗n
j− 12 ,k
− 2u∗n

j+ 12 ,k
+ u∗n

j+ 32 ,k

1x2

]
(4.6)

and

v∗n+1
j,k+ 12
= v∗n

j,k+ 12
− G∗n

j,k+ 12
+1tf n

2,j,k+ 12
, (4.7)

where

G∗n
j,k+ 12

=
1t
1x
u∗n
j,k+ 12

(v∗n
j+ 12 ,k+

1
2
− v∗n

j− 12 ,k+
1
2
)+

1t
1y
v∗n
j,k+ 12

(v∗nj,k+1 − v
∗n
j,k)

−
1t
Re

[
v∗n
j−1,k+ 12

− 2v∗n
j,k+ 12
+ v∗n

j+1,k+ 12

1x2
+

v∗n
j,k− 12
− 2v∗n

j,k+ 12
+ v∗n

j,k+ 32

1y2

]
. (4.8)

If |un
j+ 12 ,k
|,|vn

j+ 12 ,k
|, |un

j,k+ 12
|, |vn

j,k+ 12
|, |u∗n

j+ 12 ,k
|, |v∗n

j+ 12 ,k
|, |u∗n

j,k+ 12
|, and |v∗n

j,k+ 12
| are all bounded, then by subtracting (4.5) and (4.8)

from (2.2) and (2.5), respectively, and writing the vector we obtain that

‖un+1m − u∗n+1m ‖2 + ‖vn+1m − v∗n+1m ‖2 ≤ M(‖unm − u∗nm ‖2 + ‖v
n
m − v∗nm ‖2), (4.9)

whereM = 1+ C1t/min(1x,1y, Re1x2, Re1y2), C is a constant independent of1t,1x2, and1y2. Summing (4.9) from
nl, nl + 1, . . . , n− 1 can yield that

‖unm − u∗nm ‖2 + ‖v
n
m − v∗nm ‖2 ≤ ‖u

nl
m − u∗nlm ‖2 + ‖v

nl
m − v∗nlm ‖2

+ C1t/min(1x,1y, Re1x2, Re1y2)
n−1∑
j=nl

(‖ujm − u∗jm‖2 + ‖v
j
m − v∗jm‖2). (4.10)

If1t = O(1x2,1y2), Re−2 ≤ 1t , by the discrete Gronwall Lemma (see [30,31]), we get that

‖unm − u∗nm ‖2 + ‖v
n
m − v∗nm ‖2 ≤ (‖u

nl
m − u∗nlm ‖2 + ‖v

nl
m − v∗nlm ‖2) exp[C1t

1
2 (n− nl − 1)]. (4.11)

If tl (1 ≤ l ≤ L) are uniformly chosen from tn (1 ≤ l ≤ N), then (n − nl) ≤ N/(2L). If L−2 = O(1t), we obtain from (4.11)
and (4.3) and (4.4) that

‖unm − u∗nm ‖2 + ‖v
n
m − v∗nm ‖2 ≤ C(

√
λu(Mu+1) +

√
λv(Mv+1)). (4.12)
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Fig. 2. Physics model of the cavity flows: t = 0, i.e., n = 0 initial values on boundary.

Synthesizing the above discussion could get the following result.

Theorem 2. Let (unm, v
n
m)(n = 1, 2, . . . ,N) be vectors constituted with solutions of FDS (2.2) and (2.5), (u

∗n
m v∗nm ) be the vectors

of the reduced optimizing FDS (3.9) and (3.10), if n ∈ {n1, n2, . . . , nL}, then the following error estimates hold

‖unm − u∗nm ‖2 ≤
√
λu(Mu+1), ‖vnm − v∗nm ‖2 ≤

√
λv(Mv+1). (4.13)

Moreover, if n 6∈ {n1, n2, . . . , nL}, 1t = O(1x2,1y2), Re−2 ≤ 1t, and |un
j+ 12 ,k
|, |vn

j+ 12 ,k
|, |un

j,k+ 12
|, |vn

j,k+ 12
|, |u∗n

j+ 12 ,k
|, |v∗n

j+ 12 ,k
|,

|u∗n
j,k+ 12
|, and |v∗n

j,k+ 12
| are all bounded, snapshots {unl

j+ 12 ,k
, v
nl
j+ 12 ,k
}
L
l=1 are uniformly chosen from {u

n
j+ 12 ,k

, vn
j+ 12 ,k
}
N
n=1, L

−2
= O(1t),

then the following error estimates hold

‖unm − u∗nm ‖2 + ‖v
n
m − v∗nm ‖2 ≤ C(

√
λu(Mu+1) +

√
λv(Mv+1)) (4.14)

where N = T/1t and L is the number of snapshots.

Note that the absolute value of each component of a vector is not more than any of its norm. Combining Theorems 1 and
2 could yield the following result.

Theorem 3. Under the assumptions of Theorem 2, the following error estimates hold

|u(xj+ 12 , yk, tn)− u
∗n
j+ 12 ,k
| + |v(xj, yk+ 12 , tn)− v

∗n
j,k+ 12
|

≤ O(
√
λu(Mu+1) +

√
λv(Mv+1),1t,1x

2,1y2), 1 ≤ n ≤ N. (4.15)

Remark 3. The conditions 1t = O(1x2,1y2) and Re−2 ≤ 1t are reasonable. The condition L−2 = O(1t) in Theorem 2
implies L2 = O(N) and shows the relation between the number L of snapshots and the number N of all time instances.
Therefore, it is unnecessary to take total transient solutions at all time instances tn as snapshots (see [27,28]). Theorems 2
and 3 have presented the error estimates between the solution of the reduced optimizing FDS (3.9) and (3.10) and the
solution of the usual FDS (2.2) and (2.5), and Problem (I), respectively. Since our methods employ some FDS solutions
(un
j+ 12 ,k

, vn
j,k+ 12

)(n = 1, 2, . . . ,N) for Problem (I) as assistant analysis, the error estimates in Theorem 3 are correlated to

the gridding scale 1x and 1y, and time step size 1t . However, when one computes actual problems, one may obtain the
ensemble of snapshots from physical system trajectories by drawing samples from experiments and interpolation (or data
assimilation). Thus, the assistant (un

j+ 12 ,k
, vn
j,k+ 12

) (n = 1, 2, . . . ,N) could be substituted with the interpolation functions of

experimental and previous results.

5. Some numerical experiments

In this section,we present somenumerical examples of the physicsmodel of the cavity flowswith the reduced optimizing
FDS (3.9) and (3.10) validating the feasibility and efficiency of the POD method.
Let the side length of the cavity be 1 (see Fig. 2). We take the spatial step increment as 1x = 1y = 1

32 and the time
step increment as1t = 0.001. Except that u is equal to 1 on the upper boundary, other initial values, boundary values, and
(f1, f2) are all taken as 0. Put Re = 2000 or 5000.
We obtain 20 values (i.e., snapshots) outputting at time t = 10, 20, 30, . . . , 200 by solving the usual FDS, i.e., Eqs. (2.2)

and (2.5). It is shown by computing that eigenvalues
√
λu6 +

√
λv6 ≤ 3× 10−3.

When t = 200, we obtain the solutions of the reduced optimizing FDS (3.9) and (3.10) based POD method depicted
graphically in Figs. 3 and 4 on the right-hand side used 5 optimal POD bases if Re = 2000 and also used 5 optimal POD bases
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Fig. 3. When Re = 2000, velocity stream line figure for the usual FDS solution (on the left-hand side figure) and when Mu = Mv = 5, solution of the
reduced FDS based on POD (on the right-hand side figure).

Fig. 4. When Re = 5000, velocity stream line figure for the usual FDS solutions (on the left-hand side figure) and when Mu = Mv = 5, solution of the
reduced FDS based on POD (on the right-hand side figure).

if Re = 5000, but the solutions obtained with the usual FDS, i.e., (2.2) and (2.5) are depicted graphically in Figs. 3 and 4 on
the left-hand side (since these figures are equal to solutions obtained with 20 bases, they are also known as the figures of
solution with full bases).
Fig. 5 shows the errors between solutions obtained with different numbers of optimal POD bases and solutions obtained

with full bases. Comparing the usual FDS, i.e., (2.2) and (2.5) with the reduced optimizing FDS (3.10) with (3.9) based POD
method containing five optimal bases implementing 3000 times numerical simulation computations, we find that time-
consuming calculations with the usual FDS, i.e., (2.2) and (2.5) are five minutes, while those with the reduced optimizing
FDS (3.9) and (3.10) with five time-consuming optimal bases expend only three seconds, i.e., the usual FDS consumes 120
times as much computing time as the reduced optimizing FDS (3.9) and (3.10) with five time-consuming optimal bases,
and the errors between their solutions are not more than 3× 10−3. Though our examples are in a sense recomputing what
we have already computed by the usual FDS, when we compute actual problems, we may structure the snapshots and
POD basis with interpolation or data assimilation by drawing samples from experiments, then solve directly the reduced
optimizing FDS (3.10) with (3.9), while it is unnecessary to solve the usual FDS, thus, the time-consuming calculations and
resource demands in the computational processwill be greatly saved. It is also shown that finding the approximate solutions
for Burgers equation with the reduced optimizing FDS (3.9) and (3.10) is very effective and that the results for numerical
examples are consistent with those theoretical results.

6. Conclusions

In this paper,wehave employed the SVDand the POD techniques to derive a reduced optimizing FDS for Burgers equation.
We first compile ensembles of data from transient solutions computing an equation system derived with the usual FDS for
Burgers equation, while in actual applications, one may obtain the ensemble of snapshots from physical system trajectories
by drawing samples from experiments and interpolation (or data assimilation). Nextwe employ SVD to deal with ensembles
of data obtaining the POD basis. And then the unknowns of the usual FDS are substitutedwith the linear combination of POD
basis to derive the reduced optimizing FDS for Burgers equation. Since there are few bases in the POD basis, the reduced FDS
based on POD is optimal. We have proceeded to derive error estimates between the our reduced optimizing finite difference
approximate solutions and the usual finite difference solution which are consistent with the theoretical error results, thus
validating both the feasibility and efficiency of our reduced optimizing FDS. Future work in this area will aim to extend the
reduced optimizing FDS, implementing it for a realistic atmosphere quality forecast system and more complicated PDEs.
From theoretical analysis and numerical examples, we have shown that the reduced optimizing FDS presented herein has
extensive perspective applications.
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Fig. 5. Error for Re = 2000 on upper figure, error for Re = 5000 on lower figure.
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