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a b s t r a c t

In this paper, we first present a local Hermitian and skew-Hermitian splitting (LHSS)
iterationmethod for solving a class of generalized saddle point problems. The newmethod
converges to the solution under suitable restrictions on the preconditioning matrix. Then
we give amodified LHSS (MLHSS) iterationmethod, and further extend it to the generalized
saddle point problems, obtaining the so-called generalized MLHSS (GMLHSS) iteration
method. Numerical experiments for a model Navier–Stokes problem are given, and the
results show that the newmethods outperform the classical Uzawamethod and the inexact
parameterized Uzawa method.
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1. Introduction

We consider the solution of systems of linear equations of the block 2× 2 form[
A B∗

B −C

] [
x
y

]
=

[
f
g

]
, or Âu = b̂, (1.1)

where A ∈ Cn×n, B ∈ Cm×n, C ∈ Cm×m, x, f ∈ Cn, y, g ∈ Cm, andm ≤ n. We further assume that the matrices A, B, and C are
large and sparse, see [1–3].
The linear system (1.1) arises in a variety of scientific and engineering applications, including computational fluid

dynamics, mixed finite element of elliptic PDEs, constrained optimization, constrained least-squares problem, and so on.
In a large number of these applications such as the constrained optimization, A is Hermitian and positive definite, B has
full row-rank, (namely, r(B) = m), and C = 0. In this case, the linear system (1.1) is called a saddle point problem, which
has been studied in many papers on iterative methods, such as Uzawa-type methods [4–8], HSS iteration methods [9–15],
preconditioned Krylov subspace iterationmethods [16–18,3], restrictively preconditioned conjugate gradientmethods [19–
21]. However, there are other situations, most notably the numerical solution of the Navier–Stokes equations of fluid
dynamics, where A 6= A∗, and its Hermitian part H := 1

2 (A + A
∗) is positive definite, r(B) = m, and C is Hermitian and

positive semi-definite. In this case, the linear system (1.1) is called a generalized saddle point problem, and, specially, when
C = 0, we call it a non-Hermitian saddle point problem. Numerical iterative methods for the generalized saddle point
problem has been studied in many papers, including Uzawa-type methods[4,5,22,23], HSS iteration methods [9–13,24],
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preconditioned Krylov subspace iteration methods [25–27,3,8,28,29], and restrictively preconditioned conjugate gradient
methods [19–21].
In this paper, we will focus on the numerical solution for the generalized saddle point problem and assume that the

Hermitian part H of the non-Hermitian matrix A is dominant. It has been studied that the Hermitian part of Â is indefinite
and, therefore, Â has eigenvalues on both sides of the imaginary axis. Such eigenvalue distributions are generally considered
unfavorable for solutions by simple iterative methods. Therefore, instead of solving (1.1), Benzi and Golub [25] solved the
following equivalent system[

A B∗

−B C

] [
x
y

]
=

[
f
−g

]
, or Au = b, (1.2)

and the coefficient matrix of (1.2) has the following desirable properties.

Lemma 1.1 ([25]). Let A ∈ C(m+n)×(m+n) be the coefficient matrix defined in (1.2). Assume that H := 1
2 (A + A

∗) is positive
definite, B has full row-rank, C is Hermitian and positive semi-definite, and ker(H)

⋂
ker(B) = 0, where ker(·) denotes the

null-space of the corresponding matrix. Let σ(A) denote the spectrum of A and λ ∈ σ(A) be an eigenvalue of A. Then

1. A is nonsingular;
2. A is semi-positive: Re(v∗Av) ≥ 0 for all v ∈ C(m+n);
3. A is positive stable: Re(λ) > 0 for all λ ∈ σ(A), where Re(λ) denotes the real part of the complex number λ.

Thus by changing the sign of the last m equations in (1.1), we can gain the positive definiteness. Then by appropriate
translation, the equivalent generalized saddle point system can be equivalently seen as the non-Hermitian saddle point
system. This will be discussed in Section 3 in detail. It is also interesting to notice that several approaches which have been
devised for the Hermitian case, have also been explored to solve the non-Hermitian case, as in [4,28]. So under the condition
of positive definiteness of the coefficient matrix of (1.2), by constructing special splitting we obtain a new iterative method
which is similar to the method in [4,30] for non-Hermitian saddle point problem. Moreover, this new method can also be
extended to the generalized saddle point problem.
The remainder of the paper is arranged as follows. In Section 2, from the Uzawa algorithm and the method given in [30]

we present new iterative methods for non-Hermitian saddle point problems. Then by the splitting preconditioning, we
deduce that the equivalent generalized saddle point problem is just the non-Hermitian saddle point problem and extend
the new iterative methods to the generalized saddle point problem in Section 3. In Section 4, numerical experiments for a
model Navier–Stokes problem are presented. The numerical results show that our new methods are powerful and better
than those of the classical Uzawa method and an inexact parameterized Uzawa method.

2. Iteration methods

2.1. LHSS iteration

In this subsection, we generalize the classical Uzawa method to the non-Hermitian saddle point problem. At the
beginning, we consider the matrixA defined in (1.2), with C = 0, and make the following special splitting:[

A B∗

−B 0

]
=

[
H 0
−B Q2

]
−

[
−S −B∗

0 Q2

]
,

where H := 1
2 (A + A

∗) and S := 1
2 (A − A

∗) are the Hermitian and the skew-Hermitian parts of A, respectively. In fact,
A = H + S induces the Hermitian and the skew-Hermitian splitting of the matrix A, see [9] and [14,15]. As assumed in
Section 1, H is nonsingular. We choose Q2 to be a Hermitian positive definite matrix (Q2 ∈ Cm×m). By this special splitting,
we obtain a new iterative method, called the local Hermitian and skew-Hermitian splitting (LHSS) iteration method, which
is defined as follows:[

H 0
−B Q2

] [
xn+1
yn+1

]
=

[
−S −B∗

0 Q2

] [
xn
yn

]
+

[
f
−g

]
.

The corresponding computational process is described below.

Algorithm 2.1 (LHSS Iteration Method).{
xn+1 = xn + H−1(f − Axn − B∗yn),
yn+1 = yn + Q−12 (Bxn+1 − g).

It is evident that the splitting given above is a special case of the parameterized inexact Uzawa (PIU) splitting used in [5].
Thus, the LHSS method is a special case of the PIU method. If H = A, Q2 = 1

δ
I , where δ is a relaxation parameter and I is the

identity matrix, then the above method becomes the classical Uzawa method.
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In the following, we deduce the convergence property for the LHSS iteration. Note that the iteration matrix of the LHSS
iteration is

Γ =

[
H 0
−B Q2

]−1 [
−S −B∗

0 Q2

]
. (2.1)

Let ρ(Γ ) denote the spectral radius of Γ . Then the LHSS iteration converges if and only if ρ(Γ ) < 1. Let λ be an eigenvalue
of Γ and

(
u
v

)
be the corresponding eigenvector. Then we have[

−S −B∗

0 Q2

] [
u
v

]
=

[
H 0
−B Q2

] [
λu
λv

]
,

or equivalently,

(λH + S)u+ B∗v = 0, (2.2)
λBu+ (1− λ)Q2v = 0. (2.3)

To get a convergence condition, we first assume that λ 6= 0 and give some lemmas.

Lemma 2.1. Let A be a non-Hermitian matrix, with the Hermitian part H := 1
2 (A+ A

∗) being positive definite, and the matrix B
has full rank (r(B) = m). Let Γ be defined as in (2.1). If λ is an eigenvalue of the matrix Γ , then λ 6= 1.

Proof. If λ = 1 and
(
u
v

)
is the corresponding eigenvector, then from (2.2) and (2.3) we have{

Au+ B∗v = 0,
Bu = 0. (2.4)

It is easy to get that the coefficient matrix of (2.4) is nonsingular. Hence u = 0 and v = 0, which contradicts the assumption
that

(
u
v

)
is an eigenvector of the iteration matrix Γ . So λ 6= 1. �

Lemma 2.2. If S is a skew-Hermitian matrix, then i · S (i is the imaginary unit) is a Hermitian matrix and u∗Su is a purely
imaginary number or zero for all u ∈ Cn. In particular, if S is a skew-symmetric matrix, then u∗Su = 0 for all u ∈ Cn.

Lemma 2.3. Let A be a non-Hermitian matrix with the positive definite Hermitian part H := 1
2 (A+A

∗), and the skew-Hermitian

part S := 1
2 (A−A

∗). Let the matrix B have full row-rank. If
(
u
v

)
is an eigenvector of the matrix Γ corresponding to the eigenvalue

λ, then u 6= 0. Moreover, if v = 0, then |λ| < 1.

Proof. If u = 0, then from (2.2) we have B∗v = 0. Because B has full row-rank, we have v = 0, which contradicts the
assumption that

(
u
v

)
is an eigenvector. Therefore, u 6= 0.

If v = 0, then from (2.2) we have

(λH + S)u = 0 and λu∗Hu+ u∗Su = 0. (2.5)

Define

λ = α + i · β, a =
u∗Hu
u∗u

, −b =
u∗i · Su
u∗u

.

Then we have from (2.5)

aα + i · (aβ + b) = 0.

The real part is satisfied for α = 0, since a 6= 0. It then follows that

β = −
b
a
.

By the assumption that the Hermitian part H of the non-Hermitian matrix A is dominant, we have |b| < |a|. Therefore

|λ| = |α + i · β| =
∣∣∣∣ba
∣∣∣∣ < 1. �

Lemma 2.4 ([5]). Both roots of the complex quadratic equation λ2 + φλ + ϕ = 0 have modulus less than one if and only if
|φ − φ̄ϕ| + |ϕ|2 < 1, where φ̄ denotes the conjugate complex of φ.
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Let λmax(W ) and λmin(W ) denote the maximum and the minimum eigenvalues of a Hermitian matrixW , respectively.
Then we have the following convergence result.

Theorem 2.1. Let A be a non-Hermitianmatrixwith the positive definite Hermitian part H := 1
2 (A+A

∗), and the skew-Hermitian
part S := 1

2 (A−A
∗). Let the matrix B have full row-rank and let Q2 be a Hermitian positive definite matrix. Assume that [u∗, v∗]∗

is an eigenvector according to an eigenvalue of the iteration matrix Γ . Denote

a :=
u∗Hu
u∗u

, − b :=
u∗i · Su
u∗u

, c :=
u∗B∗Q−12 Bu
u∗u

.

Then the LHSS iteration is convergent if a, b, c satisfy the following condition:

0 ≤ c <
(
2−

4b2

a2 + b2

)
a.

Proof. By Lemma 2.1, we have λ 6= 1. Then we can obtain from (2.2) and (2.3) that

(λH + S)u−
λ

1− λ
B∗Q−12 Bu = 0. (2.6)

If Bu = 0, it follows from (2.6) that (λH + S)u = 0, which is similar to the second part of Lemma 2.3, then |λ| < 1.
If Bu 6= 0, which means that c > 0 according to the definition of c. From (2.6) we have

aλ+ i · b−
λ

1− λ
c = 0.

That is to say, λ satisfies the complex quadratic equation

λ2 +

(
c − a+ i · b

a

)
λ+

(
−
b
a
· i
)
= 0. (2.7)

Now, according to Lemma 2.4 we know that both roots of λ of the complex quadratic equation (2.7) satisfy |λ| < 1 if and
only if ∣∣∣∣ c − a+ i · ba

+
b2 + i · (c − a)b

a2

∣∣∣∣+ ∣∣∣∣b2a2
∣∣∣∣ < 1. (2.8)

By straightforwardly solving (2.8) we immediately obtain the condition that we are demonstrating. �

For the real case, there are better results, which are summarized in the following corollaries.

Corollary 2.1. Let A be a nonsymmetricmatrixwith the positive definite symmetric part H := 1
2 (A+A

T), and the skew-symmetric
part S := 1

2 (A−A
T). Let thematrix B have full row-rank and let Q2 be a symmetric positive definitematrix. Then the LHSS iteration

converges provided that

0 < λmax(BTQ−12 B) < 2λmin(H).

Corollary 2.2. Under the assumptions of Corollary 2.1, the LHSS iteration is convergent if 2H − BTQ−12 B is positive definite.

Corollary 2.3. Under the assumptions of Corollary 2.1, if Q2 = 1
δ
I , then the LHSS iteration converges when 0 < δ <

2λmin(H)
λmax(BTB)

.

Corollary 2.4. Under the assumptions of Corollary 2.1, if Q2 = (BBT)(BHBT)−1(BBT), then ρ(Γ ) approaches an infinitesimal
constant.

Remark 2.1. Under the assumptions of Corollary 2.1, whenwe chooseQ2 to be the specialmatrix (BBT)(BHBT)−1(BBT), ρ(Γ )
approaches an infinitesimal constant, which is a favorable result. In this way we need to compute the inverse of BHBT, while
in iterative algorithm we only need to compute (BBT)−1. This may be more effective in practice than choosing Q2 to be the
Schur complement. Moreover, in many engineering applications, BBT(∈ Cm×m) is a sparse, Hermitian and nearly singular
matrix. In this case, we may choose Q2 = α(BBT)(BHBT)−1(BBT)with an appropriate α.
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2.2. Modified LHSS (MLHSS) iteration

In this subsection, we still consider the matrixA defined in (1.2) with C = 0. Now, we focus on the following splitting[
A B∗

−B 0

]
=

[
Q1 + H 0
−B Q2

]
−

[
Q1 − S −B∗

0 Q2

]
,

where H := 1
2 (A + A

∗), S := 1
2 (A − A

∗) are the Hermitian and the skew-Hermitian parts of A, respectively. The matrix B
still has full row-rank. Q1 ∈ Cn×n is a Hermitian positive semi-definite matrix. Q2 ∈ Cm×m is a Hermitian positive definite
matrix. Then we have the modified LHSS (MLHSS) iteration:[

Q1 + H 0
−B Q2

] [
xn+1
yn+1

]
=

[
Q1 − S −B∗

0 Q2

] [
xn
yn

]
+

[
f
−g

]
.

The corresponding computational process is described below.

Algorithm 2.2 (MLHSS Iteration Method).{
xn+1 = xn + (Q1 + H)−1(f − Axn − B∗yn),
yn+1 = yn + Q−12 (Bxn+1 − g).

If Q1 = 0, then the MLHSS iteration method is just the LHSS method proposed in Section 2.1. In fact, the LHSS method and
the MLHSS method are both special cases of the PIU method, see, for example, [4,5,22,23,6–8]. It is worth pointing out that
in [22] and [23], the authors also proposedmore efficient nonlinear inexact Uzawamethods. Recently, there is a generalized
inexact parameterizedUzawamethod in [6], which ismainly about theHermitian saddle point problems. For non-Hermitian
saddle point problems, the generalized inexact parameterized Uzawa method may be taken as follows.

Algorithm 2.3.{
xn+1 = xn + (Q1 + H)−1(f − Axn − B∗yn),
yn+1 = yn + Q−12 ((1− t)Bxn+1 + tBxn − g),

where t is an iteration parameter.
In what follows, we give some analysis on the convergence of the MLHSS iteration.
Let

Γ̃ =

[
Q1 + H 0
−B Q2

]−1 [
Q1 − S −B∗

0 Q2

]
(2.9)

denote the MLHSS iteration matrix. Let λ be an eigenvalue of Γ̃ and
(
u
v

)
be a corresponding eigenvector. Then[

Q1 − S −B∗

0 Q2

] [
u
v

]
=

[
Q1 + H 0
−B Q2

] [
λu
λv

]
,

or equivalently

[(λ− 1)Q1 + λH + S]u+ B∗v = 0, (2.10)
λBu+ (1− λ)Q2v = 0. (2.11)

To obtain a convergence condition, we first give some lemmas to be used later.

Lemma 2.5. Let the matrix Γ̃ be defined as in (2.9). If λ is an eigenvalue of Γ̃ , then λ 6= 1.

Lemma 2.6. Let the matrix Γ̃ be defined as in (2.9). If
(
u
v

)
is an eigenvector of Γ̃ corresponding to the eigenvalue λ, then u 6= 0.

Moreover, if v = 0, then |λ| < 1.

Theorem 2.2. Suppose that A is a non-Hermitian matrix with the positive definite Hermitian part H := 1
2 (A + A

∗) and the
skew-Hermitian part S := 1

2 (A− A
∗). Let B have full row-rank. Let Q1 be Hermitian positive semi-definite and Q2 be Hermitian

positive definite. Assume that [u∗, v∗]∗ is an eigenvector according to an eigenvalue of the iteration matrix Γ̃ . Denote

a :=
u∗Hu
u∗u

, −b :=
u∗i · Su
u∗u

, c :=
u∗B∗Q−12 Bu
u∗u

, d :=
u∗Q1u
u∗u

.

Then the MLHSS iteration is convergent if a, b, c and d satisfy the following condition:

0 ≤ c <
2a3 + 4a2d− 2ab2

a2 + b2
.
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Proof. By Lemma 2.5 we have λ 6= 1. As Q2 is Hermitian positive definite, (1− λ)Q2 is nonsingular. Hence, from (2.11) we
obtain

v = −
λ

1− λ
Q−12 Bu.

By eliminating v from (2.10), we have

[(λ− 1)Q1 + λH + S]u =
λ

1− λ
B∗Q−12 Bu. (2.12)

If Bu = 0, we have from (2.12) that [(λ− 1)Q1 + λH + S]u = 0, which is similar to the second part of Lemma 2.6, then
|λ| < 1.
If Bu 6= 0, we have from (2.12) that

(λ− 1)d+ λa+ i · b−
λ

1− λ
c = 0

and, thus,

λ2 +
c − 2d− a+ i · b

d+ a
λ+

d− i · b
d+ a

= 0. (2.13)

Now, according to Lemma 2.4 we know that both roots λ of the complex quadratic equation (2.13) satisfy |λ| < 1 if and
only if ∣∣∣∣ c − a− 2d+ i · bd+ a

−
(c − a− 2d− i · b)(d− i · b)

(d+ a)2

∣∣∣∣+ d2 + b2(d+ a)2
< 1. (2.14)

By straightforwardly solving (2.14) we immediately obtain the condition that we are demonstrating. �

For the real case, there are better results, too. We summarize them in the following corollaries.

Corollary 2.5. Let A be a nonsymmetricmatrixwith the positive definite symmetric part H := 1
2 (A+A

T), and the skew-symmetric
part S := 1

2 (A− A
T). Let B have full row-rank. Let Q1 be symmetric positive semi-definite and Q2 be symmetric positive definite.

Then the MLHSS iteration converges provided that

0 < λmax(BTQ−12 B) < 2λmin(H)+ 4λmin(Q1).

Corollary 2.6. Under the assumptions of Corollary 2.5, the MLHSS iteration is convergent if 2H + 4Q1 − BTQ−12 B is positive
definite.

Corollary 2.7. Under the assumptions of Corollary 2.5, if Q1 = αI and Q2 = 1
δ
I , then the MLHSS iteration converges when

0 < δ <
2λmin(H)+ 4α
λmax(BTB)

.

3. Iterative methods for generalized saddle point problems

In this section, by splitting preconditioning we first study the equivalent generalized saddle point problem (1.2) and
deduce its equivalence to a non-Hermitian saddle point problem. The matrix C ∈ Cm×m defined in (1.2) is assumed to be
Hermitian positive semi-definite. Moreover, we assume that C has rank p (0 < p < m), and ker(C)

⋂
ker(B∗) = 0. Then

there exists an unitary matrix
[
E F

]
such that

C =
[
E F

] [D 0
0 0

] [
E∗

F∗

]
,

where E ∈ Cm×p, F ∈ Cm×(m−p) is a basis of the null-space of C , and D ∈ Cp×p is a diagonal matrix whose diagonal elements
are the eigenvalues of C . By premultiplying (1.2) with the nonsingular and square matrix

R =

[ I 0
0 E∗

0 F∗

]
,
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and postmultiplying it with R∗, we obtain[ A B∗E B∗F
−E∗B D 0
−F∗B 0 0

][ x
ye
yf

]
=

[ f
−ge
−gf

]
, (3.1)

with y = Eye+Fyf , ge = E∗g , gf = F∗g , wherewe havemade use of the equality CF = 0. Then by appropriately partitioning,
(3.1) can be seen as[

Ā B̄∗

−B̄ 0

] [
x̄
ȳ

]
=

[
f̄
ḡ

]
, or Āū = b̄. (3.2)

It is easy to see that Ā is positive stable and F∗B has full rank (see also [26]). Thus by the splitting preconditioning, the
equivalent generalized saddle point problem (1.2) can be equivalently seen as the non-Hermitian saddle point problem (3.2),
where Ā is non-Hermitian, with the positive definite Hermitian part H̄ :=

[
H 0
0 D

]
, and B̄ has full rank.

We mainly consider to extend the MLHSS iteration to the generalized saddle point problem and to analyze the best
convergence case of the obtained iteration scheme for the generalized saddle point problem. For (3.2), we present the
splitting:[

Ā B̄∗

−B̄ 0

]
=

[
Q̄1 + H̄ 0
−B̄ Q̄2

]
−

[
Q̄1 − S̄ −B̄∗

0 Q̄2

]
, (3.3)

where

H̄ :=
[
H 0
0 D

]
and S̄ :=

[
S B∗E
−E∗B 0

]
are the Hermitian and the skew-Hermitian parts of Ā, respectively. Let

Q̄1 :=
[
Q̄ 11 0
0 Q̄ 21

]
, (3.4)

where Q̄ 11 ∈ Cn×n and Q̄ 21 ∈ Cp×p are Hermitian and positive semi-definite. Let Q̄2 ∈ C(m−p)×(m−p) be Hermitian and
positive definite. Then theMLHSS iteration can be extended to the generalized saddle point problem, detaining the following
generalized MLHSS (GMLHSS) iteration method:Q̄ 11 + H 0 0

0 Q̄ 21 + D 0
−F∗B 0 Q̄2

xn+1yen+1
yfn+1

 =
Q̄ 11 − S −B∗E −B∗FE∗B Q̄ 21 0

0 0 Q̄2

xnyen
yfn

+ [ f−ge
−gf

]
.

The corresponding computational process is described below.

Algorithm 3.1 (GMLHSS Iteration Method).
xn+1 = xn + (Q̄ 11 + H)

−1(f − Axn − B∗Eyen − B
∗Fyfn),

yen+1 = y
e
n + (Q̄

2
1 + D)

−1(E∗Bxn − Dyen − ge),
yfn+1 = y

f
n + (Q̄2)

−1(F∗Bxn+1 − gf ),
yn+1 = Eyen+1 + Fy

f
n+1.

Denote the GMLHSS iteration matrix by

Γ̄ =

[
Q̄1 + H̄ 0
−B̄ Q̄2

]−1 [
Q̄1 − S̄ −B̄∗

0 Q̄2

]
.

From Theorem 2.2 we can obtain a sufficient condition for the convergence of Algorithm 3.1, which is summarized as the
following theorem.

Theorem 3.1. Assume that A is a non-Hermitian matrix with the positive definite Hermitian part H := 1
2 (A+A

∗) and the skew-
Hermitian part S := 1

2 (A − A
∗), B has full row-rank, C is Hermitian and positive semi-definite and has rank p(0 < p < m),

F ∈ Cm×(m−p) is a basis of the null-space of C, D ∈ Cp×p is a diagonal matrix whose diagonal elements are the eigenvalues of C.
Let H̄ be defined as in (3.3), and Q̄1 be defined as in (3.4). Let Q̄2 be Hermitian and positive definite. Assume that [u∗, v∗]∗ is an
eigenvector according to an eigenvalue of the iteration matrix Γ̄ . Denote

a :=
u∗H̄u
u∗u

, −b :=
u∗i · S̄u
u∗u

, c :=
u∗B∗FQ̄−12 F

∗Bu
u∗u

, d :=
u∗Q̄1u
u∗u

.
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Then the GMLHSS iteration is convergent if a, b, c and d satisfy the following condition:

0 ≤ c <
2a3 + 4a2d− 2ab2

a2 + b2
.

Proof. The proof of Theorem 3.1 is similar to that of Theorem 2.2. Thus it is omitted. �

Corollary 3.1. Assume that A is a nonsymmetric matrix with the positive definite symmetric part H := 1
2 (A+A

T) and the skew-
symmetric part S := 1

2 (A − A
T), B has full row-rank, C is symmetric and positive semi-definite and has rank p(0 < p < m),

F ∈ Cm×(m−p) is a basis of the null-space of C. Let Q̄ 11 and Q̄
2
1 be symmetric and positive semi-definite, and Q̄2 be symmetric and

positive definite. Then the GMLHSS iteration converges, provided

0 < λmax(BTFQ̄−12 F
TB) < 2min(λmin(H), λmin(D))+ 4min(λmin(Q̄ 11 ), λmin(Q̄

2
1 )).

Corollary 3.2. Under the assumptions of Corollary 3.1, the GMLHSS iteration is convergent if 2H̄ + 4Q̄1 − B̄TQ̄−12 B̄ is positive
definite.

Corollary 3.3. Under the assumptions of Corollary 3.1, if Q̄1 is a zero matrix and Q̄2 = (F TBBTF)(F TBHBTF)−1(F TBBTF), then
ρ(Γ̄ ) approaches an infinitesimal constant.

4. Numerical experiments

In this section, we present some numerical experiments to compare our newmethods with the classical Uzawa method
and an inexact parameterized Uzawa method for the nonsymmetric saddle point problem and the generalized saddle point
problem, respectively. The problemunder consideration is the classical incompressible steady state Navier–Stokes problem:{

−ν∆u+ (ω · 5)u+5p = f ,
5 · u = 0, in Ω (4.1)

with suitable boundary conditions on ∂Ω . The test problem is a ‘‘leaky’’ two-dimensional lid-driven cavity problem in a
square domain (0 ≤ x ≤ 1, 0 ≤ y ≤ 1). The boundary conditions are ux = uy = 0 on three fixed walls (x = 0, x = 1,
y = 0), and ux = 1, uy = 1 on the moving wall (y = 1). On constructing the coefficient matrix Â, we select the constant
wind: ωx = 1, ωy = 2.
We use two methods to discretize (4.1). One is a ‘‘marker and cell’’(MAC) finite difference scheme (cf. [16,17]) based

on ne × ne uniform grids of square meshes. The second is a finite element subdivision based on ne × ne uniform grids of
square elements. The mixed finite element (cf. [31,16]) used is the bilinear-constant velocity–pressure: Q1 − P0 pair with
local stabilization. The resulting linear system for the discrete solution has the form[

A B∗

−B C

] [
x
p

]
=

[
f
−g

]
, (4.2)

where x = (u∗x , u
∗
y)
∗ represents the approximate velocities at the nodes and p stands for the approximate pressure at each

grid. It should be pointed out that C = 0 (corresponding to nonsymmetric saddle point problems) in MAC finite difference
scheme and C is semi-positive definite (corresponding to generalized saddle point problems) in Q1 − P0 finite element
method.
In our numerical experiments,weuse the zero vector as the initial guess, and choose the right-hand side vector (f ∗,−g∗)∗

such that the exact solution of the saddle point problem is (x∗, p∗)∗ = (1, . . . , 1)∗. We stop the iteration as soon as the error
is less than 10−5. By Theorems 2.1 and 2.2 and their corollaries, we can compute the upper bounds on the parameters δ
for the algorithms we proposed above. Let Qi(i = 1, 2), IT, CPU and ER denote the preconditioning matrix, iterative steps,
seconds needed for convergence, the error, respectively. Let δ, t and α be parameters of the modified iterative method. For
comparison we choose the classical Uzawa method and Algorithm 2.3, where Q1 = δH and Q2 = BQ−11 B

∗.
The following Tables 1–5 give the numerical results of theUzawamethod, the LHSSmethod, Algorithm2.3 and theMLHSS

method for the nonsymmetric saddle point problem arising from the MAC method, with ν = 1 and different ne.
The above numerical results show that for the nonsymmetric saddle point problemourmethods have better convergence

property. For LHSS iteration,whenQ2 = 1
δ
I , the number of the iterative steps is almost the same as that of theUzawamethod.

When choosing Q2 = 0.5(BB∗)(BHB∗)−1(BB∗), the number of the LHSS iteration steps is much less than that of the Uzawa
method although we have to compute the inverse of BB∗ in the iteration process. For large linear systems, Algorithm 2.3
may have less iteration steps. But from the numerical results, we find that it takes more time since it needs to compute the
inverse of the Schur complement matrix. In the MLHSS iteration, if Q1 = αI and Q2 = 1

δ
I , we can obtain different ranges

of δ by choosing different α. Then by taking appropriate δ, the number of iteration steps in Table 3 is much less than that
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Table 1
Classical Uzawa method.

ne n m δ IT CPU ER (10−6)

8 112 63 121 884 0.204 9.9641
16 480 225 480 3825 11.640 9.9851
24 1104 575 1050 9094 135.906 9.9974
32 1984 1023 1900 16141 770.075 9.9972
48 4512 2303 – >40000 – –

Table 2
LHSS iteration method, Q2 = 1

δ
I .

ne n m δ IT CPU ER (10−6)

8 112 63 121 881 0.204 9.9641
16 480 225 480 3822 11.610 9.9888
24 1104 575 1050 9091 135.766 9.9980
32 1984 1023 1900 16138 769.125 9.9978
48 4512 2303 – >40000 – –

Table 3
LHSS iteration method, Q2 = 0.5(BB∗)(BHB∗)−1(BB∗).

ne n m IT CPU ER (10−6)

8 112 63 16 0.015 6.8599
16 480 225 16 0.046 7.9294
24 1104 575 50 0.781 9.4270
32 1984 1023 66 1.281 7.6748
48 4512 2303 50 31.25 8.6567

Table 4
Algorithm 2.3 with δ = 0.4 and t = 0.01.

ne n m IT CPU ER (10−6)

8 112 63 21 0.015 6.1206
16 480 225 28 0.296 9.1614
24 1104 575 29 1.641 8.6575
32 1984 1023 24 2.281 2.8422
48 4512 2303 27 31.84 6.3132

Table 5
MLHSS iteration method, Q1 = αI,Q2 = 1

δ
I .

ne n m IT CPU ER (10−6) IT CPU ER (10−6)

α = 8, δ = 271 α = 12, δ = 404
8 112 63 422 0.094 9.9668 372 0.110 8.1667

α = 6, δ = 781 α = 7.5, δ = 975
16 480 225 2788 8.625 9.9895 2507 7.8910 9.7874

α = 60, δ = 1739 α = 62.5, δ = 1812
24 1104 575 7463 107.984 9.3575 7351 106.156 9.4901

α = 2, δ = 24 α = 3, δ = 33
32 1984 1023 14423 552.344 9.2764 17189 637.281 9.5959

α = 0.06, δ = 4600 α = 0.05, δ = 4600
48 4512 2303 34296 3211.8 9.9980 35439 3321.9 9.8670

of the Uzawa method. All these results show that our new methods have faster convergence rate than the classical Uzawa
method for the nonsymmetric saddle point problem.
We use CPU, CPU1 and CPU2 to represent the elapsed CPU times in seconds for the classical Uzawa method,

eigenvalue decomposition of C and GMLHSS iteration. Tables 6 and 7 give the numerical results for the Uzawa method
and the GMLHSS method for the generalized saddle point problem arising from the Q1 − P0 finite element method, with
ν = 1 and different ne.
Clearly, the above numerical results show that the GMLHSS iteration has faster convergence rate than that of the classical

Uzawa method for the generalized saddle point problem. Moreover, the results show that the methods we proposed in this
paper are powerful solvers for the large sparse generalized saddle point problems.
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Table 6
Classical Uzawa method.

ne n m IT CPU ER (10−6)

8 98 62 729 0.172 9.5106
16 450 254 6808 21.297 9.9093
24 1058 574 8228 108.079 9.9946
32 1922 1022 19807 970.235 9.4358
48 4418 2302 >40000 – –

Table 7
GMLHSS iteration method, Q̄2 = (F∗BB∗F)(F∗BHB∗F)−1(F∗BB∗F).

ne n m IT CPU1 CPU2 ER (10−6)

8 98 62 176 0.015 0.047 9.5106
16 450 254 532 0.063 1.953 9.9093
24 1058 574 907 0.546 24.11 9.9959
32 1922 1022 1055 1.452 45.32 9.5658
48 4418 2302 2865 5.465 80.56 9.8796
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