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a b s t r a c t

Using gradient-based optimization combined with numerical solutions of the Helmholtz
equation, we design an acoustic device with high transmission efficiency and even
directivity throughout a two-octave-wide frequency range. The device consists of a horn,
whose flare is subject to boundary shape optimization, together with an area in front of
the horn, where solid material arbitrarily can be distributed using topology optimization
techniques, effectively creating an acoustic lens.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

We study acoustic devices operating as part of a loudspeaker system for use in large auditoriums or outdoors. Horns
are used in such systems to enhance the efficiency of the sound generation as well as to direct the sound toward the
audience. Thus, two main characteristics of an acoustic horn are its transmission efficiency and directivity properties.
For large arena events, sound energy should not be wasted at directions of no audience. Moreover, each member of the
audience should ideally be exposed to the same sound quality, that is, the efficiency and directivity properties of a horn
need to be as uniform as possible throughout the operating frequency range. Bängtsson et al. [1] attacked the problem
of designing an efficient horn using boundary shape optimization of the horn flare. Admissible flare shapes were given
by functions β , prescribing the normal deflection from a straight horn (Fig. 1). Wadbro and Berggren [2,3] instead applied
topology optimization, allowing an arbitrarymaterial distribution in the interior of the horn, to design an efficient hornwith
requirements on the directivity. Recently, Udawalpola and Berggren [4] performed boundary shape optimization to study
the tradeoff between efficiency and directivity requirements. Their results suggest that manipulations of the horn flare are
sufficient to design highly efficient devices. However, these horns exhibit a marked beaming effect, that is, the directional
pattern narrows as the frequency increases. Breaking the beaming behavior using only modifications of the flare shape
comes with a substantial penalty on efficiency, at least when restricting attention to planar or cylindrical symmetry. Here,
we use shape and topology optimization simultaneously to design an efficient horn–lens combination with even directivity
for a wide range of frequencies.

2. Problem statement

The setup used as a basis for optimization, illustrated in Fig. 1, is inspired by the classical horn–lens combinations
conceived by Kock and Harvey [5] in the 1940s. The geometry is assumed to be infinite in the direction normal to the plane.
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Fig. 1. The walls of the horn are displaced and material is placed in the regionΩH to improve the radiation properties.

The device consists of a waveguide with a conical termination (the horn) and a lens located in front of the horn. The width of
thewaveguide (the throat of the horn) is 10 cm, the length of the horn is 50 cm, and thewidth of themouth is 60 cm. The lens
area is located 15 cm in front of the horn and is 25 cm deep and 100 cm wide. The 2D setup may be viewed as a simplified
model of a wide rectangular horn. Such horns are used to achieve a wider horizontal than vertical sound distribution.
To study the characteristics of the device, we impose a right-going planar wave with amplitude A and frequency ω in

the waveguide. The horn and the lens will guide the transmission of the wave into free space, but parts of the wave will
also be reflected back into the waveguide. The device is said to be efficient if a large portion of the incoming wave energy is
transmitted into free space. The directivity describes the far-field distribution of the transmittedwave energy. The efficiency
and the directivity of the device are dependent on its design as well as the frequency of the transmitted wave. We are
interested in designing an efficient horn that spreads the sound energy uniformly and frequency independently within a
given angle around the horn axis.
We assume that the wave propagation is governed by the linear wave equation for fluctuations P ′ in the acoustical

pressure. We seek time harmonic solutions for a single angular frequency ω using the ansatz P ′(x, t) = R{p(x)eiωt} and
find that the complex amplitude function p satisfies the Helmholtz equation

∆p+ k2p = 0, (1)

where k = ω/c is the wavenumber and c the speed of sound. We assume that the waveguide and the horn consist of sound
hard material. Further, we stipulate that p satisfies the Sommerfeld radiation condition, which specifies that all waves are
outgoing in the far field.
Wave propagation in the waveguide can be expressed as a superposition of modal components satisfying the Helmholtz

equation (1) together with the boundary condition

∂p
∂n
= 0 (2)

along the sound hard walls. If the width of the waveguide is sufficiently small compared to the wavelength, the non-planar
modes are geometrically evanescent. The left boundary of the truncated waveguide is denoted Γin. The boundary condition

iωp+ c
∂p
∂n
= 2iωA on Γin (3)

imposes a right-going wave with amplitude A and absorbs left-going waves. The boundary condition (2) is used for the
boundaries corresponding to the sound hard walls of the horn as well as for the symmetry boundary Γsym. We solve wave
propagation problem (1) numerically using the finite element method. The unbounded domain is truncated to a rectangular
domain using a perfectly matched layer (PML), marked gray in Fig. 2, to handle the outgoing wave property. Following
Heikkola et al. [6], we define

γk = 1− iσ0
σk

ω
, k = 1, 2, γ = γ1γ2, D =

(
γ2/γ1 0
0 γ1/γ2

)
,

where σ0 is a non-negative constant,

σ1 = max
(
0,max

(
x1 − x1 + δ, x1 + δ − x1

))
, σ2 = max (0, x2 − x2 + δ) ,

and where x1 and x1 are the coordinates for the left and right edge of the computational domain Ω , depicted in Fig. 2,
respectively. Similarly, x2 corresponds to upper edge, and δ is the width of the PML layer. We modify (1) to include the PML
as follows:

∇ · (D∇p)+ k2γ p = 0 inΩ. (4)
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Fig. 2. The computational domainΩ .

Petropoulos [7] reports that the boundary condition terminating the PML does not have a significant effect on accuracywhen
the loss profile is linear or quadratic. In our experiments, we use boundary condition (2) at the outer boundary Γout.
We optimize the horn–lens combination presented in Fig. 1, allowing the horn flare to deflect normal to the funnel shaped

reference flare and allowing sound hard material to fill an arbitrary region Ωm within ΩH (ΩH − Ωm consists of air). The
function β denotes the perpendicular displacement of the horn flare from the reference funnel shape, andΩβ denotes the
computational domain with the flare shape specified by β . Since the Neumann boundary condition (2) holds on ∂Ωm and
can be imposed as a ‘‘natural’’ boundary condition by simply removing the Ωm region from the integrals, the variational
form of the wave propagation problem for a single frequency can be written as follows:

Find p ∈ H1(Ωβ
−Ωm) such that∫

Ωβ−Ωm

∇q · (D∇p)− k2
∫
Ωβ−Ωm

γ qp+ ik
∫
Γin

qp = 2ikA
∫
Γin

q, ∀q ∈ H1(Ωβ
−Ωm). (5)

We parameterize the region Ωm using a material indicator function α : R2 → {0, 1} defined such that α(x) = 0 if x is at
a point in the solid material and α(x) = 1 if x is at a point in air. Thus, Ωm = {x ∈ Ωβ

| α(x) = 0}, and we utilize this
definition to replace equation (5) with the following variational form:

Find p ∈ H1(Ωβ) such that∫
Ωβ
α∇q · (D∇p)− k2

∫
Ωβ
αγ qp+ ik

∫
Γin

qp = 2ikA
∫
Γin

q, ∀q ∈ H1(Ωβ). (6)

In order to obtain a unique solution of problem (6) (also inside Ωm), we redefine α such that α(x) ∈ {ε, 1} for all x ∈ ΩH,
where ε is a small positive number.
The transmission efficiency of the device for a certain frequency ω can be measured by observing the mean complex

amplitude 〈p〉in on Γin. The mean complex amplitude of the reflected left-going wave at Γin is given by 〈p〉in − A. The horn
is efficient if the magnitude |〈p〉in − A| of the reflected wave is small compared to the magnitude |A| of the incoming wave.
In the far field, the complex amplitude function is essentially the product of a function of the distance to the device

and a function of the direction. More precisely, let p be the solution to the exterior Helmholtz problem (1) satisfying the
Sommerfeld radiation condition in the far-field, boundary condition (3) at the inlet, and (2) along the sound hard walls. Let
x̂(θ) be a point on the unit sphere, where θ denotes the polar argument of x̂; then

p( x̂(θ)ρ) =
eikρ
√
ρ

{
p∞(θ)+ O

(
1
ρ

)}
as ρ →∞,

where ρ represents the distance from the device. The function p∞(θ) is called the far-field pattern. An expression for p∞(θ)
can be derived using classical methods from scattering theory (Colton & Kress [8]), and is for planar symmetry given by

p∞(θ) =
1− i

4
√
πk

∫
Γ

eikx̂·x
(
ip(x)kx̂ · n(x)−

∂p
∂n
(x)
)
dH1(x), (7)

where Γ is any closed curve that forms the boundary of a domain containing all sound sources (the device) and n(x) the
outward directed normal at x ∈ Γ . Here, we substitute the solution of the truncated problem (6) and the dashed interior
boundary Γint into expression (7) in order to compute a numerical approximation of the far-field pattern, as detailed in [9].
We are interested in designing an efficient device with an even directivity pattern for a wide frequency band. We

minimize the magnitude of the reflected waves throughout the considered frequency band to obtain an efficient device.
To achieve an even acoustical pressure distribution within a given angle in front of the device, we minimize the difference
in magnitude in the far-field pattern between the horn axis and at angles equispaced centered at the horn axis. Moreover,



1784 E. Wadbro et al. / Journal of Computational and Applied Mathematics 234 (2010) 1781–1787

to avoid designs that give an even pressure distribution in front of the horn at the price of scattering the transmitted wave
in other directions (backscattering), we minimize the far-field pressure at selected angles, such as behind and at the sides
of the device.
The above requirements on efficiency, backscattering, and directivity comprise the terms in the objective function

J(α, β) =
∑
ωj

(∣∣〈p(ωj)〉in − A∣∣2 + σb∑
ϑk

∣∣∣p(ωj)∞ (ϑk)

∣∣∣2 + σf ∑
θl

∣∣∣∣∣∣∣p(ωj)∞ (θl)

∣∣∣2 − ∣∣∣p(ωj)∞ (θ0)

∣∣∣2∣∣∣∣2
)
, (8)

where ωj are the frequencies for which we optimize the device, θl are the angles where we aim for even radiation (θ0 is the
reference angle which corresponds to the horn axis), and the angles ϑk are introduced to minimize the backscattering. The
constants σb and σf set the relative weights of the different objectives.
To complete the formulation of the optimization problem, we need to specify the admissible designs for α and β .

Following Bängtsson et al. [1], the perpendicular distanceβ from the reference shape is indirectly represented as the solution
to the differential equation−β ′′ = η, with β = 0 at the throat and mouth of the horn. In order to promote smooth design
updates of horn flare, we use η, which roughly corresponds to the curvature of the horn flare, as design variable.
For the optimization of the lens, we want to find the optimal binary-valued material distribution function α. Such

optimization problems are often severely ill-posed in the sense that they lack solutions: there exists minimizing sequences
of material distribution functions that contains no subsequence that converges in any reasonable way. Such ill-posedness
typically manifests itself in the discrete case as a mesh dependency of the optimal designs; that is, the optimal design may
drastically changewhen themesh is refined, as finer and finer details occur. Another difficulty is that the discretized problem
constitutes a large-scale nonlinear integer programming problem that is difficult to handle numerically. To handle the latter
problem, we follow a well established strategy developed for problems in linear elasticity [10], a strategy that in the end
also will cure the first problem. The strategy operates in three steps: relaxation, penalty, and filtering.
In the first step, we relax the space of admissible designs to the continuum α ∈ [ε, 1] in order to allow the use of a

gradient-based optimization algorithm. In general, such a relaxation can be expected to destroy the binary nature of the
problem. At the same time, the relaxation may regularize the problem and generate mesh independent, albeit non-binary
(‘‘gray’’) designs in the discrete case. However, as the mesh dependent designs in Fig. 4 illustrate, the relaxation seems not
to regularize the problem in this case.
The next step, penalty, addresses the problem of non-binary optimal designs in the relaxed problem, and introduces a

penalty term, for instance the one we use,

Jp =
∫
ΩH

(α − ε)(1− α),

in the objective function (or as a constraint) to promote values close to ε or 1. Unfortunately, the addition of such a term
aggravates the ill-posedness of the optimization problem.
An issue related to the ill-posedness problem is the lack of control over the size of the structural parts. It is practical to

be able to specify a parameter τ > 0 to impose a lower bound on the extension of individual structural parts independently
of the mesh size. In the third step of our strategy, we therefore introduce a new design variable α̃ and define α indirectly
through the convolution α = Kτ ∗ α̃, where Kτ is an integral operator kernel with support in a neighborhood of radius τ that
provides a local averaging of the design variable. This procedure, known as filtering in the topology optimization community,
helps to enforce mesh independent solutions and also combats purely numerical artifacts such as checkerboarding [11].
Bourdin [12] studies a filtered and penalized version of the minimum compliance beam design problem, proves existence
of solutions, and shows convergence of solutions to the finite element discretized version of this problem. Although we
know of no analogous proof for the Helmholtz equation (the proof would be substantially more difficult because of the
non-coerciveness of the variational problem), all our numerical experience, both the one reported earlier [2] and the one
presented below, indicates that the filtering strategy affects the optimal designs in an analogous way to the compliance
minimization problem. That is, the numerical instabilities disappear and the results suggest mesh convergence in the limit
of refinements.
We thus state our general optimization problem as

min
α̃,η

[
ση

∫
Γref

η2 + σα

∫
ΩH

(Kτ ∗ α̃ − ε)(1− Kτ ∗ α̃)+ J (Kτ ∗ α̃, β(η))
]
, (9)

where the first term is a Tichonov regularization term for the horn flare and the second term provides penalty and filtering.
The constants ση and σα are used specify the amount of regularization and penalty, respectively. For further details about
the discretization, handling of mesh deformations, and the sensitivity analysis with respect to the different terms in the
objective function, we refer to our earlier works [1,2,4].

3. Numerical experiments

We solve optimization problem (9) numerically using the Method of Moving Asymptotes (MMA) [13]. MMA is a
gradient-based optimizationmethod that is particularlywell suited for themathematical structure of topology optimization
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Fig. 3. Horn without lens optimized for high efficiency and even directivity using only modifications of the horn flare (left), the transmission loss in dB
(middle), and the beamwidth (right) as functions of frequency. The dash-dotted lines in the diagrams illustrate efficiency and directivity properties for our
funnel shaped reference horn.

Fig. 4. Horn–lens combinations optimized for high efficiency and even directivity using modifications of the horn flare and allowing the material function
inΩH attain values in the continuum [ε, 1]. Both devices are optimized on the same mesh. Left: using a coarse material representation (1600 unknowns),
right using the regular material representation (6400 unknowns).

problems. Note that we optimize simultaneously for the horn flare and the lens area. We aim to design a device with high
efficiency as well as even directivity throughout a wide frequency range. In this section, we illustrate the performance of
the optimized devices with two diagrams: the transmission loss and the beamwidth of the device. The transmission loss is
the relative loss with respect to a perfect transmission of the incoming wave. Here we illustrate the transmission loss as

T = 20 log10

(
1−
|B|
|A|

)
,

where A and B are the amplitudes of the right- and left-going waves in the waveguide respectively. The beamwidth of the
device is defined as the angle between the−6 dB points closest to the horn axis of the relative directional intensity

d(θ) = 20 log10

 |p∞(θ)|
max
ϕ
|p∞(ϕ)|

 .
In our experiments, we aim for a high efficiency and a 100◦ beamwidth in the two-octave-wide frequency range

250–1000 Hz. We therefore optimize the device for even directivity at the angles 0◦,±10◦, . . . ,±50◦ with respect to
the horn axis for frequencies exponentially spaced with 12 frequencies per octave. The angles 90◦ and 180◦ are used to
minimize the back scattering. That is, we set the frequencies and angles in objective function (8) as follows:ωk = 250 ·2k/12,
k = 0, 1, . . . , 24, θl = l · 10◦, l = 0, 1, . . . , 5, ϑ0 = 180◦, and ϑ1 = 90◦. In our experiments, we set the relative weights
for the different objectives as: σb = σf =

1
2 , and set ση = 10

−5. We set ε = 10−3 and use a continuation approach
for the penalization. That is, we first solve the problem without penalty (σα = 0), then the problem is solved again using
σα = 10−5 with the unpenalized solution as starting guess. The process is then repeated using σα = 10−4, 10−3, . . . , 10
and the previous solution as starting guess.
In our first experiment, we attempt to design an optimal device using only modifications of the horn flare. Fig. 3 shows

the resulting optimized device together with diagrams illustrating its transmission loss and beamwidth as functions of
frequency (solid lines). These diagrams also illustrate the behavior of our funnel shaped reference horn (dash-dotted lines).
The optimized horn is superior to the reference horn bothwith respect to efficiency and directivity throughout the frequency
band of study. The optimized horn exhibits a maximum transmission loss of 0.6 dB as shown in the top right diagram. The
beamwidth for the both horns demonstrates a decreasing trend throughout the frequency range and is less than 80◦ at
1000 Hz for the optimized horn and about 45◦ at 1000 Hz for the reference shape.
Our plan to break this narrowing of the beamwidth is to place material in front of the horn using topology optimization.

As an initial test, we perform optimization without penalty (σα ≡ 0) and without filtering (Kτ ∗ α ≡ α). Fig. 4 illustrates
two devices optimized without penalty or filter. The optimized devices are very efficient and exhibit a large beamwidth
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Fig. 5. Horn with lens optimized for high efficiency and even directivity using modifications of the horn flare and topology optimization (with penalty
and filter) of the lens in front of the horn (left), the transmission loss in dB (middle), and the beamwidth (right) as functions of frequency. The solid lines
in the diagrams correspond to the horn–lens combination, while the dashed line illustrates the performance of this horn without the lens.

Fig. 6. Postprocessed version of the horn–lens combination in Fig. 5, obtained using unfiltered topology optimization to sharpen the lens portion of
the device (left), the transmission loss in dB (middle), and the beamwidth (right) as functions of frequency. The dotted lines correspond to the initial
(unpostprocessed) horn–lens combination depicted in Fig. 5.

throughout the frequency range. Both these devices are computed using the same mesh, but with different representations
for the material indicator function, with 1600 and 6400 unknown densities. The device to the right is computed with α
constant on each element of the finite element mesh, whereas α for the left device is constant on groups of four adjacent
elements (constructed as a regular unrefinement of the mesh in the lens region). The resulting designs in the lens region
are mesh dependent and contain one-material-element-wide structures, suggesting thin sheets of sound hardmaterial; but
regions of intermediate densities also appear. For other choices of angles, frequencies, andweights in the objective function,
these intermediate density regions are more pronounced than those appearing in the lens on the left device in Fig. 4.
The device in Fig. 5 is designed simultaneously using shape optimization of the horn flare and topology optimization for

the lens in front of the horn. A continuation approach as described above is used for the penalization, and a filter with radius
τ = 2.5 cm is employed. The grayness at solid boundaries in the lens area is an unavoidable consequence of the use of filters.
Our experiments suggest that the present setup, using a continuum approach for the penalization together with a filtering
procedure, produces mesh independent designs of the horn flare and the lens. The dashed lines in the diagrams illustrate
the performance of this horn without the lens. The influence of the lens can be seen by comparing the dashed and the solid
lines in the diagrams. Both devices (hornwith lens and hornwithout lens) are very efficient throughout the frequency range
subject to the optimization, with maximum transmission losses of 0.6 dB and 0.9 dB for the horn without and with lens,
respectively, as shown in the middle diagram of Fig. 5. Comparing the beamwidths (right diagram) of these devices, it can
be seen that the lens has a large influence on the far-field behavior for the higher frequencies, but only a minor influence
at the lower frequencies. The beamwidth of the device optimized with lens is well controlled and stays above 90◦, except
for a small frequency band around 650 Hz. In essence, the addition of a lens only has a minor influence on the transmission
efficiency, while it successfully breaks the beaming behavior of the horn.
Fig. 6 shows a postprocessed version of the lens design in Fig. 5, after applying a procedure that removes the gray while

attending the design objective [2]. The postprocessing consists of an optimization round using the setup in Fig. 5 as a starting
guess, keeping the horn flare fixed, and applying topology optimization with penalty but without filtering to sharpen the
boundary of the lens. The solid lines in the diagrams in Fig. 6 are computed on a body-fitted mesh for the postprocessed
device, while the dotted lines, corresponding to the unpostprocessed device, are computed using the material modeling of
Eq. (6). The sharpening of the lens structure only has a minor influence on the efficiency of the device. The efficiency of
the devices is almost identical for frequencies up to 900 Hz. For frequencies near the upper edge of the frequency band,
the postprocessed device is slightly less efficient. There is, however, a marked difference in the far-field behavior between
the postprocessed and the unpostprocessed device. The postprocessing sharpens the contrast between the air and the solid
material for the objects comprising the lens. In the unpostprocessed case, these solid objects are surroundedby graymaterial,
functioning as a smooth transition between the air and the solid. The harder edges of the postprocessed device enablesmore
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direct control of the far-field behavior and the postprocessed devicemanages to keep the beamwidth above 105◦ throughout
the two-octave-wide frequency range.

4. Conclusions

Combining shape and topology optimization, we manage to design efficient acoustic horn–lens combinations that break
the beaming behavior for higher frequencies. The strategy we use to optimize the material distribution in the lens region
(relaxation, penalization, filtering, and postprocessing) successfully produces mesh independent designs with prescribed
performance within a given angle and frequency range.
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