Journal of Computational and Applied Mathematics 270 (2014) 152-165

Contents lists available at ScienceDirect

Journal of Computational and Applied
Mathematics

journal homepage: www.elsevier.com/locate/cam

Hermes2D, a C++ library for rapid development of adaptive @CmssMark
hp-FEM and hp-DG solvers

Pavel Solin®P, Lukas Korous*, Pavel Kus <

2 University of Nevada, Reno, USA
b RICE, University of West Bohemia, Pilsen, Czech Republic
€ KTE, University of West Bohemia, Pilsen, Czech Republic

ARTICLE INFO ABSTRACT

Article history: In this paper we describe Hermes2D, an open-source C++ library for the development

Received 27 November 2013 and implementation of adaptive higher-order finite element and DG solvers for partial

Received in revised form 20 January 2014 differential equations (PDE) and multiphysics coupled PDE problems. The library is suitable
for applications ranging from simple linear PDE solvers to time-dependent solvers for

Keywords: nonlinear multiphysics coupled problems with dynamically changing meshes. We cover

Finite element method
Discontinuous Galerkin method
Automatic adaptivity
Multiphysics coupled problems
Time-dependent problems
Software

several typical application scenarios, and give a brief overview of methods and algorithms
that the library provides. Numerical examples are provided.
© 2014 Elsevier B.V. All rights reserved.

1. Introduction

The number of adaptive finite element (FEM) codes is growing very fast. They differ in deployment operating systems
and hardware platforms, ways of loading the physical model, error estimation mechanisms, algebraic solvers they use, mesh
formats, boundary conditions handling, input/output formats, and other aspects. Some of them are designed for a narrow
class of problems while others are supposed to cover various types of physical applications. This paper presents Hermes2D,
an open source C++ library for the rapid development of adaptive hp-FEM and hp-DG solvers. The library has been used to
solve problems in many different areas including civil, electrical, mechanical and nuclear engineering, and hydrology [1-8].
It has also been used as underlying library for development of Agros2D, a universal engineering application for solution of
different physical fields, see [9] for details. Based on the large scope of the Hermes project, we do not attempt to provide a
comprehensive description of all its features. Instead, the goal of this paper is to help the reader get started using the library.
Note that as the library evolves, some minor changes of the methods and classes occur. The code in the paper comes from
the currently newest version 3.0 of the library.

2. Defining weak forms

Consider a model problem of the form

—div(AVu) = C, (1)

* Corresponding author. Tel.: +420 732262595.
E-mail addresses: solin@unr.edu (P. Solin), korous@rice.zcu.cz (L. Korous), pkus@rice.zcu.cz (P. Kus).

http://dx.doi.org/10.1016/j.cam.2014.02.007
0377-0427/© 2014 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cam.2014.02.007
http://www.elsevier.com/locate/cam
http://www.elsevier.com/locate/cam
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cam.2014.02.007&domain=pdf
mailto:solin@unr.edu
mailto:korous@rice.zcu.cz
mailto:pkus@rice.zcu.cz
http://dx.doi.org/10.1016/j.cam.2014.02.007

P. Solin et al. / Journal of Computational and Applied Mathematics 270 (2014) 152-165 153

where A > 0 and C are constants, in a bounded two-dimensional domain §2. We begin with zero Dirichlet boundary
conditions. Moreover, assume that the domain 2 is split into two subdomains §2,4; and £2¢, with different values A4 and
Acu, respectively.

Problems in Hermes are treated as linear or nonlinear. For nonlinear problems we use the Newton method or the fixed
point method with Anderson acceleration to solve it. In the following, we will use formulations for the Newton method,
since it is more general. Simplification to the linear case is straightforward. Hence in the weak formulation, all terms are on
the left-hand side:

/ lVu - Vudxdy + / AawVu - Vodxdy — / Cvdxdy = 0. (2)
a1 Lcy 2

In short, we can write
Fuy=0 (3)

where F is the residual function. The code for the weak formulation follows Eq. (2) closely. One thing to notice is that even
though the jacobian and residual forms represent the same integral, we have to distinguish them for pragmatic reasons -
they come to different sides of the equations and their arguments differ - whereas for the jacobian forms we pass a basis
function and a test function, for the residual forms we pass the previous Newton iteration and a test function. The resulting
code looks like this:

CustomWeakFormPoisson: : CustomWeakFormPoisson(std: :string material_marker_Al,
Hermes1DFunction<double>* lambda_Al, std::string material_marker_Cu,
Hermes1DFunction<double>* lambda_Cu, Hermes2DFunction<double>*
src_term) : WeakForm<double>(1)

// Jacobian forms.

add_matrix_form(new DefaultJacobianDiffusion<double>(0, O, material_marker_Al,
lambda_Al));

add_matrix_form(new DefaultJacobianDiffusion<double>(0, O, material_marker_Cu,
lambda_Cu));

// Residual forms.
add_vector_form(new DefaultResidualDiffusion<double>(0, material_marker_Al,
lambda_Al));
add_vector_form(new DefaultResidualDiffusion<double>(0, material_marker_Cu,
lambda_Cu));
add_vector_form(new DefaultVectorFormVol<double>(0, HERMES_ANY, src_term));
};

Here, the class CustomWeakFormPoisson is inherited from a base class Weak Form<double>. The argument 1 in the
constructor WeakForm<double> (1) represents the number of equations and <double> stands for the specialization of
the base class template for double-precision real numbers calculation (the base class template could as easily be used with
complex numbers, single precision, and so on). Jacobian forms are bilinear forms that constitute the Jacobian matrix of the
problem. The DefaultJacobianDiffusion<double> represents

f AVu - Vo dxdy.
2

The meaning of the arguments (0, 0, material_marker_Al, lambda_A1l) isasfollows: 0, O isthe block coordinate
of the bilinear form in the Jacobian matrix. Itis always 0, O for single-PDE problems. The text stringmaterial _marker_Al
identifies finite elements in the mesh that belong to £24, and 1ambda_A1l is the value of A4. The same goes for the second
contribution that corresponds to the material marker material_marker_Cu.

Residual forms are generally nonlinear. The DefaultResidualDiffusion <double> form represents

/ AVu - Vv dxdy
2
and DefaultVectorFormVol <double> stands for

/ Cv dxdy.
2

Again, the first argument is O for single-PDE problems, and the other arguments tie the constants to different subdomains.
In the last form, HERMES_ANY stands for any material marker (meaning the entire domain §2) and src_termis C.

154 P. Solin et al. /Journal of Computational and Applied Mathematics 270 (2014) 152-165
3. Creating a simple linear PDE solver

Once the weak forms have been defined, the solver can be created in a few standard steps:

Step 1—Load the mesh
The main.cpp file begins with loading the mesh. Mesh can be accepted both in the native Hermes format:

MeshSharedPtr mesh(new Mesh);
MeshReaderH2D mloader;
mloader.load("domain.mesh", mesh);

or in the XML format:

MeshSharedPtr mesh(new Mesh);
MeshReaderH2DXML mloader;
mloader.load("domain.xml", mesh);

or in the binary BSON format:

MeshSharedPtr mesh(new Mesh);
MeshReaderH2DBSON mloader;
mloader.load("domain.bson", mesh);

Step 2—Perform initial mesh refinements
Anumber of initial refinement operations can be done as explained in example P01/01-mesh in Hermes tutorial (available
athttp://hpfem.org/hermes). In this case we just perform optional uniform mesh refinements:

for (int i = 0; i < INIT_REF_NUM; i++)
mesh->refine_all_elements();

Step 3—Initialize weak formulation

Next, an instance of the corresponding weak form class is created:

For constant A4 and A, the form is instantiated as follows (note the minus (—) sign in front of src_term that is there
due to the Newton method formulation):

CustomWeakFormPoisson wf ("Aluminum", new HermesiDFunction<double>(lambda_Al),
"Copper", new HermeslDFunction<double>(lambda_Cu),
new Hermes2DFunction<double>(-src_term));

Step 4—Set constant Dirichlet conditions
Constant Dirichlet boundary conditions are assigned to the boundary markers Bottom, Inner, Outer, and Left as follows:

DefaultEssentialBCConst<double> bc_essential (Hermes: :vector<std: :string>(
"Bottom", "Inner", "Outer", "Left"), FIXED_BDY_TEMP);
EssentialBCs<double> bcs(&bc_essential);

The Hermes: : vector is derived from std: : vector enhanced with a few extra constructors. It is used to avoid using
variable-length arrays.
Step 5—Initialize finite element space
As a next step, we initialize a finite element subspace of H!(£2):
SpaceSharedPtr<double> space(new HlSpace<double>(mesh, &bcs, P_INIT));

Here, P_INIT stands for a uniform polynomial degree of elements.

Step 6—Initialize discrete problem
The weak formulation and finite element space(s) together constitute a discrete finite element problem. To define it, one
needs to create an instance of the DiscreteProblem class:

DiscreteProblem<double> dp(&wf, space);

Step 7—Initialize Newton solver
The NewtonSolver class is initialized using a pointer to DiscreteProblem:

NewtonSolver<double> newton(&dp) ;

P. Solin et al. / Journal of Computational and Applied Mathematics 270 (2014) 152-165 155

ParaView 3.8.0 32-bit

ZRELa g & K> P tmel
) o mpenature | . A s aa: FE
E9O0OPRDO
Pipeline Browser 3 o] m|B|o]| x
B builtin
« B
Temperatur
22.4076
Object Inspector
Properties | Display | Information | 22
Apply Reset # Delete |

E21

Fig. 1. Sample VTK visualization.

Step 8—Perform the nonlinear iteration

Next, the Newton method is employed in an exception-safe way. For a linear problem, it usually only takes one step,
but sometimes it may take more if the matrix is ill-conditioned or if for any other reason the residual after the first step is
not under the prescribed tolerance. If all arguments are skipped in newton.solve (), this means that the Newton method
will start from a zero initial vector, with a default tolerance 1e-8, and with a default maximum allowed number of 100
iterations:

try
{
newton.solve();
3
catch(Hermes: :Exceptions: :Exception& e)
{
e.printMsg();
X

The Newton solver is able to include a pre-defined damping factor, or choose the damping factor adaptively. Heuristics
deciding when to reuse the Jacobian are also available. Their detailed description, as well as additional useful methods of
the NewtonSolver class, are described in Hermes Doxygen documentation.

Step 9—Translate the coefficient vector into a Solution

The coefficient vector can be converted into a piecewise-polynomial solution (represented by the class Solution) via
the function

Solution<Scalar>::vector_to_solution():

MeshFunctionSharedPtr<double> sln(new Solution<double>);
Solution<double>::vector_to_solution(newton.get_sln_vector(), space, sln);

Step 10—Visualize the solution

The solution can either be displayed using a built-in OpenGL visualization of Hermes, or saved in VTK format and
visualized, e.g., using ParaView as shown in Fig. 1:

More details on this solver can be found in example A-1inear/03-Poisson in the Hermes tutorial repository.

156 P. Solin et al. /Journal of Computational and Applied Mathematics 270 (2014) 152-165

09

Iy

I;

Fig. 2. Computational domain.
4. Extension to the nonlinear case

Once a linear version of a problem works, it is very easy to extend it to a nonlinear case. For example, to replace the
constants A4 and A¢, above with cubic splines that depend on the solution u, one just needs to do:

CubicSpline lambda_Al(...);

CubicSpline lambda_Cu(...);

CustomWeakFormPoisson wf("Aluminum", &lambda_Al, "Copper", &lambda_Cu,
new Hermes2DFunction<double>(-src_term));

This is possible since CubicSpline is a descendant of Hermes1DFunction. Analogously, the constant src_term can be
replaced with an arbitrary function of x and y by subclassing Hermes2DFunction:

class CustomNonConstSrc<Scalar> : public Hermes2DFunction<Scalar>
If cubic splines are not enough, then one can subclass Hermes1DFunction to define arbitrary nonlinearities:

class CustomLambdaAl<Scalar> : public Hermesl1DFunction<Scalar>
class CustomLambdaCu<Scalar> : public Hermesl1DFunction<Scalar>

5. Solving PDE systems

In this presentation we skip the details of defining non-constant Dirichlet, Neumann, and Newton boundary conditions,
and we move on to solving PDE systems (example 08-system in Hermes tutorial).
First let us understand how Hermes handles systems of n linear PDE whose weak formulation is written as

ayi(ug, v1) + app(uz, v1) + - - + ap(Up, v1) — Li(v1) =0,
ay1(uy, v2) + axn(uz, v2) + - - + Az (Up, v2) — L(v2) =0,

an1 (U1,) + A2 (U2, V) + -+ + Apa(Un, V) — L (vy) = 0.

The vector-valued solution u = (uq, us,...,u,) and test function v = (v, vy, ..., v,) belong to a product space
V =V; x V3 x --- x V,, where each V; is one of the available function spaces H', H(curl), H(div) or L?. These spaces can be
arbitrarily combined and moreover, they can be discretized on different meshes. The resulting discrete matrix problem has
an x n block structure.

Let us solve a sample linear elasticity problem. The domain £2 is shown in Fig. 2.

Both displacement components are zero at the bottom edge I, and a vertical force f acting in the upward direction is
applied to the top edge I'5.In 2D, this problem is described by a system of two coupled Lamé equations of linear elasticity.

The weak formulation is created using predefined Jacobian and residual forms for linear elasticity. We find it useful to
show them here since they illustrate how the block structure of the Jacobian matrix and residual vector are implemented:

CustomWeakFormLinearElasticity: :CustomWeakFormLinearElasticity(double E,
double nu, double rho_g, std::string surface_force_bdy, double fO,
double f1) : WeakForm<double>(2)

{
double lambda = (E * nu) / ((1 + nuw) * (1 - 2*nuw));

P. Solin et al. / Journal of Computational and Applied Mathematics 270 (2014) 152-165 157
double mu = E / (2%(1 + nu));

// Jacobian.

add_matrix_form(new DefaultJacobianElasticity_0_0<double>(0, O,
lambda, mu));

add_matrix_form(new DefaultJacobianElasticity_O_1<double>(0, 1,
lambda, mu));

add_matrix_form(new DefaultJacobianElasticity_1_1<double>(1, 1,
lambda, mu));

// Residual - first equation.

add_vector_form(new DefaultResidualElasticity_0_0<double>(0,
HERMES_ANY, lambda, mu));

add_vector_form(new DefaultResidualElasticity_O_1<double>(O0,
HERMES_ANY, lambda, mu));

// Surface force (first component).

add_vector_form_surf (new DefaultVectorFormSurf<double> (0,
surface_force_bdy, new Hermes2DFunction<double>(-£0)));

// Residual - second equation.

add_vector_form(new DefaultResidualElasticity_1_0<double>(1,
HERMES_ANY, lambda, mu));

add_vector_form(new DefaultResidualElasticity_1_1<double>(1,
HERMES_ANY, lambda, mu));

// Gravity loading in the second vector component.

add_vector_form(new DefaultVectorFormVol<double>(1, HERMES_ANY,
new Hermes2DFunction<double>(-rho_g)));

// Surface force (second component).

add_vector_form_surf (new DefaultVectorFormSurf<double>(1,
surface_force_bdy, new Hermes2DFunction<double>(-f1)));

3

Here, the CustomWeakFormLinearElasticity is derived from the base class WeakForm<double>. The parameter 2
in the constructor means that we deal with a two-equation system. This also means that the Jacobian matrix hasa 2 x 2
block structure and the residual vector has two components that correspond to the two displacement components 14 and
us.
The bilinear weak forms DefaultJacobianElasticity_i_j and the linear vector forms
DefaultResidualElasticity_i_j are predefined and they include weak integrals from the Lamé equations. The vol-
umetric vector form DefaultVectorFormVol corresponds to the integral

—/ ogv dxdy
I?)

and the surface vector form DefaultVectorFormSurf corresponds to

—/rfvdS

where f is the acting force (recall that only its second component is nonzero).
Boundary conditions are implemented as follows:

DefaultEssentialBCConst<double> zero_disp("Bottom", 0.0);
EssentialBCs<double> bcs(&zero_disp);

Next we define function spaces for the displacement components u; and u,, and (optionally) we calculate the number of
degrees of freedom:

SpaceSharedPtr<double> ul_space(new HlSpace<double>(mesh, &bcs, P_INIT));
SpaceSharedPtr<double> u2_space(new HilSpace<double>(mesh, &bcs, P_INIT));
Hermes: :vector<SpaceSharedPtr<double> > spaces(ul_space, u2_space);

int ndof = Space<double>::get_num_dofs(spaces);

info("ndof = %d", ndof);

The weak formulation is initialized as follows:

CustomWeakFormLinearElasticity wf(E, nu, rho*gl, "Top", f0, f1);

158 P. Solin et al. / Journal of Computational and Applied Mathematics 270 (2014) 152-165

2.21e+05
1.99%e+05
1.77e+05
1.55e+05
1.33e+05
1.1e+05

8.83e+04

.63e+04

6
4.42e+04
2

.21e+04

Fig. 3. Domain deformation and von Mises stress distribution. The deformation is exaggerated for the visualization.

Next we create the discrete finite element problem:
DiscreteProblem<double> dp(&wf, spaces);
The Newton solver is initialized as follows:
NewtonSolver<double> newton(&dp) ;

Then the Newton iteration is performed:

try
{
newton.solve();
¥
catch(std: :exception& e)
{
e.printMsg();
}

Finally, the solution coefficient vector is translated into piecewise-polynomial functions in the two finite element spaces for
displacement components:

MeshFunctionSharedPtr<double> ul_sln(new Solution<double>),

u2_sln(new Solution<double>);
Hermes: :vector<MeshFunctionSharedPtr<double> > slns(ul_sln, u2_sln);
Solution<double>::vector_to_solutions (newton.get_sln_vector() , spaces, slns);

The result of the computation is shown in Fig. 3.
The complete source code can be found in example A-1inear/08-system in the Hermes tutorial repository.

6. Axisymmetric 3D problems

Let us solve stationary heat transfer in a hollow cylindrical object shown in Fig. 4:
In the absence of internal heat sources, the equation describing the process has the form
—div(AVT) = 0.
The object stands on a hot plate
T = Thottom ON I'bottom

and on the rest of the boundary we prescribe a natural convection boundary condition

aT
—A— = (T — Text).
on
Here A is the thermal conductivity of the material, o the heat transfer coefficient between the object and the air, and Ty,
the exterior air temperature.
Hermes makes the definition of axisymmetric weak forms very easy. The forms are almost identical to the planar 2D case,
only there is an extra flag HERMES _AXTSYM_X or HERMES_AXTSYM_Y to indicate that this is an axisymmetric problem with
respect to the x or y axis, respectively. The weak formulation is defined as follows:

P. Solin et al. / Journal of Computational and Applied Mathematics 270 (2014) 152-165 159

04

|{ 025

Fig. 4. Axisymmetric computational domain.

CustomWeakFormPoissonNewton: : CustomWeakFormPoissonNewton(double lambda,
double alpha, double Text, std::string bdy_heat_flux):WeakForm<double>(1)

{
// Jacobian form - volumetric.
add_matrix_form(new WeakFormsH1::DefaultJacobianDiffusion<double>(0, O,
HERMES_ANY, new Hermes1DFunction<double>(lambda), HERMES_SYM,
HERMES_AXISYM_Y));
// Jacobian form - surface.
add_matrix_form_surf (new WeakFormsH1::DefaultMatrixFormSurf<double>(0, O,
bdy_heat_flux, new Hermes2DFunction<double>(alpha), HERMES_AXISYM_Y));
// Residual forms - volumetric.
add_vector_form(new WeakFormsH1::DefaultResidualDiffusion<double> (O,
HERMES_ANY, new Hermesi1DFunction<double>(lambda), HERMES_AXISYM_Y));
// Residual form - surface.
add_vector_form_surf (new WeakFormsH1::DefaultResidualSurf<double>(O0,
bdy_heat_flux, new Hermes2DFunction<double>(alpha), HERMES_AXISYM_Y));
add_vector_form_surf (new WeakFormsH1::DefaultVectorFormSurf<double> (0,
bdy_heat_flux, new Hermes2DFunction<double>(-alpha * Text),
HERMES_AXISYM_Y));
}s

Otherwise the solver is created using the same sequence of steps as a planar 2D problem. Results for the values Tyos0m = 100,
Texe = 0,1 = 386 and o = 20 are shown in Fig. 5.

Complete source code of this example can be found in example A-linear/ 09-axisym in the Hermes tutorial
repository.

7. Creating an hp-adaptive solver

Let us demonstrate the use of adaptive hp-FEM on a linear elliptic problem describing an electrostatic micromotor. This is
a MEMS device free of any coils, and thus (as opposed to classical electromotors) resistive to strong electromagnetic waves.
Fig. 6 shows a symmetric half of the domain (dimensions need to be scaled with 107> and they are in meters).

160 P. Solin et al. / Journal of Computational and Applied Mathematics 270 (2014) 152-165

100 34.
99.4 31.
98.8 28.
98.2 F425.
97.5 i 22 .
96.9 B 19.7
Py 96.3 j 16.7
95.7 13.7

95.1 10.8
94.5 7.84
93.9 4.88 & J

Fig. 5. Temperature (left) and temperature gradient (right). The hot plate is the bottom part of the boundary.

axis

\ 150
. [or]
I I, 400 50
200
1]
w05 X
I.S-I- k 198 ']

Fig. 6. Computational domain.

The subdomain £2, represents the moving part of the domain and the area bounded by I represents the electrodes that
are fixed. The distribution of the electrostatic potential ¢ is governed by the equation

—div(e;egVe) =0

which is equipped with Dirichlet boundary conditions ¢ = 0 on I'y and ¢ = 50 on I3. The relative permittivity €, is
piecewise-constant, ¢, = 1in £, ¢, = 10 in £, and ¢y is permittivity of vacuum. As we would like to focus on the
adaptivity aspect, for the weak forms we refer to example D-adaptivity/01-intro in the Hermes tutorial repository.

At the beginning of the code, we need to define a few parameters, starting with the uniform initial polynomial degree in
elements:

const int P_INIT = 1;

Hermes provides eight modes of automatic adaptivity, ranging from isotropic p-refinements to fully anisotropic refinements
in both h and p:

// Predefined list of element refinement candidates. Possible values are
// H2D_P_IS0, H2D_P_ANISO, H2D_H_ISO, H2D_H_ANISO, H2D_HP_ISO,

// H2D_HP_ANISO_H, H2D_HP_ANISO_P, H2D_HP_ANISO.

const CandList CAND_LIST = H2D_HP_ANISO_H;

Here H2D_HP_ANISO_H means hp-refinements which can be anisotropic in h but isotropic in p.
Next we select the way errors for adaptivity will be calculated, here we calculate the error in the H! norm and use the
error relative to the global H' norm:

P. Solin et al. / Journal of Computational and Applied Mathematics 270 (2014) 152-165

CAND_LIST H-candidates ANISO-candidates P-candidates
H_ISO 71 S
- N /// \\\ h
;‘x’ /1‘»(
/ . v
H_ANISO h N N
v
b v v
v
P_I1SO b
+0,
y vidy
P_ANISO '\\ 7 N
e +ay
X
S/ \\ vy
HP_1SO 1sh+6,] sh+5; e
Yav+bs| av+d, b
Wah+84| sh+8,
Wav+dg| Vov+d) G
HP_ANISO_H [\5h+8,|h+d h+d, Voht b
1wt | v+, av+d, V2h+8o Bo
Ish+ds | Vah+d h+8,
Wovesalipwes,| | wvess | [v
HP_ANISO P [ish+a,[Voh+a; AN b
Wav+s | Vav+ B N e “
hta | shta, 7N N
s s % / v
] +Bo
HP_ANISO shtay| Vahta; ha, o "
Yav s | v+ v+ A “
Ish+a, | Vshta, h+a, o ’
Wavflo| Vav+fy avifs Vb viby

Fig. 7. Overview of refinement candidates.

DefaultErrorCalculator<double, HERMES_H1_NORM>
errorCalculator(RelativeErrorToGlobalNorm, 1);

161

We also set a stopping criterion for refinements done at a single level, in this case only the element yielding larger error
than half the maximum element error will be refined:

const double THRESHOLD = 0.5;

AdaptStoppingCriterionSingleElement<double> stoppingCriterion(THRESHOLD) ;

Next we initialize the main adaptivity class and refinement selector:

Adapt<double> adaptivity(space, &errorCalculator, &stoppingCriterion);

HiProjBasedSelector<double> selector (CAND_LIST);
// Relative error tolerance, here, 1Y%.
const double ERR_STOP = 0.01;

The selector is used by the class Adapt to determine how an element should be refined. For that purpose, the selector does

the following:

By default, the score is calculated as follows:

logg €0 — logp €

It generates candidates (proposed element refinements).
It estimates their local errors by projecting the reference solution onto their FE spaces.
It calculates the number of degrees of freedom (DOF) contributed by each candidate.
It calculates a score for each candidate, and sorts them according to their scores.

It selects a candidate with the highest score. If the next candidate has almost the same score and symmetric mesh is
preferred, it skips both of them.

where € and d are an estimated error and an estimated number of DOF of a candidate, respectively, €y and dg are an estimated

error and an estimated number of DOF of the examined element, respectively, and & is a convergence exponent.
The parameter CAND_LIST specifies which candidates are generated. In a case of quadrilaterals, all possible values and

considered candidates are summarized in Fig. 7.

162 P. Solin et al. / Journal of Computational and Applied Mathematics 270 (2014) 152-165

The adaptivity algorithm in Hermes calculates an approximation on fine mesh and uses orthogonal projection to a coarse
submesh (so only the problem on the fine mesh is actually solved) to extract low-order part of the solution. This gives two
approximations with different orders of accuracy whose difference is used as an a-posteriori error estimate (error function).
The error function is used to decide which elements need to be refined as well as to select optimal hp-refinement for each
element. Hence the adaptivity loop begins with refining the mesh globally:

Mesh: :ReferenceMeshCreator ref_mesh_creator(mesh);

MeshSharedPtr ref_mesh = ref_mesh_creator.create_ref_mesh();
Space<double>: :ReferenceSpaceCreator ref_space_creator(space, ref_mesh);
SpaceSharedPtr<double> ref_space = ref_space_creator.create_ref_space();

The new spaces have to be set to the Newton (or linear) solver that we already created (outside of the adaptivity loop):
newton.set_space(ref_space);

The Newton method is used to solve the fine mesh problem:

try
{
newton.solve(coeff_vec);
X
catch(Hermes: :Exceptions: :Exception& e)
{
e.printMsg();
X

The coefficient vector is translated into a Solution:

Solution<double>: :vector_to_solution(newton.get_sln_vector(),
ref_space, ref_sln);

The Solution is projected on the coarse submesh to extract low-order part for error calculation:
0GProjection<double>: :project_global(space, ref_sln, sln);

The function project_global () is very general; it can accept multiple spaces, multiple functions, and various projection
norms as parameters. For more details, see Hermes Doxygen documentation.

The coarse and reference mesh approximations are inserted into the class Adapt instance created earlier adaptivity
and a global error estimate as well as element error estimates are calculated using the ErrorCalculator instance
errorCalculator (also created earlier):

errorCalculator.calculate_errors(sln, ref_sln);
double err_est_rel = errorCalculator.get_total_error_squared();

When working with another space than H', the HERMES_H1_NORM in the initialization of the ErrorCalculator can be
replaced with HERMES_HCURL_NORM, HERMES_HDIV_NORM, or HERMES_L2_NORM
If err_est_rel is above the prescribed tolerance ERR_STOP, we perform mesh adaptation:

// If err_est too large, adapt the mesh.
if (err_est_rel < ERR_STOP)
done = true;
else
{
// Adapt class may return true if no other elements could have been refined,
// therefore we would be done.
done = adaptivity.adapt(&selector);

// Increase the counter of performed adaptivity steps.
if (done == false)
as++;

}

Sample numerical results are shown in Figs. 8-10.

Convergence curves for adaptive h-FEM with linear and quadratic elements, as well as for the hp-FEM, both in terms of
the number of degrees of freedom and CPU time, are shown in Figs. 11 and 12.

In harmony with theoretical prediction, the convergence curves of adaptive h-FEM with linear and quadratic elements
have slopes —1/2 and —1 on the log-log scale, respectively. Convergence of the adaptive hp-FEM is exponential.

P. Solin et al. / Journal of Computational and Applied Mathematics 270 (2014) 152-165

N

+ Fine solution

50
45
40
35
30
25
20
15
10

Fig. 8. Detail of the singular electric potential ¢ at the electrode.

w Gradient

300
270
240
210
180
150
120
90

60

30

Fig. 9. Detail of the gradient of ¢.

* Polynomial orders

Fig. 10. Resulting hp-finite element mesh. Scale indicates polynomial degrees of elements.

163

164 P. Solin et al. / Journal of Computational and Applied Mathematics 270 (2014) 152-165

Error convergence
T

102 - - - - - -
s—a h-FEM (p=1)
=—a h-FEM (p=2)
10 | =—a hp-FEM 1
10° 1
£
\g 10 |
w
1072 1
10-3 A
10* - ' - ' - ' -
10° 10! 10° 10° 10° 10° 10°

Degrees of freedom
Fig. 11. Error convergence in terms of DOF.

Error convergence

10? - -
=—a h-FEM (p=1)
s—a h-FEM (p=2)
10' | =—a hp-FEM 1
10° |
)
'g 107 4
w
1072 |
103} 4
10 :
107 107 10! 10° 10! 10° 10° 10*
CPU time

Fig. 12. Error convergence in terms of CPU time.
Acknowledgments

This work was supported by the European Regional Development Fund and Ministry of Education, Youth and Sports of
the Czech Republic (Project No. CZ.1.05/2.1.00/03.0094: Regional Innovation Centre for Electrical Engineering—RICE) and
Grant project GACR P102/11/0498.

References

[1] P. Solin, L. Korous, Adaptive higher-order finite element methods for transient PDE problems based on embedded higher-order implicit Runge-Kutta
methods,]. Comput. Phys. 231 (4) (2012) 1635-1649.

[2] L. Dubcova, P. Solin, G. Hansen, H. Park, Comparison of multimesh hp-FEM to interpolation and projection methods for spatial coupling of reactor
thermal and neutron diffusion calculations, J. Comput. Phys. 230 (2011) 1182-1197.

http://refhub.elsevier.com/S0377-0427(14)00083-1/sbref1
http://refhub.elsevier.com/S0377-0427(14)00083-1/sbref2

P. Solin et al. / Journal of Computational and Applied Mathematics 270 (2014) 152-165 165

[3] P.Solin,]. Cerveny, L. Dubcova, D. Andrs, Monolithic discretization of linear thermoelasticity problems via adaptive multimesh hp-FEM, J. Comput. Appl.
Math 234 (2010) 2350-2357.

[4] P. Solin, L. Korous, Adaptive hp-FEM with dynamical meshes for problems with traveling sharp fronts, Computing (2012) http://dx.doi.org/10.1007/
s00607-012-0243-7. Published online.

[5] P. Solin, M. Kuraz, Solving the nonstationary Richards equation with adaptive hp-FEM, Adv. Water Resour. 34 (9) (2011) 1062-1081.

[6] P.Solin,]. Cerveny, L. Dolezel, Arbitrary-level hanging nodes and automatic adaptivity in the hp-FEM, Math. Comput. Simul. 77 (2008) 117-132.

[7] P.Solin, L. Demkowicz, Goal-oriented hp-adaptivity for elliptic problems, Comput. Methods Appl. Mech. Engrg. 193 (2004) 449-468.

[8] P.Solin, K. Segeth, 1. Dolezel, Higher-Order Finite Element Methods, Chapman & Hall/CRC Press, Boca Raton, 2003.

[9] P. Karban, F. Mach, P. Kus, D. Panek, 1. Dolezel, Numerical solution of coupled problems using code Agros2D, Computing (2013) http://dx.doi.org/10.
1007/s00607-013-0294-4. Published online.

http://refhub.elsevier.com/S0377-0427(14)00083-1/sbref3
http://dx.doi.org/10.1007/s00607-012-0243-7
http://dx.doi.org/10.1007/s00607-012-0243-7
http://dx.doi.org/10.1007/s00607-012-0243-7
http://dx.doi.org/10.1007/s00607-012-0243-7
http://dx.doi.org/10.1007/s00607-012-0243-7
http://dx.doi.org/10.1007/s00607-012-0243-7
http://dx.doi.org/10.1007/s00607-012-0243-7
http://refhub.elsevier.com/S0377-0427(14)00083-1/sbref5
http://refhub.elsevier.com/S0377-0427(14)00083-1/sbref6
http://refhub.elsevier.com/S0377-0427(14)00083-1/sbref7
http://refhub.elsevier.com/S0377-0427(14)00083-1/sbref8
http://dx.doi.org/10.1007/s00607-013-0294-4
http://dx.doi.org/10.1007/s00607-013-0294-4
http://dx.doi.org/10.1007/s00607-013-0294-4
http://dx.doi.org/10.1007/s00607-013-0294-4
http://dx.doi.org/10.1007/s00607-013-0294-4
http://dx.doi.org/10.1007/s00607-013-0294-4
http://dx.doi.org/10.1007/s00607-013-0294-4

	Hermes2D, a C++ library for rapid development of adaptive h p -FEM and h p -DG solvers
	Introduction
	Defining weak forms
	Creating a simple linear PDE solver
	Extension to the nonlinear case
	Solving PDE systems
	Axisymmetric 3D problems
	Creating an h p -adaptive solver
	Acknowledgments
	References

