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a b s t r a c t

In this contribution, the reconstruction of a solely time-dependent convolution kernel is
studied in an inverse problem arising in the theory of heat conduction for materials with
memory. The missing kernel is recovered from a measurement of the average of tempera-
ture. The existence, uniqueness and regularity of a weak solution is addressed. More spe-
cific, a new numerical algorithm based on Rothe’s method is designed. The convergence of
iterates to the exact solution is shown.
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1. Introduction

Identification of missing memory kernels in partial integrodifferential equations is relatively new in inverse problems
(IPs). Some references are [1–5]. For instance, Ref. [5] derives some local and global in time existence results for the recovery
of solely time-dependentmemory kernels in semilinear integrodifferentialmodels.More specific, they studied the evolution
equation for materials with memory. This equation is given by

∂tu(x, t) = 1u(x, t) +

 t

0
K(t − s)1u(x, s)ds + F(u(x, t)), x ∈ Ω0 ⊂ R3, t ∈ [0, T0].

To determine the memory kernel K an additional measurement on u is needed;


Ω
φ(x)u(x, t)dx = G(t), ∀t ∈ [0, T0]. In

these references, there is no description of constructive algorithms how to find a solution. The construction of a numerical
algorithm for this type of problems is the central theme of this article. The following inverse problem for a semilinear
parabolic equation with memory is considered: determine the unknown couple ⟨u, K⟩ obeying

∂tu(x, t) − 1u(x, t) + K(t)h(x, t) − (K ∗ 1u(x))(t) = f (u(x, t)), in Ω × I,
α(u(x, t)) + ∇u(x, t) · ν = g(x, t), on Γ × I,
u(x, 0) = u0(x), in Ω,

(1)

whereΩ is a Lipschitz domain [6] inRN ,N ≥ 1,with ∂Ω = Γ and I = [0, T ], T > 0, is the time frame. The usual convolution
in time is denoted by K ∗ u, namely (K ∗ u(x))(t) =

 t
0 K(t − s)u(x, s)ds. The missing time-convolution kernel K = K(t)
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will be recovered from the following integral-type measurement
Ω

u(x, t) dx = m(t), t ∈ [0, T ]. (2)

Note that this equation is also used in themodeling of phenomena in viscoelasticity [7]. The integral type over-determination
in IPs combined with evolutionary partial differential equations (PDEs) has been studied in several other papers, e.g. [8–10]
and the references therein.

The main goal of this paper is to design a productive numerical scheme describing a way of retrieving the couple ⟨u, K⟩.
This is achieved not by the minimization of a cost functional (which is typical for IPs) but by the semi-discretization in
time by Rothe’s method [11,12]. First, this introduction is finished with the derivation of a suitable variational formulation.
Section 2 is devoted to the study of regularity of a weak solution and its uniqueness is addressed in Theorem 1. Section 3
deals with the time discretization, where (based on the backward Euler scheme) the continuous problem is approximated
by a sequence of steady state settings at each point of a time partitioning. Stability analysis of approximates is performed in
appropriate function spaces and convergence (based on compactness argument) is established in Theorem 2.
Notations. Denote by (·, ·) the standard inner product of L2(Ω) and ∥·∥ its induced norm. A similar notation is used when
working at the boundary Γ , namely (·, ·)Γ , L2(Γ ) and ∥·∥Γ . Consider an abstract Banach space X with norm ∥·∥X . The set of
continuous abstract functions w : [0, T ] → X equipped with the usual normmaxt∈[0,T ] ∥·∥X is denoted by C ([0, T ], X). The

space Lp ((0, T ), X) is furnished with the norm
 T

0 ∥·∥
p
X

 1
p
with p > 1, cf. [13]. The symbol X∗ stands for the dual space to

X . Finally, as is usual in papers of this sort, C, ε and Cε denote generic positive constants depending only on a priori known
quantities, where ε is small and Cε = C


ε−1


is large.

Derivation of the variational problem. First, the PDE in (1) is multiplied with a test function φ ∈ H1(Ω) and integrated over
Ω to obtain that

(∂tu, φ) − (1u, φ) + K (h, φ) − (K ∗ 1u, φ) = (f (u), φ) . (3)

Secondly, using Green’s first identity implies that

(∂tu, φ) + (∇u, ∇φ) + K (h, φ) + (K ∗ ∇u, ∇φ) = (f (u), φ) + (g − α(u), φ)Γ + (K ∗ (g − α(u)), φ)Γ . (P)

Finally, we set φ = 1 in (P) and obtain together with the measurement


Ω
u(t) = m(t) that

m′
+ K


Ω

h =


Ω

f (u) +


Γ

(g − α(u)) +


Γ

K ∗ (g − α(u)). (MP)

The relations (P) and (MP) represent the variational formulation of (1) and (2).

2. Stability analysis of a solution, uniqueness

First, this section starts with a study of natural regularity of a solution ⟨u, K⟩. This helps us to choose appropriate function
spaces for the variational framework. Uniqueness of a solution is addressed at the end of this section. Two frequently used
estimates for the convolution term are [14, Lemma 1]:

Proposition 2.1. Set I = [0, η], η > 0. Suppose κ ∈ L2(I) and υ ∈ L2(I, L2(Ω)), then it holds that

∥κ ∗ υ∥
2

≤ κ2
∗ ∥υ∥

2 , (∗) η

0
∥κ ∗ υ∥

2
≤

 η

0
|κ|

2
 η

0
∥υ∥

2 . (∗∗)

Remark. Note that the estimates (∗) and (∗∗) also hold when κ ∈ L2(I) and υ ∈ L2(I, L2(Γ )) in the appropriate norm.

Proposition 2.2. Let f and α be bounded, i.e. |f | ≤ C and |α| ≤ C. Moreover, assume that u0 ∈ L2(Ω), g ∈ C

[0, T ], L2(Γ )


,

h ∈ C

[0, T ], L2(Ω)


,mint∈[0,T ]


Ω
h(t)

 ≥ ω > 0 and m ∈ C1([0, T ]). If ⟨u, K⟩ is a solution of (1) and (2), then K is bounded
on [0, T ], i.e.

max
t∈[0,T ]

|K(t)| ≤ C .

Proof. Take any t ∈ [0, T ]. From (MP) it follows thatK(t)


Ω

h(t)
 ≤


Ω

|f (u(t))| +


Γ

|(g(t) − α(u(t)))| +


Γ

|(K ∗ (g − α(u)))(t)| +
m′(t)

 .
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Involving the assumptions on the data, we see that

ω |K(t)| ≤


Ω

h(t)
 |K(t)|

≤ C +


Γ

|(K ∗ (g − α(u)))(t)| ≤ C +


Γ

 t

0
|K(s)| |g(x, t − s) − α(u(x, t − s))| ds dx

≤ C +

 t

0
|K(s)| ∥(g − α(u))(t − s)∥L1(Γ ) ds ≤ C + C

 t

0
|K(s)| ds.

The proof is concluded by Grönwall’s argument, cf. [15]. �

Proposition 2.3. Let the conditions of Proposition 2.2 be satisfied. If ⟨u, K⟩ is a solution of (1) and (2), then there exists C > 0
such that

(i) maxt∈[0,T ] ∥u(t)∥2
+

 T

0
∥∇u∥2

≤ C

(ii)
 T

0
∥∂tu∥2

(H1(Ω))
∗ ≤ C.

Proof. (i) If we set φ = u in (P) and integrate in time over (0, t), we obtain t

0
(∂tu, u) +

 t

0
∥∇u∥2

+

 t

0
K (h, u) +

 t

0
(K ∗ ∇u, ∇u)

=

 t

0
(f (u), u) +

 t

0
(g − α(u), u)Γ +

 t

0
((K ∗ (g − α(u))) (ξ), u(ξ))Γ dξ . (4)

The first term on the left-hand side (LHS) can be rewritten as t

0
(∂tu, u) =

1
2

∥u(t)∥2
−

1
2

∥u0∥
2 .

For the third term, we get by the boundedness of K (see Proposition 2.2) that t

0
K(h, u)

 ≤

 t

0
|K | ∥h∥ ∥u∥ ≤ C

 t

0
∥h∥2

+ C
 t

0
∥u∥2 .

The fourth one is bounded by t

0
((K ∗ ∇u)(ξ), ∇u(ξ)) dξ

 ≤ Cε

 t

0

 ξ

0
K(ξ − s)∇u(s)ds

2 dξ + ε

 t

0
∥∇u(ξ)∥2 dξ

≤ Cε

 t

0

 ξ

0
∥∇u(s)∥2 dsdξ + ε

 t

0
∥∇u(ξ)∥2 dξ,

due to Young’s inequality, Jensen’s inequality and the boundedness of K . The first term on the right-hand side (RHS) of (4)
can be estimated as follows t

0
(f (u), u)

 ≤

 t

0
∥f (u)∥ ∥u∥ ≤

1
2

 t

0
∥f (u)∥2

+
1
2

 t

0
∥u∥2

≤ C +
1
2

 t

0
∥u∥2 ,

as f is bounded. The last term on the RHS of (4) is bounded by t

0
(K ∗ (g − α(u)), u)Γ

 ≤ C
 t

0
∥K ∗ (g − α(u))∥Γ ∥u∥H1(Ω)

≤ Cε

 t

0
∥K ∗ (g − α(u))∥2

Γ + ε

 t

0
∥u∥2

H1(Ω)

≤ Cε

 t

0
|K |

2
 t

0
∥(g − α(u))∥2

Γ + ε

 t

0
∥u∥2

H1(Ω)

≤ Cε + ε

 t

0
∥u∥2

H1(Ω)
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by Cauchy’s inequality, the estimate (∗∗), the trace theorem and the assumptions on g and α. The estimation of the second
term is similar to the last one. Putting all things together, fixing a sufficiently small ε > 0 and taking into account ∥u∥2

H1(Ω)
=

∥u∥2
+ ∥∇u∥2, we obtain that

∥u(t)∥2
+

 t

0
∥∇u(ξ)∥2 dξ ≤ C + C

 t

0
∥u∥2 dξ + C

 t

0

 ξ

0
∥∇u(s)∥2 dsdξ,

which is valid for any t ∈ [0, T ]. An application of Grönwall’s lemma concludes the proof.
(ii) Starting from (P) and using the Cauchy inequality, the boundedness of K (see Proposition 2.2), the assumptions on

the data, bound (∗), the trace theorem and point (i) of this proposition, we successively deduce that

|(∂tu, φ)| =
(f (u), φ) + (g − α(u), φ)Γ + (K ∗ (g − α(u)), φ)Γ − (∇u, ∇φ) − K (h, φ) − (K ∗ ∇u, ∇φ)


≤ C (∥φ∥ + ∥φ∥Γ + ∥K ∗ (g − α(u))∥Γ ∥φ∥Γ + ∥∇u∥ ∥∇φ∥ + ∥K ∗ ∇u∥ ∥∇φ∥)

≤ C


∥φ∥ + ∥φ∥Γ +


K 2 ∗ ∥g − α(u)∥2

Γ ∥φ∥Γ + ∥∇u∥ ∥∇φ∥ +


K 2 ∗ ∥∇u∥2

∥∇φ∥



≤ C

∥φ∥ + ∥φ∥Γ + ∥∇u∥ ∥∇φ∥ +

 t

0
∥∇u∥2

∥∇φ∥


≤ C


∥∇u∥ ∥∇φ∥ + ∥φ∥H1(Ω)


.

Thus, (∂tu, φ) can be seen as a linear functional on H1(Ω) and we may write

∥∂tu∥(H1(Ω))
∗ = sup

∥φ∥H1(Ω)
≤1

|(∂tu, φ)| ≤ C (1 + ∥∇u∥) ,

which implies by (i) that T

0
∥∂tu∥2

(H1(Ω))
∗ ≤ C + C

 T

0
∥∇u∥2

≤ C . �

The Rellich–Kondrachov theorem [16, Section 5.8.1] implies that

H1(Ω) ⊂⊂ L2(Ω) ∼=

L2(Ω)

∗
⊂⊂


H1(Ω)

∗
.

From the previous propositions and [17, Lemma 7.3], the following corollary follows immediately.

Corollary 2.4. If ⟨u, K⟩ is a solution of (1) and (2), then K ∈ L2(0, T ) and u ∈ C

[0, T ], L2(Ω)


∩ L2


(0, T ),H1(Ω)


with

∂tu ∈ L2

(0, T ),


H1(Ω)

∗.
Uniqueness. Now, it is possible to establish the uniqueness of a solution to (P)–(MP). The proof is by contradiction. Suppose
that there are two solutions ⟨u1, K1⟩ and ⟨u2, K2⟩ solving (P)–(MP). By subtracting the corresponding variational formula-
tions follows that

(∂t(u1 − u2), φ) + (∇(u1 − u2), ∇φ) + (K1 − K2) (h, φ) + (K1 ∗ ∇u1 − K2 ∗ ∇u2, ∇φ)

= (f (u1) − f (u2), φ) + (α(u2) − α(u1), φ)Γ + (K1 ∗ (g − α(u1)) − K2 ∗ (g − α(u2)), φ)Γ

and

(K1 − K2)


Ω

h =


Ω

(f (u1) − f (u2)) +


Γ

(α(u2) − α(u1)) +


Γ

[K1 ∗ (g − α(u1)) − K2 ∗ (g − α(u2))] .

Denote the difference of the solutions by eK (t) = K1(t)−K2(t) and eu(x, t) = u1(x, t)−u2(x, t) inΩ × I . Then the previous
equations can be rewritten as

(∂teu, φ) + (∇eu, ∇φ) + eK (h, φ) + (eK ∗ ∇u1 + K2 ∗ ∇eu, ∇φ)

= (f (u1) − f (u2), φ) + (α(u2) − α(u1), φ)Γ + (eK ∗ g, φ)Γ + (K2 ∗ (α(u2) − α(u1)) − eK ∗ α(u1), φ)Γ (5)
and

eK


Ω

h =


Ω

(f (u1) − f (u2)) +


Γ

(α(u2) − α(u1)) +


Γ

eK ∗ g +


Γ

[K2 ∗ (α(u2) − α(u1)) − eK ∗ α(u1)] . (6)

In the proof of uniqueness, the Nečas inequality [18] is crucial, i.e.

∥z∥2
Γ ≤ ε ∥∇z∥2

+ Cε ∥z∥2 , ∀z ∈ H1(Ω), 0 < ε < ε0. (7)

Theorem 1 (Uniqueness).Assume that h ∈ C

[0, T ], L2(Ω)


, g ∈ C


[0, T ], L2(Γ )


,mint∈[0,T ]


Ω
h(t)

 ≥ ω > 0, u0 ∈ L2(Ω)

and m ∈ C1([0, T ]). The bounded functions f and α are supposed to be Lipschitz continuous. Then the problem (P)–(MP) has at
most one solution ⟨u, K⟩ ∈


C

[0, T ], L2(Ω)


∩ L2


(0, T ),H1(Ω)


× L2(0, T ) with ∂tu ∈ L2


(0, T ),


H1(Ω)

∗.
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Proof. Consider Eq. (6). The Lipschitz continuity of f and α, the boundedness of α and K2 imply that

ω |eK | 6

eK 
Ω

h


6 C (∥f (u1) − f (u2)∥ + ∥α(u2) − α(u1)∥Γ + ∥eK ∗ g∥Γ + ∥K2 ∗ (α(u2) − α(u1))∥Γ + ∥eK ∗ α(u1)∥Γ )

6 C

∥eu∥ + ∥eu∥Γ +

 t

0
|eK (s)|2 ds +

 t

0
∥eu(s)∥2

Γ ds

 .

Therefore, using the Nečas inequality (7) and the trace inequality, we get for t ∈ (0, T ] and γ small enough that

|eK (t)|2 6 Cγ ∥eu(t)∥2
+ γ ∥∇eu(t)∥2

+ C
 t

0
|eK (s)|2 ds + C

 t

0
∥eu(s)∥2

H1(Ω)
ds.

An application of Grönwall’s lemma gives

|eK (t)|2 6 Cγ ∥eu(t)∥2
+ γ ∥∇eu(t)∥2

+ C
 t

0
∥eu(s)∥2

H1(Ω)
ds

+ C
 t

0


Cγ ∥eu(ξ)∥2

+ γ ∥∇eu(ξ)∥2
+ C

 ξ

0
∥eu(s)∥2

H1(Ω)
ds

exp(CT )dξ

and therefore

|eK (t)|2 6 Cγ ∥eu(t)∥2
+ γ ∥∇eu(t)∥2

+ Cγ

 t

0
∥eu(s)∥2

H1(Ω)
ds. (8)

Now, we put φ = eu(t) in (5) and integrate in time over (0, η) to get

1
2

∥eu(η)∥2
+

 η

0
∥∇eu∥2

+

 η

0
eK (h, eu) +

 η

0
(eK ∗ ∇u1, ∇eu) +

 η

0
(K2 ∗ ∇eu, ∇eu)

=

 η

0
(f (u1) − f (u2), eu) +

 η

0
(α(u2) − α(u1), eu)Γ

+

 η

0
(eK ∗ g, eu)Γ +

 η

0
(K2 ∗ (α(u2) − α(u1)), eu)Γ −

 η

0
(eK ∗ α(u1), eu)Γ . (9)

This equality has to be estimated termby term. For the third termon the LHS,we get using the Cauchy andYoung inequalities
and h ∈ C


[0, T ], L2(Ω)


that η

0
eK (h, eu)

 6

 η

0
|eK | ∥h∥ ∥eu∥ ≤ C

 η

0
|eK |

2
+ C

 η

0
∥eu∥2 .

For the fourth term on the LHS, we obtain due to u1 ∈ L2

(0, T ),H1(Ω)


that η

0
(eK ∗ ∇u1, ∇eu)

 6 Cε

 η

0
∥eK ∗ ∇u1∥

2
+ ε

 η

0
∥∇eu∥2 (∗∗)

≤ Cε

 η

0
|eK |

2
+ ε

 η

0
∥∇eu∥2 .

By the boundedness of K2, we get for the last term on the LHS that η

0
((K2 ∗ ∇eu)(t), ∇eu(t)) dt

 6 Cε

 η

0

 t

0
∥∇eu(s)∥2 dsdt + ε

 η

0
∥∇eu(t)∥2 dt.

For the first term on the RHS, we obtain by the Lipschitz continuity of f that η

0
(f (u1) − f (u2), eu)

 ≤

 η

0
∥f (u1) − f (u2)∥ ∥eu∥ ≤ C

 η

0
∥eu∥2 .

Analogously, by the Lipschitz continuity of α and the Nečas inequality (7), we have that η

0
(α(u2) − α(u1), eu)Γ

 ≤ C
 η

0
∥eu∥2

Γ ≤ Cε

 η

0
∥eu∥2

+ ε

 η

0
∥∇eu∥2 .

The third term on the RHS obeys η

0
(eK ∗ g, eu)Γ

 6
1
2

 η

0
∥eK ∗ g∥2

Γ +
1
2

 η

0
∥eu∥2

Γ

(∗∗), (7)
≤ C

 η

0
|eK |

2
+ Cε

 η

0
∥eu∥2

+ ε

 η

0
∥∇eu∥2 .
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For the fourth term, we get by the boundedness of K2 that η

0
(K2 ∗ (α(u2) − α(u1)), eu)Γ

 ≤
1
2

 η

0
∥K2 ∗ (α(u2) − α(u1))∥

2
Γ +

1
2

 η

0
∥eu∥2

Γ

(∗∗)

≤ C
 η

0
∥eu∥2

Γ

(7)
≤ Cε

 η

0
∥eu∥2

+ ε

 η

0
∥∇eu∥2 .

The last term on the RHS can be estimated in the same way as the third term by the boundedness of α as follows η

0
(eK ∗ α(u1), eu)Γ

 ≤ C
 η

0
|eK |

2
+ Cε

 η

0
∥eu∥2

+ ε

 η

0
∥∇eu∥2 .

Collecting all these estimates, we obtain

∥eu(η)∥2
+

 η

0
∥∇eu(t)∥2 dt ≤ Cε

 η

0
∥eu(t)∥2 dt + ε

 η

0
∥∇eu(t)∥2 dt

+ Cε

 η

0

 t

0
∥∇eu(s)∥2 dsdt + Cε

 η

0
|eK (t)|2 dt.

Now, using the estimate (8), we get that

∥eu(η)∥2
+

 η

0
∥∇eu(t)∥2 dt ≤ Cε,γ

 η

0
∥eu(t)∥2 dt + (ε + Cεγ )

 η

0
∥∇eu(t)∥2 dt + Cε,γ

 η

0

 t

0
∥∇eu(s)∥2 dsdt.

From this, we can finally conclude that

max
t∈[0,T ]

∥eu(t)∥2
+

 T

0
∥∇eu(t)∥2 dt = 0

by Grönwall’s lemmawhen fixing first ε and then γ sufficiently small. Therefore, u is unique in C

[0, T ], L2(Ω)


∩L2


(0, T ),

H1(Ω)

with ∂tu ∈ L2


(0, T ),


H1(Ω)

∗. The uniqueness of K in L2(0, T ) follows from (8). �

3. Time discretization, existence of a solution

Rothe’s method [11,12] represents a constructive method suitable for solving evolution problems. Using a simple dis-
cretization in time, a time-dependent problem is approximated by a sequence of elliptic problems, which have to be solved
successivelywith increasing time step. This standard technique is in our casemore complicated by the unknown convolution
kernel K . However, there exists a way to overcome this difficulty.

For ease of exposition, an equidistant time-partitioning is considered of the time frame [0, T ] with a step τ = T/n < 1,
for any n ∈ N. The following notations are used: ti = iτ and for any function z

zi = z(ti), δzi =
zi − zi−1

τ
.

In this section, a decoupled system is consideredwith unknowns ⟨ui, Ki⟩ for i = 1, . . . , n. At time ti, from (3), the following
backward Euler scheme is proposed

(δui, φ) − (1ui, φ) + Ki (hi, φ) −


i

k=1

Kk1ui−kτ , φ


= (fi−1, φ) , (10)

where fi := f (ui). The choice of fi−1 in (10) makes the RHS of (10) independent of the solution such that the Lax–Milgram
lemma can be applied in Proposition 3.1. Similarly, define αi = α(ui). From (P) and (MP), one obtains for φ ∈ H1(Ω) that

(δui, φ) + (∇ui, ∇φ) + Ki (hi, φ) +


i

k=1

Kk∇ui−kτ , ∇φ



= (fi−1, φ) + (gi − αi−1, φ)Γ +


i

k=1

Kk(gi−k − αi−k)τ , φ


Γ

(DPi)

and

m′

i + Ki


Ω

hi =


Ω

fi−1 +


Γ

(gi − αi−1) +

i
k=1

τKk


Γ

(gi−k − αi−k). (DMPi)
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Note that for a given i ∈ {1, . . . , n}, first (DMPi) is solved and then (DPi). Further, the index i is increased to i + 1. To begin,
the existence of a solution on a single time step is to be proved.

Proposition 3.1. Let f and α be bounded. Moreover, assume that g ∈ C

[0, T ], L2(Γ )


, h ∈ C


[0, T ], L2(Ω)


, mint∈[0,T ]

Ω
h(t)

 ≥ ω > 0, u0 ∈ H1(Ω) and m ∈ C1([0, T ]). Then there exist C > 0 and τ0 > 0 such that for any τ < τ0 and each
i ∈ {1, . . . , n} we have

(i) there exist Ki ∈ R and ui ∈ H1(Ω) obeying (DMPi) and (DPi)
(ii) max1≤i≤n |Ki| ≤ C.

Proof. (i) Set τ0 = min

1, ω

2∥g0−α(u0)∥L1(Γ )


. Then for any τ < τ0, we may write by the triangle inequality that

0 < ω − τ0


Γ

|g0 − α(u0)| ≤ ω − τ


Γ

|g0 − α(u0)| ≤ |(hi, 1)|

−

τ 
Γ

(g0 − α(u0))

 ≤

(hi, 1) − τ


Γ

(g0 − α(u0))

 .
Then, we can apply the following recursive deduction for i = 1, . . . , n:

Step 1: Let ui−1 ∈ H1(Ω) be given. Then, (DMPi) implies the existence of Ki ∈ R such that

Ki


Ω

hi − τ


Γ

(g0 − α(u0))


=


Ω

fi−1 − m′

i +


Γ

(gi − αi−1) +

i−1
k=1

τKk


Γ

(gi−k − αi−k). (11)

Step 2: Now, the relation (DPi) can be rewritten asui

τ
, φ


+ (∇ui, ∇φ) =

ui−1

τ
, φ


+ (fi−1, φ) + (gi − αi−1, φ)Γ +


i

k=1

Kk(gi−k − αi−k)τ , φ


Γ

− Ki (hi, φ) −


i

k=1

Kk∇ui−kτ , ∇φ


.

The LHS represents a continuous, elliptic and bilinear form on H1(Ω) and the RHS is a linear bounded functional on
H1(Ω). The existence of ui ∈ H1(Ω) follows from (DPi) by the Lax–Milgram lemma.

(ii) The relation (11) yields

|Ki| ≤ C


1 +

i−1
k=1

|Kk| τ


,

which is valid for any i = 1, . . . , n. An application of the discrete Grönwall lemma gives the uniform bound of |Ki|. �

Proposition 3.2. Let the conditions of Proposition 3.1 be satisfied. Then there exists C > 0 such that for any τ < τ0

max
1≤j≤n

uj
2 +

n
i=1

∥∇ui∥
2 τ +

n
i=1

∥ui − ui−1∥
2

≤ C .

Proof. If we set φ = uiτ in (DPi) and sum up for i = 1, . . . , j, we obtain

j
i=1

(δui, ui) τ +

j
i=1

∥∇ui∥
2 τ +

j
i=1

Ki (hi, ui) τ +

j
i=1


i

k=1

Kk∇ui−kτ , ∇ui


τ

=

j
i=1

(fi−1, ui) τ +

j
i=1

(gi − αi−1, ui)Γ τ +

j
i=1


i

k=1

Kk(gi−k − αi−k)τ , ui


Γ

τ . (12)

The summation by parts formula says

j
i=1

(δui, ui)τ =

j
i=1

(ui − ui−1, ui) =
1
2

uj
2 − ∥u0∥

2
+

j
i=1

∥ui − ui−1∥
2


.
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All the other terms in (12) need to be estimated. For the third term of the LHS of (12), we get j
i=1

Ki(hi, ui)τ

 ≤

j
i=1

|Ki| ∥hi∥ ∥ui∥ τ ≤ C
j

i=1

∥hi∥
2 τ + C

j
i=1

∥ui∥
2 τ ≤ C + C

j
i=1

∥ui∥
2 τ ,

as Ki is bounded, see Proposition 3.1. The last term in the LHS of (12) is bounded by j
i=1


i

k=1

Kk∇ui−kτ , ∇ui


τ

 ≤ Cε

j
i=1

 i
k=1

Kk∇ui−kτ


2

τ + ε

j
i=1

∥∇ui∥
2 τ

≤ Cε

j
i=1


i

k=1

∥∇ui−k∥
2 τ


τ + ε

j
i=1

∥∇ui∥
2 τ

≤ Cε

j
i=1


i−1
k=0

∥∇uk∥
2 τ


τ + ε

j
i=1

∥∇ui∥
2 τ

again as Ki is bounded. The first term on the RHS of (12) can be estimated by the boundedness of f as follows j
i=1

(fi−1, ui)τ

 ≤

j
i=1

∥fi−1∥ ∥ui∥ τ ≤ C + C
j

i=1

∥ui∥
2 τ .

The second term in the RHS can be estimated by the trace theorem and the boundedness of α in the following way j
i=1

(gi − αi−1, ui)Γ τ

 ≤ C
j

i=1

∥gi − αi−1∥Γ ∥ui∥H1(Ω) τ ≤ Cε + ε

j
i=1

∥ui∥
2
H1(Ω)

τ .

Analogously, for the last term on the RHS, we have that j
i=1


i

k=1

Kk(gi−k − αi−k)τ , ui


Γ

τ

 ≤ Cε + ε

j
i=1

∥ui∥
2
H1(Ω)

τ .

Putting all things together, using u0 ∈ H1(Ω), we obtain that

uj
2 +

j
i=1

∥ui − ui−1∥
2
+

j
i=1

∥∇ui∥
2 τ ≤ Cε + Cε

j
i=1

∥ui∥
2 τ + ε

j
i=1

∥∇ui∥
2 τ + Cε

j
i=1


i−1
k=1

∥∇uk∥
2 τ


τ .

Fixing a sufficiently small ε > 0 implies that

uj
2 +

j
i=1

∥ui − ui−1∥
2
+

j
i=1

∥∇ui∥
2 τ ≤ C + C

j
i=1

∥ui∥
2 τ + C

j
i=1


i−1
k=1

∥∇uk∥
2 τ


τ

≤ C + C
j

i=1


∥ui∥

2
+

i
k=1

∥∇uk∥
2 τ +

i
k=1

∥ui − ui−1∥
2


τ .

In the last inequality, we enlarged the RHS. Now, fixing τ sufficiently small and involving the discrete Grönwall lemma, we
conclude the proof. �

Proposition 3.3. Let the conditions of Proposition 3.1 be satisfied. Then there exists C > 0 such that for any τ < τ0

n
i=1

∥δui∥
2
(H1(Ω))

∗ τ ≤ C .

Proof. The relation (DPi) can be rewritten for φ ∈ H1(Ω) as

(δui, φ) = (fi−1, φ) + (gi − αi−1, φ)Γ +


i

k=1

Kk(gi−k − αi−k)τ , φ


Γ

− (∇ui, ∇φ) − Ki (hi, φ) −


i

k=1

Kk∇ui−kτ , ∇φ


.



K. Van Bockstal et al. / Journal of Computational and Applied Mathematics ( ) – 9

Using the trace theorem, we obtain that

|(δui, φ)| ≤ C


1 + ∥∇ui∥ +

i−1
k=1

∥∇uk∥ τ


∥φ∥H1(Ω) ,

which implies

∥δui∥(H1(Ω))
∗ = sup

ϕ∈H1(Ω)
∥ϕ∥

H1(Ω)
61

| (δui, ϕ) | ≤ C


1 + ∥∇ui∥ +

i−1
k=1

∥∇uk∥ τ


. (13)

Then, taking the second power in (13), multiplying the inequality by τ , summing up for i = 1, . . . , n and applying Proposi-
tion 3.2, we get the asked inequality. �

4. Existence of a solution

Let us introduce the following piecewise linear function in time

un : [0, T ] → L2(Ω) : t →


u0 t = 0
ui−1 + (t − ti−1)δui t ∈ (ti−1, ti]

, 1 ≤ i ≤ n,

and a step function

ūn : [0, T ] → L2(Ω) : t →


u0 t = 0
ui t ∈ (ti−1, ti]

, 1 ≤ i ≤ n.

Similarly, define K̄n, h̄n, ḡn, m̄n and m′
n. These prolongations are also called Rothe’s (piecewise linear and continuous, or

piecewise constant) functions. Using these Rothe’s functions, (DPi) and (DMPi) can be rewritten on thewhole time frame as1

(∂tun(t), φ) + (∇ūn(t), ∇φ) + K̄n(t)(h̄n(t), φ) +


⌊t⌋τ
k=1

K̄n(tk)∇ūn(t − tk)τ , ∇φ



= (f (ūn(t − τ)), φ) + (ḡn(t) − α(ūn(t − τ)), φ)Γ +


⌊t⌋τ
k=1

K̄n(tk) [ḡn(t − tk) − α(ūn(t − tk))] τ , φ


Γ

(DP)

and

m′
n(t) + K̄n(t)


Ω

h̄n(t) =


Ω

f (ūn(t − τ)) +


Γ

(ḡn(t) − α(ūn(t − τ)))

+

⌊t⌋τ
k=1

τ K̄n(tk)


Γ

(ḡn(t − tk) − α(ūn(t − tk))). (DMP)

This puts us in a position to prove the existence of a weak solution to (P) and (MP).

Theorem 2 (Existence). Suppose the conditions of Proposition 3.1 are fulfilled. Then there exists a weak solution ⟨u, K⟩ to the
problem (P)–(MP), where u ∈


C

[0, T ], L2(Ω)


∩ L2


(0, T ),H1(Ω)


, ∂tu ∈ L2


(0, T ),


H1(Ω)

∗ and K ∈ L2(0, T ).

Proof. From Propositions 3.2 and 3.3, we have that for all n > 0 it holds that t

0
∥un(ξ)∥2

H1(Ω)
dξ ≤ C for all t ∈ [0, T ],

 T

0
∥∂tun(ξ)∥2

(H1(Ω))
∗ dξ ≤ C .

Thanks to the compact embedding by the Rellich–Kondrachov theorem [16, Section 5.8.1], we have that

H1(Ω) ⊂⊂ L2(Ω) ∼=

L2(Ω)

∗
⊂⊂


H1(Ω)

∗
.

Using the generalized Aubin–Lions lemma [17, Lemma 7.7], there exist u ∈ L2

(0, T ), L2(Ω)


and a subsequence (unk)k∈N

of (un)n∈N such that
unk → u, in L2


(0, T ), L2(Ω)


⇒ unk → u, a.e. in (0, T ) × Ω, (a)

unk ⇀ u, in L2

(0, T ),H1(Ω)


, (b)

∂tunk ⇀ ∂tu, in L2

(0, T ),


H1(Ω)

∗
, (c)

(14)

1
⌊t⌋τ = i when t ∈ (ti−1, ti].
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which we denote again by un for ease of reading. Applying [17, Lemma 7.3], we get u ∈ C

[0, T ], L2(Ω)


because u ∈

L2

(0, T ),H1(Ω)


and ∂tu ∈ L2


(0, T ),


H1(Ω)

∗. Note that un(0) − ūn(0) = 0. For all t ∈ (ti−1, ti] with 1 ≤ i ≤ n, we
have that

|un(t) − ūn(t)| = |ui−1 + (t − ti−1)δui − ui| = |(t − ti−1 − τ)δui| = |(t − ti)δui| ≤ τ |δui| = |ui − ui−1|.

Employing Proposition 3.2 gives

lim
n→∞

∥un − ūn∥
2
L2((0,T ),L2(Ω))

≤ lim
n→∞

τ

n
i=1

∥ui − ui−1∥
2

≤ lim
n→∞

C
n

= 0,

such that un and ūn have the same limit in L2

(0, T ), L2(Ω)


, i.e.

ūn → u in L2

(0, T ), L2(Ω)


⇒ ūn → u, a.e. in (0, T ) × Ω. (15)

Analogously, one can prove that

lim
n→∞

 T

0
∥ūn(t − τ) − ūn(t)∥2 dt = 0. (16)

Using the Lipschitz continuity of α, the Nečas inequality (7), the fact that
n

i=1 ∥∇ui∥
2 τ is bounded (Proposition 3.2) and

u ∈ L2

(0, T ),H1(Ω)


, we obtain that T

0
∥α(ūn(t − τ)) − α(u(t))∥2

Γ dt ≤ C
 T

0
∥ūn(t − τ) − u(t)∥2

Γ dt

≤ ε

 T

0
∥∇(ūn(t − τ) − u(t))∥2 dt + Cε

 T

0
∥ūn(t − τ) − u(t)∥2

≤ ε + Cε

 T

0
∥ūn(t − τ) ± ūn(t) − u(t)∥2 .

Passing to the limit and applying (15) and (16), it holds

lim
n→∞

 T

0
∥α(ūn(t − τ)) − α(u(t))∥2

Γ dt = 0 (17)

and thus

lim
n→∞

α(ūn(t − τ)) = α(u(t)) in L2

(0, T ), L2(Γ )


.

In fact, a same reasoning gives also

lim
n→+∞

 T

0
∥ūn − u∥2

Γ dξ ≤ ε H⇒ ūn → u, a.e. in (0, T ) × Γ . (18)

Using Proposition 3.1, we have that
 T
0

K̄n(t)
2 dt ≤ C , which means that

K̄n ⇀ K in L2(0, T ),

by the reflexivity of L2(0, T ). It is clear that limn→∞ m′
n(t) = m′(t) in C([0, T ]), limn→∞ ḡn(t) = g(t) in C


[0, T ], L2(Γ )


and limn→∞ h̄n(t) = h(t) in C


[0, T ], L2(Ω)


because m, h and g are prescribed. Now, we integrate (DP) in time over

(0, η) ⊂ [0, T ] to get η

0
(∂tun(t), φ) +

 η

0
(∇ūn(t), ∇φ) +

 η

0
K̄n(t)(h̄n(t), φ) +

 η

0


⌊t⌋τ
k=1

K̄n(tk)∇ūn(t − tk)τ , ∇φ



=

 η

0
(f (ūn(t − τ)), φ) +

 η

0
(ḡn(t) − α(ūn(t − τ)), φ)Γ

+

 η

0


⌊t⌋τ
k=1

K̄n(tk) [ḡn(t − tk) − α(ūn(t − tk))] τ , φ


Γ

. (19)



K. Van Bockstal et al. / Journal of Computational and Applied Mathematics ( ) – 11

This expression is valid for any η ∈ [0, T ]. We want to pass the limit n → ∞ in (19). Using the stability result (14)(c), we
have for n → ∞ that η

0
(∂tun, ϕ) →

 η

0
(∂tu, ϕ) .

Take φ ∈ C∞

Ω

, then η

0
(∇ūn(t), ∇φ)dt = −

 η

0
(ūn(t), 1φ) dt +

 η

0
(ūn(t), ∇φ · ν)Γ dt.

We take the limit n → ∞ in this equality and obtain by (15) and (18) that

lim
n→∞

 η

0
(∇ūn(t), ∇φ)dt = −

 η

0
(u(t), 1φ) dt +

 η

0
(u(t), ∇φ · ν)Γ dt

=

 η

0
(∇u(t), ∇φ) , ∀φ ∈ C∞


Ω

.

Employing the density argument C∞

Ω


= H1(Ω), we get that

lim
n→∞

 η

0
(∇ūn(t), ∇φ)dt =

 η

0
(∇u(t), ∇φ) , ∀φ ∈ H1(Ω).

From the previous considerations, it is easy to see that

lim
n→∞

 η

0
K̄n(h̄n, φ)dt =

 η

0
K(h, φ)dt.

We take again φ ∈ C∞

Ω

and apply the Green theorem for the last term in the LHS of (19). We obtain η

0


⌊t⌋τ
k=1

K̄n(tk)∇ūn(t − tk)τ , ∇φ


dt = −

 η

0


⌊t⌋τ
k=1

K̄n(tk)ūn(t − tk)τ , 1φ


dt

+

 η

0


⌊t⌋τ
k=1

K̄n(tk)ūn(t − tk)τ , ∇φ · ν


Γ

dt.

Due to K̄n ⇀ K in L2(0, T ), (15) and (18), we obtain for any φ ∈ C∞(Ω) that

lim
n→∞

 η

0


⌊t⌋τ
k=1

K̄n(tk)∇ūn(t − tk)τ , ∇φ


dt = −

 η

0
(K ∗ u, 1φ) +

 η

0
(K ∗ u, ∇φ · ν)Γ

=

 η

0
(K ∗ ∇u, ∇φ) .

Applying the above density argument once more, we conclude that

lim
n→∞

 η

0


⌊t⌋τ
k=1

K̄n(tk)∇ūn(t − tk)τ , ∇φ


dt =

 η

0
(K ∗ ∇u, ∇φ) , ∀φ ∈ H1(Ω).

For the first term on the RHS of (19), we get

lim
n→∞

 η

0
(f (ūn(t − τ)) − f (u(t)), φ) dt

 = lim
n→∞

 η

0
(f (ūn(t − τ)) ± f (ūn(t)) − f (u(t)), φ) dt

 = 0,

as f is Lipschitz, (15) and (16). For the last two terms on the RHS of (19), we have due to K̄n ⇀ K in L2(0, T ), the Lipschitz
continuity of α, (17) and (18) that

lim
n→∞

 η

0
(ḡn(t) − α(ūn(t − τ)), φ)Γ dt =

 η

0
(g(t) − α(u(t)), φ)Γ dt,

lim
n→∞

 η

0


⌊t⌋τ
k=1

K̄n(tk) [ḡn(t − tk) − α(ūn(t − tk))] τ , φ


Γ

dt =

 η

0
(K ∗ (g − α(u)), φ)Γ dt.
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Now, taking the limit n → ∞ in (19) results in η

0
(∂tu, φ) +

 η

0
(∇u, ∇φ) +

 η

0
K(h, φ) +

 η

0
(K ∗ ∇u, ∇φ)

=

 η

0
(f (u), φ) +

 η

0
(g − α(u), φ)Γ +

 η

0
(K ∗ (g − α(u)), φ)Γ .

Taking the derivative with respect to η, we arrive at (P). In the sameway as before, we integrate (DMP) in time and pass the
limit for n → ∞. This follows the same line as passing the limit in (19), thereforewe skip the details. Finally, we differentiate
the result with respect to time and arrive at (MP). �

The convergences of Rothe’s functions towards the weak solution (P)–(MP) (as stated in the proof of Theorem 2) have
been shown for a subsequence. However, taking into account Theorem1, it is clear that thewhole Rothe’s sequence converge
against the solution.

Conclusion

A semilinear parabolic integro-differential problemof second orderwith an unknown solely time-dependent convolution
kernel is considered. The missing information is compensated by an integral-type measurement over the domain. The
existence and uniqueness of a weak solution for the IBVP is proved. A numerical procedure based on Rothe’s method is
developed and the convergence of approximations towards the exact solution is demonstrated.
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