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Abstract

This paper presents a semigroup approach for inverse source problems for the ab-
stract heat equation, when the measured output data is given in subject to the
integral overspeci�cation over the spatial domain. The existence of a solution to the
inverse source problem is shown in appropriate function spaces and a representa-
tion formula for the solution is proposed. Such representation permits the derivation
of su¢ cient conditions for the uniqueness of the solution. Also an approximation
method based on the optimal homotopy analysis method (OHAM) is designed, and
the error estimates are discussed using graphical analysis. Moreover, we conjecture
that our approach can be applied for the determination of a control parameter in
an inverse problem with integral overspecialization data. The proposed algorithm is
examined through various numerical examples for the reconstruction of continuous
sources and the determination of a control parameter in parabolic equations. The
accuracy and stability of the method are discussed and compared with several �nite-
di¤erence techniques. Computational results show e¢ ciency and high accuracy of
the proposed algorithm.
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1 Introduction

Let us consider a Banach space X, a linear operator A in X, z 2 X, g 2
C1([0; � ];R); and a linear functional � 2 X�. We study the inverse problem
of �nding a pair of functions u 2 C1([0; � ];X) and p 2 C([0; � ];R) from the
set of relations

u0(t) = Au(t) + p(t)z; 0 � t � �; (1)
u(0) = u0; (2)

�[u(t)] = g(t); 0 � t � �: (3)

Mathematical models related to inverse problems of this type arise in various
physical and engineering settings such as, the identi�cation of water sources
and air pollution in the environment, or the determination of heat sources in
heat conduction.

Heat source identi�cation problems are the most commonly encountered in-
verse problems in heat conduction. These problems have been studied for sev-
eral decades due to their signi�cance in a variety of scienti�c and engineering
applications (see [4�6,10,13,15�20]). In many heat conduction and di¤usion
problems, the source terms are unknown and usually are not easy to be de-
tected directly. Hence, only one of the following typical measured output data
is available and feasible from experiments:

8>>>><>>>>:
lZ
0

u(x; t)k(x) dx = g(t);

u(x0; t) = g(t):

These data are de�ned to be overspeci�ed boundary (measured) data, accord-
ing to inverse problems terminology.

The �rst attempt to study source identi�cation problems for the time indepen-
dent source p(t)z 2 X, with the �nal overdetermination uT (x) := u(x; T ), by
the semigroup approach has been given in [33], where it is proved that when
the elliptic operator �A is positive de�nite and self-adjoint, the solution (u; p)
of the source identi�cation problem exists and is unique. A general representa-
tion formula for a solution of the source identi�cation problem for the abstract
parabolic equation ut(t) = Au(t) + F (t), was proposed in [18]. Note that an
inverse source problem with �nal overdetermination for the one dimensional
heat equation has �rst been considered by Tikhonov [35] in the study of geo-
physical problems. A semigroup approach for inverse source problems for the
abstract heat equation ut = Au+F , when the measured output data is given
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in the form the �nal overdetermination uT (x) := u(x; T ) has been proposed
in [20]. In this work abstract parabolic equation with overspeci�ed boundary
data is studied in half-plane and the uniqueness of the solution is proved. For
parabolic equations in a bounded domain, various aspects of inverse source
problems were studied in [1,2,21], etc.

Numerical methods for solving inverse problems for parabolic equations are
considered in many works. Backward Euler approximation method has been
introduced in [11] for the inverse problem of identifying a time dependent
unknown coe¢ cient in a parabolic problem subject to initial and non-local
boundary conditions along with an overspeci�ed condition de�ned at a spe-
ci�c point in the spatial domain. The idea in [34] is to change the problem of
identifying an unknown time-dependent source term in an inverse problem of
parabolic type with nonlocal boundary conditions to a system of Volterra inte-
gral equations and then to solve the system by means of a collocation method.
Inverse problem of reconstructing the coe¢ cient q in the parabolic equation
ut��u+q(x)u = 0 from the �nal measurement u(x; T ) has been solved using
the optimization method combined with the �nite element method in [14].
Recently, a numerical method depends on the Fourier regularization method
for solving ill-posed problems of heat equation has been proposed in [12].

In comparison with previous studies on the subject of time-dependent heat
source identi�cation, we consider the case when A is a generator of a c0-
semigroup which is more general than [22,23] who considered only the case
where A is a bounded linear operator and [32] who considered A as a generator
of a c0-semigroup with �A bounded. Our result in this case will be presented
in Theorem 2 where much of detailed proof is completely di¤erent from the
last mentioned studies. Moreover, we shall also consider the problem of �nding
a control parameter p(t) in the following form

@u

@t
=
@2u

@x2
+ p(t)u+ g(x; t); 0 � x � 1; 0 < t � T; (4)

with the initial condition

u(x; 0) = f(x); 0 � x � 1; (5)

and boundary conditions

u(0; t) = g1(t); 0 < t � T; (6)
u(1; t) = g2(t); 0 < t � T; (7)

with an additional condition which describes the overspeci�cation over a por-
tion of the spatial domainZ 1

0
k(x)u(x; t)dx = E(t); 0 < t � T; (8)
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which has never been investigated analytically and it represents one of the
main contributions of the present study. Some of the ideas from the proof of
Theorem 2 are combined to form a numerical method based on the OHAM of
the underlying inverse problems.

The paper is organized as follows. Section 2 gives the mathematical analysis of
the inverse problem and recalls some previous perturbation results for linear
operators in Banach spaces. Moreover, it introduces a quasisolution of the in-
verse source problems (1)-(3) based on the solution to the corresponding direct
problem. Sections 3 and 4 describe the optimal homotopy analysis method for
solving analytically the inverse source and control problems with overspeci�ed
boundary data observations; it also discusses the numerical results. Section 5
gives the conclusion of the paper and possible future work.

2 Mathematical analysis

To solve the problem (1)-(3) when the operator A is the in�nitesimal generator
of a c0-semigroup on X, we propose a method coupled with the perturbation
theory of linear operators. The proposed method, requiring no conditions such
as �A is bounded, can eliminate the restrictions of the traditional methods.

Let (X; k�k) be a Banach space and let A be the in�nitesimal generator of a
c0-semigroup on X. It is well known that A is closed and hence its domain
D(A) equipped with the graph norm

kxkA = kxk+ kAxk

becomes a Banach space, which we shall denote by XA. Let us now present
the following theorem which is the main result in [8,9].

Theorem 1 Let X be a Banach space and let A be the in�nitesimal gener-
ator of a c0-semigroup T (t) on X. If B : XA �! XA is a continuous linear
operator, then A+B is the in�nitesimal generator of a c0-semigroup on X.

2.1 Strong solution in Banach spaces

The Main result of this work is given by the following theorem.

Theorem 2 If A is the in�nitesimal generator of a c0-semigroup on X, �[z] 6=
0, g 2 C1([0; � ];R) and z 2 X ,then a solution of the inverse problem (1)-(3)
exists and it is unique in the class of functions

u 2 C1([0; � ];X); p 2 C([0; � ];R):
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PROOF. Applying the linear functional � to both sides of (1) and using (3)
we have

g0(t)� �[Au(t)] = p(t)�[z];
and we get that

p(t) =
1

�[z]
(g0(t)� �[Au(t)]): (9)

Substituting (9) in (1), we get

u0(t) = Au(t) +
1

�[z]
(g0(t)� �[Au(t)])z: (10)

Clearly (10) implies

u0(t)� ( Au(t) + �1
�[z]

(�[Au(t)])z ) =
1

�[z]
g0(t)z: (11)

By imposing the operator

Bx =
�1
�[z]

(�[Ax])z; (12)

equation (11) becomes

u0(t)� (A+B)u(t) = 1

�[z]
g0(t)z: (13)

For the boundedness of B in XA;

kBkA = sup
kxkA=1

kBxk

= sup
kxkA=1






 �1�[z] (�[A(x)])z







� sup
kxkA=1

1

j�[z]j kzk k�k kAxk

� 1

j�[z]j kzk k�k :

This implies that B is a bounded linear operator on XA. Theorem 1 now
implies that A + B is the in�nitesimal generator of a semigroup S(t), t � 0:
The Cauchy problem (1)-(2) has a unique solution u(t) given by

u(t) = S(t)u0 +
1

�[z]

tZ
0

S(t� s)g0(s)zds; (14)

and, by (9) and (14), p(t) is uniquely determined. Therefore, the problem is
completely determined.
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2.2 Identi�cation of an unknown time-dependent heat source term from over-
speci�ed boundary data

We study the inverse problem of determining the temperature u(x; t) and the
heat source f(t) in the parabolic heat equation

ut(x; t) = uxx(x; t) + F (x; t); (x; t) 2 (0; l)� (0; T ) (15)

where h is a given function, and l and T are given positive constants. Here l
represents the length of the �nite heat conductor and the subscripts t and x
in Eq. (15) denote the partial derivatives with respect to t and x respectively.
Equation (15) has to be solved subject to the initial temperature condition

u(x; 0) = u0(x); 0 � x � l; (16)

the boundary conditions

u(0; t) = u(l; t) = 0; 0 < t � T; (17)

and the overspeci�ed boundary data

lZ
0

u(x; t)k(x) dx = g(t); 0 � t � T: (18)

In the case of an arbitrary source term F (x; t), di¢ culties related to the identi-
�ability and uniqueness are discussed in some studies [21�23,32,33]. Evidently,
one can only hope for a well-formulated inverse source problem only in the case
if some a priori information is derived from the corresponding physical model.
When the source is assumed to only depend on the spatial variable, the prob-
lem of determining the spacewise unknown source F (x) in the inverse source
problem governed by Eq. (1) and the measured �nal data uT (x) := u(x; Tf )
is one of the most studied problems (see, for example, [4,16] and references
therein). In the separable sources case of the form F (x; t) = p(t)f(x), where
p(t) is known, the inverse problem of determining the spacewise unknown
source has �rst been studied in [15].

In what follows we will discuss the inverse source problem with separable
source, F (x; t) = p(t)f(x). More precisely, the time-dependent source term
p(t) needs to be recovered from the overspeci�ed boundary data de�ned by
(18), assuming that the function f(x) is known.

The symbol u(t) will refer to the same function u(x; t) but being viewed as an
abstract function of the variable t with values in the Banach space

X = fu : u is a continuous real-valued function with u(0) = u(l)g :
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The symbol u0 will be used in treating the function u0(x) as the element of
the space X. Consider the linear functional ' 2 X�, de�ned by

'[u(t)] =

lZ
0

u(t)k(x) dx;

and a linear operator A in X de�ned by

D(A) = fu : u; u0; u00 2 Xg ;

and for u 2 D(A);
Au = u00:

It is not di¢ cult to show that A generates an analytic c0-semigroup on X.
With these ingredients, the system (15)-(18) reduces to the inverse problem
(1)-(3), which is, due to Theorem 2, has a unique solution.

3 Homotopy analysis solution

We are exploring the inverse problem of �nding a pair of functions (u; p) from
the set of relations

ut(x; t) = uxx(x; t) + p(t)F (x; t); (x; t) 2 (0; l)� (0; T ); (19)

u(x; 0) = f(x); 0 � x � l; (20)

u(0; t) = h1(t); 0 < t � T;
u(l; t) = h2(t); 0 < t � T; (21)

with an additional condition that describes the overspeci�cation over a portion
of the spatial domain

lZ
0

k(x)u(x; t) dx = g(t); 0 � t � T: (22)

where F , f , h1, h2, k, and g are known functions.

Without loss of generality we solve (19)-(22) for h1(t) = h1(t) = 0. Note
that we cannot apply the existing numerical techniques to solve this problem
because it contains two unknowns. The inclusion of (9) has created a new
scenario and thus required special considerations on its solution; it is this
consideration that constitutes our focus point in this paper. In what follows,
we shall show that under some reasonable assumptions there exists a unique
solution pair (u; p) to (19)-(22).

7



3.1 Approach based on the Optimal HAM

Now we proceed the approximation of the solution pair (u; p) by the Optimal
HAM algorithm (OHAM). The temperature distribution u(x; t) and the heat
source p(t) can be expressed by the set of the base functions

fxntmjn � 0; m � 0g (23)

in the form

u(x; t) =
+1X
n=0

+1X
m=0

am1;nx
ntm; (24)

p(t) =
+1X
n=0

a2;nt
n; (25)

where am1;n and a2;n are coe¢ cients to be determined. We choose carefully an
initial approximation u0(x; t) of u(x; t) that obeys to the Rule of the Solution
Expression denoted by (23) and satis�es the initial and boundary conditions
(20) and (21). Making use of (9), it is natural to choose an initial approxima-
tion of p(t) in the form

p0(t) =

 
g0(t)�

Z l

0
k(x)

@2u0(x; t)

@x2
dx

!
=E(t); (26)

where

E(t) =
Z l

0
k(x)F (x; t)dx:

Besides that we select

Lu[w(x; t)] =
@w(x; t)

@t
;

Lp[w(t)] = w(t);

as our auxiliary linear operators satisfying the following properties

Lu[�(x)] = 0; Lp[0] = 0:

If q 2 [0; 1] is the embedding parameter and ~i (i = 1; 2) are the auxiliary
parameters, then according to the underlying principle of the HAM [25,27,29],
the zeroth-order deformation problems can be constructed as follows:

(1� q)Lu[û(x; t; q)� u0(x; t)] = q~1Nu[û(x; t; q); p̂(t; q)]; (27)
(1� q)Lr[p̂(t; q)� p0(t)] = q~2Np[û(x; t; q); p̂(t; q)]; (28)
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subject to the boundary conditions

û(0; t; q) = 0; û(l; t; q) = 0; (29)

in which the non-linear operators Nu and Np are de�ned by

Nu[û(x; t; q); p̂(t; q)] =
@û(x; t; q)

@t
� @

2û(x; t; q)

@x2
� p̂(t; q)F (x; t);

Np[û(x; t; q); p̂(t; q)] = p̂(t; q)�
 
g0(t)�

Z l

0
k(x)

@2û(x; t; q)

@x2
dx

!
=E(t):

For q = 0 and q = 1, the above zeroth-order deformation equations (27)-(28)
have the solutions

û(x; t; 0) = u0(x; t); p̂(t; 0) = r0(t); (30)

and
û(x; t; 1) = u(x; t); p̂(t; 1) = r(t): (31)

When q increases from 0 to 1, then û(x; t; q) and p̂(t; q) vary from the initial
guesses u0(x; t) and p0(t) to the exact solutions u(x; t) and p(t), respectively.

Setting

um(x; t) =
1

m!

@mû(x; t; q)

@qm

�����
q=0

;

pm(t) =
1

m!

@mp̂(t; q)

@qm

�����
q=0

;

and expanding û and p̂ into the Taylor series expansion with respect to the
embedding parameter q, we have

û(x; t; q) = u0(x; t) +
1X
m=1

um(x; t)q
m; (32)

p̂(t; q) = p0(t) +
1X
m=1

pm(t)q
m: (33)

The convergence of the series in Eqs. (32) and (33) depends on ~1 and ~2.
Assuming that ~1 and ~2 are selected in such a way that the series in Eqs.
(32) and (33) are convergent at q = 1, then due to Eqs. (30) and (31) we have

u(x; t) = u0(x; t) +
1X
m=1

um(x; t); (34)

p(t) = p0(t) +
1X
m=1

pm(t): (35)
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Di¤erentiating the zeroth-order deformation Eqs. (27)-(28) m times with re-
spect to q, then setting q = 0, and �nally dividing by m!, the mth-order
deformation problems can be expressed as

Lu[um(x; t)� �mum�1(x; t)] = ~1Ru
m(x; t); (36)

Lp[pm(t)� �mpm�1(t)] = ~2Rp
m(t); (37)

um(x; 0) = 0, um(0; t) = 0, um(l; t) = 0 (38)

where

Ru
m(x; t) =

@um�1(x; t)

@t
� @

2um�1(x; t)

@x2
� pm�1(t)F (x; t);

Rp
m(x; t) = pm�1(t)�

 
(1� �m)g0(t)�

Z l

0
k(x)

@2um�1(x; t)

@x2
dx

!
=E(t)

and

�m =

8><>: 0; m � 1;

1; m > 1:

The general solutions of the higher-order deformation Eqs. (36)-(38) are

um(x; t) = (�m + ~1)um�1(x; t)� ~1
Z t

0

 
@2um�1(x; �)

@x2
+ pm�1(�)F (x; �)

!
d�;

(39)

pm(t) = (�m + ~2) pm�1(t)�
~2
E(t)

 
(1� �m)g0(t)�

Z l

0
k(x)

@2um�1(x; t)

@x2
dx

!
:

(40)

Therefore it is easy to solve the linear non-homogeneous Eqs. (39) and (40)
one after one by using Mathematica in the following order m = 1; 2; 3; : : :.

If we are not able to determine the sum of series in (24) and (25) then, we can
accept the partial sum of these series

ûn(x; t) '
nX

m=0

um(x; t); (41)

p̂n(t) '
nX

m=0

pm(t); (42)

as the approximate solution of the considered equation.
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3.2 Performance analysis of HAM algorithm: an optimal choice of the control
parameters

We note that Eqs. (39) and (40) consist of the auxiliary parameters ~1 and
~2. It has been shown by Liao in his book [25] that the convergence and rate
of approximation of such series depend on the values of ~1 and ~2. For this
purpose, we let

Eun(~1; ~2) =
Z

1

(
Nu

"
nX

m=1

um(x; t);
nX

m=1

pm(t)

#)2
d
1;

Epn(~1; ~2) =
Z

2

(
Np

"
nX

m=1

um(x; t);
nX

m=1

pm(t)

#)2
d
2;

denote the squared residual of the nth-order approximations of the governing
equations integrated in the whole domain. The optimal value of (~1; ~2) is
the value that minimizes Eun and E

p
n [28,29]. To our knowledge, the optimal

value of the auxiliary parameter ~ in the HAM method always remains within
the range �3 � ~ � 3. By the Extreme Value Theorem, Eun(~1; ~2) attains
its absolute minimum in the rectangle D = f(~1; ~2) : �3 � ~1; ~2 � 3g. To
do so, we will start by �nding all the critical points that lie inside the given
rectangle by solving simultaneously the system

@Eun(~1; ~2)
@~1

= 0 and
@Eun(~1; ~2)

@~2
= 0:

Next, we need to �nd the absolute extrema of the function Eun(~1; ~2) along the
boundary of the rectangle D. The same argument can be used with Epn(~1; ~2):

3.3 Numerical Results and Discussion

Let us use the investigated method for exploring the inverse problem of �nding
a pair of functions (u; f) from the set of relations

ut(x; t) = uxx(x; t) + p(t) sinx; (x; t) 2 (0; �)� (0; T ); (43)

u(x; 0) = 0; 0 � x � �; (44)

u(0; t) = u(�; t) = 0; 0 < t � T; (45)
�Z
0

u(x; t) sinx dx = t; 0 � t � T: (46)

Solution of the above equation is given by the pair of functions ue(x; t) =
2
�
t sin x and pe(t) = 2

�
(t+ 1).

11



By taking the initial approximation u0(x) = 0, we get by (26) that p0(t) = 2=�.
Thus, we get successively

u1(x; t) = �
2

�
~1t sin x;

u2(x; t) = �
~21
�
t2 sin x� 2

�
~1 (~1 + 1) t sin x;

u3(x; t) = � (~1 + 1)
 
~21
�
t2 sin x+

2

�
~1 (~1 + 1) t sin x

!

� 1

3�

�
~21t2 (3~1 + 3~2 + ~1t+ 3) sinx

�
;

...

and
p1(t) = 0;

p2(t) =
2

�
~1~2t;

p3(t) =
1

�
~1~2 (2 + 2~1 + ~1t) t+

2

�
~1~2 (1 + ~2) t;

...

In Fig. 1 the plots of squared residual Eun for n = 5; 10; 15 are presented. By
minimizing the squared residual of governing equations, optimal values of the
convergence control parameters were numerically determined

~1 = ~2 = �0:88:

Assuming that ~1 = ~2 = ~, Figure 2 presents the ~-curve of u(1; 2). Table
1 compiles the percentage relative errors of the exact solution reconstruction
for various values of the convergence control parameter ~. As revealed by the
above results, together with increase of the components number in sums (32)
and (33) the errors quickly decrease. The fastest error decrease can be observed
for optimal value ~ = �0:88. For this value the approximate solution û10(x; t)
provides the approximation of the sought function with the error not higher
than 7:894 � 10�2%, while the approximate solution û18(x; t) gives the error
not higher than 7:83 � 10�5%. Obtained results indicate that the method is
very rapidly convergent and the calculation of only the few �rst terms of the
series ensures a very good approximation of the exact solution.
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Fig. 1. Squared residual Eun for n = 5; 10; 15
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Fig. 2. The ~-curve of u(1; 2)

4 Determination of a control parameter in a parabolic partial dif-
ferential equation

The purpose of this section is to discuss a numerical approach for solving
the inverse problem with temperature overspeci�cation (4)-(8). Our approach
begins with the utilization of the following transformations [3]

w(x; t) = u(x; t)r(t);

r(t) = exp
�
�
Z t

0
p(�)d�

�
:
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n ~ = �1:2 ~ = �1 ~ = �0:88 ~ = �0:7 ~ = �0:5

4 83:68 20:83 10:40 12:18 22:13

6 0:7995 6:80 2:10 4:74 12:20

8 0:6369 1:76 0:40 1:74 6:56

10 0:4383 0:37 7:894� 10�2 0:61 3:46

12 0:2680 6:748� 10�2 1:513� 10�2 0:21 1:79

14 0:1486 1:041� 10�2 2:762� 10�3 6:898� 10�2 0:92

16 0:0757 1:409� 10�3 4:773� 10�4 2:201� 10�2 0:46

18 0:0359 1:695� 10�4 7:83� 10�5 6:833� 10�3 0:23

20 0:0159 1:836� 10�5 1:225� 10�5 2:069� 10�3 0:11

Table 1
Values of the percentage relative errors in reconstruction of the exact solution u(2; 1)
with ~1 = ~2 = ~

So, we have

u(x; t) =
w(x; t)

r(t)
; (47)

p(t) = �r
0(t)

r(t)
: (48)

With this transformation, p(t) will disappear and its role is represented im-
plicitly by r(t). So we overcome the di¢ culty in handling p(t) and we obtain
the following new non-classic parabolic partial di¤erential equation which is
equivalent to the original inverse problem, providing that some compatibility
conditions are satis�ed

@w

@t
=
@2w

@x2
+ r(t)g(x; t); 0 � x � 1; 0 < t � T; (49)

with the initial condition

w(x; 0) = f(x); (50)

and the boundary conditions

w(0; t) = g1(t)r(t); 0 < t � T; (51)
w(1; t) = g2(t)r(t); 0 < t � T; (52)

subject to Z 1

0
k(x)w(x; t)dx = r(t)E(t); 0 � t � T: (53)
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Obviously, if we obtain (w; r) from (49)-(53) then (u; p) can be found as

u(x; t) =
w(x; t)

r(t)
; (54)

p(t) = �r
0(t)

r(t)
: (55)

De�ning the auxiliary linear operator

Lw[v] =
@v

@t

and assuming Lw to be invertible, we get

w(x; t)� w(x; 0) = L�1w Lw[w]

or what amounts to the same as

w(x; t) = f(x) +
Z t

0

 
@2w(x; �)

@x2
+ r(�)g(x; �)

!
d�: (56)

System (49)-(53) is now a system similar to that in (19)-(22). Using the same
procedure used in the previous section, we write the solution in the form

w(x; t) = w0(x; t) +
1X
m=1

wm(x; t);

r(t) = r0(t) +
1X
m=1

rm(t): (57)

We choose initial approximations of w(x; t) and p(t) in the form

w0(x; t) = f(x); r0(t) =
�Z 1

0
k(x)w0(x; t)dx

�
=E(t): (58)

In this case, by applying the homotopy analysis method, we get the following
formula for functions wm:

wm = �mwm�1(x; t) + ~1Rw
m(x; t);

where Rw
m is de�ned by the relation

Rw
m(x; t) = wm�1(x; t)�

tZ
0

 
@2wm�1(x; �)

@x2
+ pm�1(�)g(x; �)

!
d��(1��m)f(x):

15



By using de�nitions of the respective operators we obtain

w1 = ~1
Z t

0

 
@2w0(x; �)

@x2
+ r0(�)g(x; �)

!
d�

and for m � 2:

wm = (1 + ~1)wm�1 � ~1
Z t

0

 
@2wm�1(x; �)

@x2
+ rm�1(�)g(x; �)

!
d�:

Also, we get the following formula for rm:

rm = �mrm�1(t) + ~2Rr
m(t);

where
Rr
m(x; t) = rm�1(t)�

1

E(t)

Z 1

0
k(x)wm�1(x; t)dx;

r1(t) = ~2
�
r0(t)�

Z 1

0
k(x)w0(x; t)dx=E(t)

�
and for m � 2,

rm(t) = (1 + ~2) rm�1 �
~2
E(t)

Z 1

0
k(x)wm�1(x; t)dx:

If we are not able to determine the sum of series in (57) then, we can accept
the partial sum of these series

ŵn(x; t) '
nX

m=0

wm(x; t);

r̂n(t) '
nX

m=0

rm(t); (59)

as the approximate solution of the considered equation.

Example 3 Consider the inverse problem (4)-(8) with

f(x) = x+ cos(�x); g1(t) = exp(t); g1(t) = 0;

g(x; t) = exp(t)[x+ cos(�x) + �2 cos(�x)]� exp(t)(1 + t2)[x+ cos(�x)];

E(t) = exp(t)
�
3

4
� 2

�2

�
; k(x) = 1 + x2:

Exact solution of this problem has the form

ue(x; t) = exp(t) (x+ cos(�x)) ; pe(t) = 1 + t
2:

The ~1� ~2 surface of r(0:5) is plotted in Fig.3 to determine the valid regions
of ~1 and ~1. It is found that the series of r(t) converges in the region of
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�0:5 < ~1 < 0 and �1 < ~2 < �0:5. Numerically determined, by minimizing
the squared residual of governing equations, optimal values of the convergence
control parameters were ~1 = �0:0018 and ~2 = �0:97. We can see that when
~1 = ~2 = �1, the solution (57) is exactly the same as that given by the Ado-
mian decomposition method in [36]. However, the results given by the Adomian
decomposition method converge to the corresponding numerical solutions in a
rather small region, as shown in Fig. 4. But, the proposed method provides
us with a simple way to adjust and control the convergence region of solution
series by choosing an optimal value for the auxiliary parameters ~1 and ~2.

Di¤erences jre(t)� rn(t)j for n = 3; 5; 8 are displayed in Fig. 4. As indicated by
the example, with the properly chosen values of convergence control parameters
~1 and ~2, if it is impossible to predict a general form of functions wm and rm
or calculate the sum of series in (57), it is su¢ cient to use the sum of several
�rst functions wm and rm to obtain a very good approximation of the sought
solutions.

Employing the pair of transformations (47) and (48), we can write (4)-(8) as
follows,

wt = wxx + A(x; t)
Z 1

0
k(x)w(x; t)dx; 0 � x � 1; 0 < t � T; (60)

w(x; 0) = f(x); 0 � x � 1; (61)

w(0; t) = B(t)
Z 1

0
k(x)w(x; t)dx; 0 < t � T; (62)

w(1; t) = C(t)
Z 1

0
k(x)w(x; t)dx; 0 < t � T; (63)

where

A(x; t) =
g(x; t)

E(t)
; B(t) =

g1(x; t)

E(t)
; C(t) =

g2(x; t)

E(t)
and

r(t) =

Z 1

0
k(x)w(x; t)dx

E(t)
:

This means that a predicting-correcting mechanism can be constructed easily
to solve (60)-(63) numerically. Once w is known numerically, the unknown
(u; p) can be calculated through the inverse transformations (47) and (48) via
numerical di¤erentiation.

The domain [0; 1]� [0; T ] is divided into an M �N mesh with the spatial step
size h = 1=M in x direction and the time step size l = T=N , respectively. Grid
points (xi; tn) are de�ned by

xi = ih; i = 0; 1; 2; : : : ;M;

tn = nh; n = 0; 1; 2; : : : ; N:
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The one-dimensional forward time centred space (FTCS) �nite-di¤erence scheme
leads to the following di¤erence equation for (60),

wn+1i = swni�1 + (1� 2s)wni + swni+1 + (lh) zni
MX
j=0

cjkjw
n
j ;

where

s =
l

h2
; w0i = fi;

wn+10 = hBn
MX
j=0

cjkjw
n
j ; n � 1;

wn+1M = hCn
MX
j=0

cjkjw
n
j ; n � 1:

The notations wni , p
n, zni , r

n, Bn, C" and ki are used for the �nite-di¤erence
approximations of w(ih; nl), p(nl), z(ih; nl), r(nl), B(nl), C(nl) and k(ih),
respectively. Here cj = 1=2, if j = 0 or M and unity, otherwise.

The Crank-Nicolson formula [7,30], for each i = 1; 2; : : : ;M � 1, reads

�swn+1i�1 +2(1+s)w
n+1
i �swn+1i+1 = sw

n
i�1+2(1�s)wni +swni+1+(lh) zni

MX
j=0

cjkjw
n
j :

Saulyev�s �nite-di¤erence schemes are unconditionally stable and are explicit
in nature and provide a useful and interesting alternative approach to the
existing �nite di¤erence method [7,30]. The Saulyev�s formula is given by,

wn+1i =
1

1 + s

24swn+1i�1 + (1� s)wni + swni+1 + (lh) zni
MX
j=0

cjkjw
n
j

35 ;

for i = 1; 2; : : : ;M � 1.

After we obtained the value of rn, we can convert it into the corresponding
value of pn through the inverse transformation (48). This can be done by nu-
merical di¤erentiation. The �nite-di¤erence form of (48) is

pn = �(r
0)n

rn
;
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Fig. 3. The �fth-order approximation of r(t) versus ~1 and ~2

and for the direct numerical di¤erentiation, the following formula is used,

(r0)
n
=
rn+1 � rn�1

2l
; n = 2; 3; : : : ; N � 1;

(r0)
1
=
�3r1 + 4r2 � r3

2l
;

(r0)
N
=
3rN � 4rN�1 + rN�2

2l
:

For this example, we compared the proposed method (OHAM) with the FTCS,
Crank-Nicolson and Saulyev methods. The absolute errors result from the nu-
merical solutions to (4)-(8) are shown in Table 2. We observe that as soon as
the number of terms in (59) is su¢ ciently large, the errors decrease rapidly.
Although all the methods performed quite well, but we found that the proposed
method performed the best.

5 Conclusion and future work

We have presented an elegant and e¢ cient method, based on the optimal
homotopy analysis method, for the numerical solution of inverse problems
of identifying the time-dependent sources and control parameters from sup-
plementary overspeci�ed boundary measurements. Perturbation method for
linear operators are employed to derive explicit formulas for the correspond-
ing solutions, then the OHAM algorithm based on these explicit formulas is
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t FTCS Crank-Nicolson Saulyev OHAM
p̂10(t)

OHAM
p̂30(t)

0:05 9:7� 10�3 7:2� 10�3 9:9� 10�3 8:0� 10�4 6:2� 10�6

0:10 9:8� 10�3 7:4� 10�3 9:8� 10�3 1:2� 10�3 3:1� 10�6

0:15 9:7� 10�3 7:5� 10�3 9:9� 10�3 1:3� 10�3 7:2� 10�6

0:20 9:7� 10�3 7:7� 10�3 1:1� 10�2 7:1� 10�4 6:8� 10�6

0:25 9:8� 10�3 7:8� 10�3 1:0� 10�2 5:8� 10�4 8:0� 10�6

0:30 9:5� 10�3 7:6� 10�3 9:8� 10�3 2:6� 10�3 7:4� 10�5

0:35 9:6� 10�3 7:7� 10�3 9:9� 10�3 5:5� 10�3 8:0� 10�5

0:40 9:9� 10�3 7:9� 10�3 9:9� 10�3 9:2� 10�3 1:3� 10�5

0:45 9:9� 10�3 7:8� 10�3 9:8� 10�3 1:3� 10�2 4:6� 10�5

0:50 9:8� 10�3 7:7� 10�3 9:7� 10�3 1:9� 10�2 8:1� 10�5

0:55 9:8� 10�3 7:6� 10�3 9:6� 10�3 2:5� 10�2 1:2� 10�5

0:60 9:7� 10�3 7:7� 10�3 9:8� 10�3 3:1� 10�2 5:6� 10�5

0:65 9:7� 10�3 7:6� 10�3 9:7� 10�3 3:9� 10�2 4:2� 10�5

0:70 9:6� 10�3 7:6� 10�3 9:5� 10�3 4:6� 10�2 2:5� 10�4

0:75 9:5� 10�3 7:5� 10�3 9:5� 10�3 5:4� 10�2 1:9� 10�4

0:80 9:5� 10�3 7:3� 10�3 9:4� 10�3 6:2� 10�2 7:1� 10�4

0:85 9:4� 10�3 7:4� 10�3 9:3� 10�3 7:1� 10�2 8:8� 10�4

0:90 9:5� 10�3 7:3� 10�3 9:3� 10�3 7:9� 10�2 8:0� 10�4

0:95 9:6� 10�3 7:2� 10�3 9:1� 10�3 8:7� 10�2 2:6� 10�4
Table 2
Results for the absolute error in the approximations to p, with h = 0:02, s = 0:4,
T = 1, ~1 = �0:0018 and ~2 = �0:97.

proposed. For the sake of comparison, we have also suggested and tested fur-
ther methods, namely, the FTCS, Crank-Nicolson and Saulyev methods. The
resulting method is in most cases as good as the �nite di¤erence methods to a
much easier implementation. The results presented for the most used classes of
inverse problems show that the proposed algorithm is a very fast and e¤ective
reconstruction algorithm, if the optimal values of the control parameters are
properly chosen.

The proposed method gives rapid convergence with a particularly good initial
approximation as (58). It is not quite as e¢ cient as Neural Network methods; it
is slightly increasing in running time as the tolerance is increased as compared
to the Neural Network methods. However, it has the added advantage of being
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Fig. 4. Distribution of error of the exact solution approximation for r(t) when
n = 3; 5; 8

able to approximate the solution analytically.

Although this paper has considered, for simplicity, the inverse source problem
of the �rst-order, extensions to higher-order mathematical models related to
inverse problems arising in various physical and engineering settings such as,
the identi�cation of water sources, air pollution in the environment, or the
determination of heat sources in heat conduction are also possible. Looking
into such extensions will be our future work.
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