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High-Order Numerical Schemes for Jump Sbh.’s

Alexander Grigo®

% Department of Mathematics, University of Oklahoma, 727 .y Normar OK, USA

Abstract

In this paper we propose an algorithm to numerically : ‘'mulate Markov processes
of jump type. While these processes can natu.. 'lv be generated as solutions to
jump-SDEs the algorithm we propose is ins. ~d based on the interlacing con-
struction of the process. We show that ane c2» ~ struct in the sense of strong
convergence a high order numerical schen. based on high order ODE solvers.
This result is in sharp contrast to tt= well naown difficulty of constructing
high-order numerical schemes for diffu. ‘or processes.

Keywords: discretization scheme, .. b p.ocess, strong order of convergence

1. Introduction

In this paper we desc ibe a. efficient numerical algorithm to simulate the
continuous time Markov | vocess (in R? determined by its infinitesimal gener-
ator G given by

1

Gf(x) =V, w) v(z) +/A($)F(x,dﬂf’) [f(a) = f(2)] (1)

for all f € C>. If .~ vector field v is globally Lipschitz continuous (and
therefore satic.ies a linear growth condition), the transition (probability) ker-
nel I'(z,dy) ‘as f aite first and second moments, and the rate function A(x) is
bounded f om «. “ve, then it is known, e.g. Kolokoltsov [1, 2], that the mar-
tingale p oble n corresponding to G has a solution for any initial distribution.
In order .~ “ormr iate our main result we will impose more stringent regularity
condit’ 1s, s " ie existence of X; is always guaranteed.

( ne mey ~od of simulating trajectories of X; is based on what is commonly
refer. ~d to @ thinning, where the times at which the jumps occur are oversam-
r’ol by a roisson process with intensity at least as large as sup, A(x). And at
wvery i tance of those predetermined times of a potential jump a jump actu-
«'v occ urs with an appropriately chosen probability and distribution. Details
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of this approach can be found in section 4.2 of Ethier and Kui. - [3], < ad how
this method can be used to construct the process X¢, in the 7. + plac .
Another method to simulate the process X; is as follow . Us ug “he forward
Euler method to define the meaning of a stochastic differe.. * [ equation, as is
customarily done e.g. Ikeda and Watanabe [4], Protte 5], Billiteler [6], one
can define the process X; as the solution to the stoche stic dift. rential equation
(SDE)
dXt = ’U(Xt—)dt + dYt(X -) (2)

where Y;(x) denotes the pure-jump Levy process in ced b - the measure v(z;, .),
where the measure v(z,.) is determined by the req ‘remcut [v(z,dz) f(z+z) =
[ A(z)T(z,dx’) f(2') for all f € C°. Details to this . pproach can be found in
Kolokoltsov [1, 2]. As with the thinning metho. the . DE representation of the
process X; provides a coupling of all trajector.. ~ of A; corresponding to different
initial data, and hence allows for a path-=ri~~ -~~~ sis of X;. The very definition
of the meaning of the SDE (2) as limits o the forward Euler method readily
lends itself to a straightforward nur -—i~al scneme for simulating trajectories
X¢, just as the thinning method. In ct, the Euler method is a well-known
and frequently used method in si ~mlati = SDEs with or without jumps, e.g.
Milstein [7], Milstein and Tretyakov 's;, Kloeden and Platen [9], Bichteler [6].

The approach we present i+ *+his ¢ per is different from both of the above
mentioned methods. It is based o. the rollowing observation. Let o;(x) denote
the solution of the initial value problem %2 = v(z), 2(0) = x, which generates a
globally defined flow in R?. 1..°n the identity

ELF(%) % = = x| - [ Apu(e)) ds) Flgr(e) +
- [ e —/OTA(gps(x))ds} Alpr(2))x

y /F(gor(x),dx’) E[f(X,) | X, = 2] dr |

which holds . ~ .ny f € C¢°, allows for the following construction of X;. It is
well know ., e.g. 1. llenberg [10], that the transition kernel I'(z, dz’) can always
be repre entr 1 as [T(z,d2’) f(2') = [ p(d€) f(v(€,x)) for any f € C and
z € R% wi e i s asuitably chosen distribution on some auxiliary space Z, and
suita’ 1e man v. ZxR? — R%. In complete generality one can choose 1 to be the
unifi rm dist ibution on = = [0, 1], but in practice other choices are sometimes
favora' le. » .d we will make use of this below. Then for any sequence (0;,)nen
1 indenendent standard exponential random variables, and for any sequence
‘&n)nen Of independent Z—valued random variables with common distribution
@, ~nd Lor any initial value z € R? we construct the corresponding path of X
- +he interlacing procedure: Set the initial values

T():O, XO:,T (3&)




and supposing that X; is already defined for ¢t < 7,, we continue '=fini. ; X; by

t
Tpi1 = inf {t > Tni/ Alps(X;,))ds > 0 f
0

Xe=pi—r, (X)) forall 7, <t<m, .
Xrir = V(s Propa—ra (X2,)) for 1 =704

and then repeating this process recursively. This process €~ erlacing not only
provides an explicit coupling for all trajectories ¢ X; .. ~esponding to all the
different initial data Xy. It also provides a complet ' rans parent description of
X¢, which readily lends itself to modeling various . *~ble. ., where a deterministic
evolution is intertwined with randomly occurring suac »n changes. For instance,
in Leite et al. [11], Broda et al. [12] this mode. vas v ed to model the effect of
random (sudden) events in population dynaw.'~s, and Xue and Othmer [13] for
models of chemotaxis.

Furthermore, the explicit coupling con. “ruction provided by the interlacing
procedure (3) readily indicates a nur--rical sc.eme to simulate the process X,
that (a) avoids unnecessary oversamp: ng ot tne jump times as in the thinning
method, and (b) allows for employ’ ~o, as -ill be shown in the subsequent part of
this paper, higher-order methods un'ik. *he Euler—scheme used in the definition
of the SDE representation of X; Namc'v, we simulate X; using an efficient high-
order numerical scheme, e.g. Ha. ~r ev al. [14], Hairer and Wanner [15], Stoer
and Bulirsch [16], for the ordinary dificrential equation (ODE) Z = v(z) between
the jump times (7, )nen, ar - p form the jumps at the jump times. The fact that
despite the presence of t} : jumps “his approach indeed yields efficient numerical
schemes of arbitrary order ~ p7 . h-wise simulate X; is the main result of this
paper. This is in sharr cor‘rast vo corresponding results for simulating diffusions
or jump-diffusions, - her: it 7, known to be very difficult to construct higher-
order numerical sc.emes, ~ . Milstein [7], Milstein and Tretyakov [8], Kloeden
and Platen [9], P.. *eler [6].

In Section 2 we des.~ibe the ODE solver we admit in our algorithm. The
actual algorit’ m « 1d the main convergence results are stated in Section 3. Final
remarks are "ont .ined in Section 4.

(3b)

2. Desc ‘ipt'on ~f the ODE solver

The inter. < ag procedure (3) shows that except for the jumps the process X;
is th : solut. ‘u to the ODE 2 = v(z). Therefore, we describe a few key aspects
of w. at kind of algorithm we consider to solve ODEs. It will, however, turn out
th * the ZUE we are interested in is not simply 2 = v(z), which is the reason
vhy in his section we consider a generic initial value problem

§(t) = g(y(t)) , y(0) =yo €R', (4)
w .o : the specific assumptions we impose on the function g are given below.
"n principle we could allow for an explicit time-dependence, but since we re-
s.ict ourself to time-homogeneous processes we have no need for this slightly
generalized setup.




There is a vast literature of how to numerically approximate he so. .tion to
(4) efficiently, e.g. Hairer et al. [14], Butcher [17], Stoer an” Zulirs.™ [16]. In
order to explain the structure of the numerical schemes we will _o.. “der in this
paper we start with an analysis of Runge-Kutta methods. ™' ese methods are
well-known and extensively used in practice, and we re”.. the re..der to Hairer
et al. [14], Butcher [17], Stoer and Bulirsch [16] for de ails.

Runge-Kutta methods are so-called one-step methoa. whic ( partition starts
with a sequence 0 = tg < t1 < t3 < ... of points j". ume at which a numerical
approximation ¢ to y(t) is produced according to tl » or s-st¢ > recurrence relation

Q(tk+1) = Q(tk) + hk (D(’g(tk)7 hk) witn hk = tk+1 - tk (5)

for k=0,1,... for a given initial value §(0) wu. h .y or may not be equal to
y(0). The key ingredient in this kind of methc * is, of course, the choice of the
function ®(y, h). For Runge-Kutta metl . .l.... is a specific way to construct
®(y, h), which will not be of concern to us. hat will matter to us, however, is
that it is possible, e.g. Hairer et al. [1 7, "—+cher [17], Stoer and Bulirsch [16], to
construct ® such that for some L >0, ™ -0, h>0,p=1,2,...,¢=0,1,2,...
we have

| @(y1,h) = Py, I < |y — w2 ||
ly(h) —y(0) = h@(y(0),h) , < C [l g(y(0)) [| (1 V[l g(y(0))[|7) RP*

for all 0 < h < h and y(0) y1,,. € RY. The left-hand-side is usually referred to
as local truncation error and p i called the order of the method. A sufficient
condition for this type »f loc ! t” ancation error estimate is the following result,
e.g. Hairer et al. [14] But her |17], Stoer and Bulirsch [16].

(6)

Lemma 2.1 (Locd tre ce 1on error for Runge-Kutta methods, e.g. Hairer
et al. [14], Butcb . [17], Stoer and Bulirsch [16]). If all derivatives of g up to
and including order p-, 1 are uniformly bounded, then p—th order Runge—Kutta
methods satis’; v 2 local truncation error estimate (6) with ¢ =p — 1.

By a mino. ~.riation of the proofs of the error estimate found in Hairer et al.
[14], Butc ier 17|, Jtoer and Bulirsch [16] we obtain the following global error
estimate

Lem .a 2.2 Slobal truncation error). Suppose the first derivative of g is
unif rmly be mded by L, i.e. || Dg(y)|| < L for all y € RY, and suppose further
that « satis .es the local truncation error estimate (6). Then

7 = edLtr _
| y(te) — 9(t) | < e [ y(0) = §(0) || + Cete VD) Tl .
* 1 g(y(0) | (1V ] g(y(0)) |*) [Ogr;;ag_lm}”

forallk=1,2,....




Proof. Let for any y € R! denote by Y (¢,) the solution of v.~ ini. 1 value
problem Y = ¢g(Y), Y(0) = y. By definition of y(¢) and §(¢tx" . » hav.

Y(thr1) — 9(tesr) = y(te) — 9(te) + hi [R(y(te), hi) - D y(tr), hi))
+y(thr1) — y(te) — hi @(v ek ), hr)

so that the assumed local truncation error estimate (6, ‘mplie

| y(tny1) = G(tnsr) [| < (L4 he L) ly(te) - 9(t 5|
+C |lgly(tn)) (VI ly(te)) |7) BT

for all k =0,1,.... With Gronwall’s inequali - it follc ¥s that

ly(te) = 9t | < e [ y(0) = §(0) |
k—1

+C 3 et Ly | (L[| gly(t) [19) R+
=0

forall k=0,1,....
The final observation is that the ~bc = estimate involves only the true solu-
tion y(t), sampled at t = t5. A 7 <ince

% Loy (®)) II* = 29(y(tN" Dy(y(t)) g(y(t) < 2 || Dgy() || Il 9(y(®) I”
<2L q(y(t)

it follows again from ‘sror wall's inequality that

Lau@) 1 <2 g 0% 17 50 i [lgly®) 1l < [ 9(y(0) || €-*

for all¢ > 0. Up sn su. +ituting this estimate for || g(y(¢)) || in the above estimate
for || y(ty) — 97 . || yields

ly(te) = dltn, " < e [y(0) = §(0) |
+ CI:Z() L9y (0)) | €™ (1v | gy(t) ) b
<etl | y??n ~§(0) |
+C et EVE) | g(y(0)) | Z (1V [ g(y(t)) 1) b
< e y(0) = §(0) | N

k—1
+C e VD Lg(y(0) | 1V [[g(y()) 1) Y et  hy™
=0




for all k =1,2,.... With

k—1 k—1 :
p p
E ed Lt hf“ < [ max hl} E ettty < [ max '“v] / e?ls s
pre 0<i<k—1 — 0<i<k—1 . |,

we obtain the claimed estimate on || y(tx) — §(tx) ||- O

The Runge-Kutta methods, as any other one- ..cp meuvnod, generates nu-
merical approximations to y(t) only at the pres vibs 4 (¢ - preselected) times
0 =ty <ty <tz < ... for which the local truncatic 1 error estimate (6),
provides a global truncation estimate (7). In the ¢ ~struction of Runge-Kutta
methods, i.e. the construction of ®, one ca Hairer :t al. [14] also efficiently
produce an interpolation ¢(t) of §(tx), g(ts +) 1e .y tr <t < ty1 that sat-
isfies the same local truncation error estimate .= || y(¢) — g(¢) || as in (6). This
is usually referred to as dense output, a. - au emcient Runge-Kutta implemen-
tation of this is called a continuous Runge-i. *ta method, see Hairer et al. [14]
for details.

Of course, there are other numericai v ethods to solve the initial value prob-
lem (4), for example multi-step n -."ods »r adaptive methods. We refer the
reader to Hairer et al. [14], Butcher |/ 7|, Jtoer and Bulirsch [16] and references
therein for an analysis of varic '~ ...-** »ds. What matters to us in this paper
is simply the fact that one can cons.uct efficient algorithms to produce an ap-
proximation ¢(t) that agrees with y(t) for all ¢ up to an explicit error bound as
in (7). Therefore we will onsiac - numerical methods that satisfy the following
properties:

J= o <t1 <...
hg =t 1 —txy<h foralln=0,1,...

ly() =D < e y(0) = 5(0) |
+Aate || g(y(0)) | (1V [ g(y(0)) ) b

where h is « oiv.n parameter controlling the precision of the algorithm (the
maximal ¢ ep siz. *o be used), p, ¢ € N are describing the order property of the
algorithr ., ar « A+, Ay, A3 > 0 are some fixed constants.

As me. * oner’, continuous Runge-Kutta methods are of this type, including
those ..at ada, tively choose the step size.

(8)

3 Cou, " .g of X; and its numerical approximation X,

Let 1 s fix the notation X, for any (numerical or not) approximation of X;.
I =7 ¢ to obtain path-wise estimates on the difference between X; and )~(t
.~ mrincipal steps need to be carried out. Firstly, both processes X;, X, must
"e constructed on the same probability space, for otherwise they cannot be
¢ ‘mpared at all. Secondly, to quantify the comparison of the paths of X;, X,
for some range of ¢ a suitable metric has to be agreed upon. The first issue will




be addressed by an explicit simultaneous construction of X; ana .. and will be
made clear in the description of Algorithm 3.1 below. So w* .“art 1. s section
explaining the metric we use to compare X and X.

3.1. Introduction of notation and basic definitions

Let T > 0 denote some fixed time that describes t. e time 1terval [0,7] on
which we attempt to (construct and) compare the paths “ X »- d X. Since X and
X are constructed below to have paths that have 1 .tt lir *s and are continuous
from the right (cadlag paths) the natural choice ™ Jhe s pace of paths is the
Skorohod space D([0, T], R%) consisting of all caw. ~o pa*> . Details can be found
in many standard textbooks, e.g. Ethier and Kurtz |, Jacod and Shiryaev [18],
and we will simply provide here a description. ~f the 1 sual Prohorov metric gp
on D([0,T],R%), which makes it into a com, '~te scparable metric space whose
Borel sigma algebra is the one generated bv the -aluation maps. Namely, for
any two paths z,# € D([0,T],R?%) their a. *ance gp(x,7) is defined as

1og A=A s a(ae) - 20 1]} )

pxizitlf{ su
op(z,2) =in P P S

0<s<t<T
where the infimum is taken over al tin.e changes A, i.e. A: [0,T] — [0,7]
increasing continuous bijection. a ...~ 2 tractable metric is the so-called Sko-
rohod metric

o5, @) =inf s IOt +TAJeOA®) 3@} (10)

A <s<t<T

The metric pg genera es the sa.ne topology as gp, but lacks the completeness
property. This, howr ver. will .ot be of concern to us.

It is standard v racti > te interpret the process X; restricted to ¢ € [0,T] as
a random variabl . vith values in the complete metric space D([0,T],R¢). This
point of view is useful . hen defining the sense in which X and its approximation
X are to be cc . red path-wise.

3.2. The rume, -al algorithm

In th's se’ ¢ion we describe the algorithm for constructing X. A key result
will be ti. * chis construction also provides a coupling with X, which is crucial
for th ... com, xison. Recall that the interlacing procedure (3) provides an
expl zit con: ruction of X as solutions to the ODE # = v(x) on random time
inter\ 18 [7, T,4+1) which are connected by random jumps. However, since the
@ suveibution of 7,41 — 7, depends on the path of X, we will not only solve the
JDE & = v(z), but rather do we consider the ODE

z=(zy) wz,y) = @),Az), Z=w(), (11)

vhose solution we denote by 1:(z). Furthermore, let

) =0u(2), 0=1ig(2) <iy(2) < ... (12)




denote the numerical approximation (not necessarily a flow) of ¢, \~) wi... values
algorithmically generated at times (f3(2))ren using an OD™. -olver -atisfying
our assumption (8). With this notation we can describe an _xte' uc.' interlacing
algorithm, recall (3), to simultaneously construct X and X:

Algorithm 3.1 (Extended interlacing procedure to cc astruc. X, X).

L. Fiz the random input (0n)nen, (§n)nen, and fix e ir dal values Xo =
Xo € R4, o =0, 79 = 79 = 0. Furthermore, « h. >0 and e, > 0.

2. Suppose that for some n € N the jump time  ;)i=c ..n, (Ti)i=0,...n and
(Xe)o<t<r, » ()zt)ogtg;" have been construc. .
(a) Define 1,41 through

+

Tn41 = inf {t > Ty / n0s(Xs,)) ds > Gn}

and define Xy via

Xt = @tr, (X, j forall 7, <t<Tnq
xTn+1 = ’y(é’n ¥ 1-Tn (XTn))

forall 7, <t < Tpq1.
(b) Use an ODE solver satis,™ing our assumption (8) to construct for
h = hy

(&L, (1) = Pe(Zn) . 0=10(2,) <T1(Zn) < ...
for the ini wal » alue %, = (X, ,0), recall (12) for the notation used.
Let N e N "= )
N =inf{k € N: §(tx41) > On}

and use the Adense output of the ODE solver to determine a value
tN ~ o o <tng1 Such that

|Q(An) - 9n| <y

T en <t R
7~—n+1 - 7~—n + An
o d define X, via

Xi =&t —7,) forall 7 <t<Tni1

X;n+1 = V(Em j(An))

forall 7, <t < Tpy1.

3. Repeatedly applying step 2 the processes Xi and X;: can be defined recur-
sively until both are defined on an interval containing [0,T]. Then restrict
t to [0,T] to obtain two paths (X¢)ejo,r), (Xe)repo,r) in D([0,T],R?).




3.8. A priori estimates

For any random input (6,,)nen, (§n)nen, and any initial ~ > Xo = X, € R4
Algorithm 3.1 produces a pair of paths (X;, X;) and a sec «enc o1 ;amp times
(T, Tn)nen. Our standing assumption on the ODE solver us. ! to produce the
numerical approximation is that it satisfies the truncat on error cstimate given
in (8).

Using the notation as in Algorithm 3.1 we define the *ime change map

- P—7 Tog1 — 1 P
MO =Topt = 4T fora’ Fu <i<Fuga,  (13)
Tntl — Tn Tntl = Tn

which maps [7,,, Tnt1] bijectively onto [, 7, 1] for a. n € N (or rather for all
n for which Algorithm 3.1 produces 7,, and 7,,).

Lemma 3.2 (Single step a priori error estimate:  Suppose that 0 < A_ < A(z)
for all x, and suppose that A is globally . nschitz with Lipschitz constant Ly .
Further, suppose that v is globally Iinschitz . ith Lipschitz constant L,, and
suppose also that ||v(&,x) —v(&,2') || < 'y yx—2'| for all z, 2’ and all €.
Given the values of Tn, Tn, X1, , X . hy, <y it follows that

1 ) - -
~ ~ - nt1—7Tn) A
|Tn+1 —Tn — Tn+1 +Tn| < =Ae- Te(f +177n) Ar

Py —

| Xe, = X,

+ A‘-‘ (7:n+1 _ 7~.n) e(Fnt1—7Tn) Az o

x w(Xe,, 0) [ (1V [lw(Xx,,0) ) B

and
1 “ - ‘eLv (Tn4+1—Tn) _ el (7~'n+1—7~'n,)‘
su Xy H < v(X
v, o e 5 o %) |

+ 6(7:n+1_7:n) Al

| Xr, = X,

+ Ay (7-n+1 — %n) 6(%""'17%") As X
x [Jw(Xs,, 0) | (1V [[w(Xs,,0)[|) hY .

Proof. Re” | th .t X, is constructed by numerically approximating the initial
value pioblem ¢ = w(z) initial value z(7,) = (X7,,0), call the resulting nu-
mer: al appi ximation Z(¢) for all ¢ > 7,, (and not just for ¢ < T), and then
restri. “ing + ;0 some appropriate time interval. The process X; is chosen as the
< sact solution to the same differential equation, except with initial data (X, 0),
-estricte 1 to some appropriately chosen time interval. Denote the solution valid
te - all # by simply 2(¢). By assumption on the ODE solver used to produce the
~»merical approximation satisfies the truncation error estimate given in (8)

lz(t+7) — 2@t +Tn) || < et A | 2(m0) — Z2(T0) |l
+ Agte A || w(z(ra)) | (V[ w(z(ma)) ) BE




for all ¢ > 0. Since || z(7,) — 2(70) || = H X, — Xz, || it follows v. ~t

|y<Tn+1) - y(%nJrl —Tn T+ Tn>| < |9n - ?j(%n+1)| + ‘g(%’l’kfl) ~Y(Fagr1 - Tn + Tn)l
S |

< g, +elfnti=Ta) A ‘ X, Xz, I

+ Ao (Trg1 — Tn) el +17n) <oy
X lw(Xs,,, 051 (Lvjw(Xs,,0)[|7) A .

From the uniform lower bound on A it follows thau

- N 1 N
|Tn+1 —Tn — Tn+1 +Tn| < — |y(7—n‘1) _y(7 +1 — Tn +Tn)| )

which thus proves the claimed bound on |7,411 - 7 — Trg1 + Tl
Similarly, by assumed bound on the . incation error

ot +70) = &t +7) || < e
+ote X, 0) ]| (1V [ w(Xe,,0) [|7) A

o]

for all t > 0. Hence

| 2(A®) —2@) || < || 2(A@) —a(t- Fo+7a) ||
+ B Tt ) — =T+ ) ||
< 2D = oF = Tt ) || + T X X,

+ 1o (;,1+1 - 7’:n) e(%nJrl_%n) As X
w00 AV [[w(Xs,, 0) 1) RE

for all 7, <t < 4,41, here

) =, Fanci

n = — .
Tn+1 — Tn Tn+1 — Tn

By a stradad Gr-onwall estimate, similar to what was done in the proof of
Lemma 2.. it fc.lows that

| 2(A@)) —z(t—Fn+70) || = || 2OAE) =70+ 70) — 2t — T + 70) ||

|eLv (A(f)_Tn) — eLv (E_%n)|

< 7 [[v(z (7))l
L, kLl (g Lo (i—%
|e Tn4+1—Tn —e v( Tn)
- . 100 |
|6Lv (Tnt1—Tn) _ eLlv (7‘:71+17%n)|
< - X, |

10




for all 7, <t < 7,41, and hence

‘eLv (Tn41—Tn) _ el (‘T'n+1*7~'n)|
L,
+ e(%n+17%n)Al

| 2(A(E) — 2(F) || < 1o,

| %r. =,

+ A2 (7~—n+1 - 7~_n) 6(7:"+1_ ) As Pt
< Jw(X,, 0) | VI8 OXr, 0) %) RY

forall 7, <t < Tn+1. In particular, this estimauv. appli~~ o

‘xf —X.

Tn+1 Th+1

| = I2OFar ) = & Fas) || -

The assumed uniform Lipschitz continuitv of ~ » 5lies

-X

e -
B |>\TTT+1 X7~'n_+1

%

Tn+1 Trnt1

which can be combined with the : ~aviow - estimate to obtain the claimed esti-
mate on H Xa@) — X; H O

Assuming a uniform upper bow *d on A, implies that the number of jumps of
X; for 0 < ¢ < T has a tail distribution chat can be estimated by an exponentially
small (in the number of jur.ps, "~rm, which is uniform in the choice of the initial
value Xg. In particular, - ae numi er of jumps is almost surely finite. Therefore
iterating the estimate »rov.'~d n Lemma 3.2 for as many times as there are
jumps we readily obt .n t’.e foliowing

Theorem 3.3 (A mos. sw : convergence of O(HP)). Suppose the same as-
sumptions as in . »mma 5.2 and suppose also that sup, || w(z,0)|| < M for
some M > 1. Iy g, = DAY, then Algorithm 3.1 constructs a coupling (Xt,)N(t)
such that op(° \t,((t) = O(HP) holds almost surely and for all initial values
Xo=Xo € P . T.e order of convergence is uniform in the number of jumps of
Xt within [(),rl IE

A sli ntly mor : careful analysis of the preceding argument provides an esti-
mate of the ~ver age of gg.

The orem & 4 (Convergence in average). Under the same assumptions as in
Theo, m 8.° it follows that for every j € N

(T M)j+1

Eos(X,X) < (1+7) e

+O(HP) .

Frooy. Fix the initial condition Xq = )~(0 € R%. Notice that the estimates
~rovided by Lemma 3.2 are naturally set up to estimate |7,41 — Tny1| and
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K@) — X; H in terms of the corresponding qua. “ities with n

replaced by n — 1. Let N denote the number of jumps of X m 0 7). Then
Pr[N > j] < Pr [N>j}

where N is the number of jumps within [0,T] of a Poist  proc :ss with rate M.
And since N has a Poisson distribution with parar _.ar 1 ... 1t follows that

L = (TM): rM I+t
PrN>]§eTM —Q —af—.
[ ] k_zj;rl k! (7 +1)!

Since the worst case of the right-hand-s' e i "h~ definition of pg as in (10)
is given by T+ 1 we obtain the following estin.. ‘o
Eos(X,X) = Eos(X,X) YN > j} + E¢. X, X) YN < j}
<(A+T)Pr[Ey+... -5 - MT]+Eps(X,X) N < j}
(T M)+
(j+ 1!

By Theorem 3.3 we have ps(X, X, = O(HP) uniformly as long as N < j, which
completes the proof. O

<(1+T) CFoc X X) YN <}

4. Conclusions

As should be cler . fre.m the strategy of proof for Theorem 3.3 and Theo-

rem 3.4 the uniform . ~er Founds for A and v are just made to simplify the
arguments. One ¢ .n allow r linear growth bounds (which are already implied
by the global Li sc..'*7 assumption imposed on w) under bounds on the g-th
moment of the *ansition kernel I' in order to control the terms involving the ¢g—
th power of |' w(X ,0) ||, which is necessary when iterating the a priori estimate
provided by .. .ma 3.2.
_ Simila 1y, inste. 1 of fixing (i.e. conditioning on) the initial condition Xo =
Xo € R in rherrem 3.3 and Theorem 3.4 one can allow for a distribution
of initial u. o, ¥ hich would naturally lead to an estimate of the Wasserstein-
Kant ,rovich distance of X and X when using the cost function pg.

I inally, a : is clear from the interlacing construction of X, our Algorithm 3.1
combu. ~s 2~ efficient numerical ODE solver with the least number of random
~ariabl~s necessary to construct a coupling of X; and X;. In this sense the
roposer algorithm is optimal.
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