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High-Order Numerical Schemes for Jump-SDEs

Alexander Grigoa

aDepartment of Mathematics, University of Oklahoma, 72019 Norman OK, USA

Abstract

In this paper we propose an algorithm to numerically simulate Markov processes
of jump type. While these processes can naturally be generated as solutions to
jump-SDEs the algorithm we propose is instead based on the interlacing con-
struction of the process. We show that one can construct in the sense of strong
convergence a high order numerical scheme based on high order ODE solvers.
This result is in sharp contrast to the well known difficulty of constructing
high-order numerical schemes for diffusion processes.

Keywords: discretization scheme, jump process, strong order of convergence

1. Introduction

In this paper we describe an efficient numerical algorithm to simulate the
continuous time Markov process X in Rd determined by its infinitesimal gener-
ator G given by

Gf(x) = ∇f(x) · v(x) +
∫

Λ(x) Γ(x, dx′) [f(x′)− f(x)] (1)

for all f ∈ C∞
c . If the vector field v is globally Lipschitz continuous (and

therefore satisfies a linear growth condition), the transition (probability) ker-
nel Γ(x, dy) has finite first and second moments, and the rate function Λ(x) is
bounded from above, then it is known, e.g. Kolokoltsov [1, 2], that the mar-
tingale problem corresponding to G has a solution for any initial distribution.
In order to formulate our main result we will impose more stringent regularity
conditions, so the existence of Xt is always guaranteed.

One method of simulating trajectories of Xt is based on what is commonly
referred to as thinning, where the times at which the jumps occur are oversam-
pled by a Poisson process with intensity at least as large as supx Λ(x). And at
every instance of those predetermined times of a potential jump a jump actu-
ally occurs with an appropriately chosen probability and distribution. Details
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of this approach can be found in section 4.2 of Ethier and Kurtz [3], and how
this method can be used to construct the process Xt, in the first place.

Another method to simulate the process Xt is as follows. Using the forward
Euler method to define the meaning of a stochastic differential equation, as is
customarily done e.g. Ikeda and Watanabe [4], Protter [5], Bichteler [6], one
can define the process Xt as the solution to the stochastic differential equation
(SDE)

dXt = v(Xt−) dt+ dYt(Xt−) (2)

where Yt(x) denotes the pure-jump Levy process induced by the measure ν(x, .),
where the measure ν(x, .) is determined by the requirement

∫
ν(x, dz) f(x+z) =∫

Λ(x) Γ(x, dx′) f(x′) for all f ∈ C∞
c . Details to this approach can be found in

Kolokoltsov [1, 2]. As with the thinning method, the SDE representation of the
process Xt provides a coupling of all trajectories of Xt corresponding to different
initial data, and hence allows for a path-wise analysis of Xt. The very definition
of the meaning of the SDE (2) as limits of the forward Euler method readily
lends itself to a straightforward numerical scheme for simulating trajectories
Xt, just as the thinning method. In fact, the Euler method is a well-known
and frequently used method in simulating SDEs with or without jumps, e.g.
Milstein [7], Milstein and Tretyakov [8], Kloeden and Platen [9], Bichteler [6].

The approach we present in this paper is different from both of the above
mentioned methods. It is based on the following observation. Let φt(x) denote
the solution of the initial value problem ż = v(z), z(0) = x, which generates a
globally defined flow in Rd. Then the identity

E[f(Xt) |X0 = x] = exp
{
−

∫ t

0

Λ(φs(x)) ds
}
f(φt(x)) +

+

∫ t

0

exp
{
−
∫ r

0

Λ(φs(x)) ds
}
Λ(φr(x))×

×
∫

Γ(φr(x), dx
′) E[f(Xt) |Xr = x′] dr ,

which holds for any f ∈ C∞
c , allows for the following construction of Xt. It is

well known, e.g. Kallenberg [10], that the transition kernel Γ(x, dx′) can always
be represented as

∫
Γ(x, dx′) f(x′) =

∫
µ(dξ) f(γ(ξ, x)) for any f ∈ C∞

c and
x ∈ Rd, where µ is a suitably chosen distribution on some auxiliary space Ξ, and
suitable map γ : Ξ×Rd → Rd. In complete generality one can choose µ to be the
uniform distribution on Ξ = [0, 1], but in practice other choices are sometimes
favorable, and we will make use of this below. Then for any sequence (θn)n∈N
of independent standard exponential random variables, and for any sequence
(ξn)n∈N of independent Ξ–valued random variables with common distribution
µ, and for any initial value x ∈ Rd we construct the corresponding path of Xt

by the interlacing procedure: Set the initial values

τ0 = 0 , X0 = x (3a)
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and supposing that Xt is already defined for t ≤ τn we continue defining Xt by

τn+1 = inf
{
t > τn :

∫ t

0

Λ(φs(Xτn)) ds > θn

}

Xt = φt−τn(Xτn) for all τn < t < τn+1

Xτn+1
= γ(ξn, φτn+1−τn(Xτn)) for t = τn+1

(3b)

and then repeating this process recursively. This process of interlacing not only
provides an explicit coupling for all trajectories of Xt corresponding to all the
different initial data X0. It also provides a completely transparent description of
Xt, which readily lends itself to modeling various problems where a deterministic
evolution is intertwined with randomly occurring sudden changes. For instance,
in Leite et al. [11], Broda et al. [12] this model was used to model the effect of
random (sudden) events in population dynamics, and Xue and Othmer [13] for
models of chemotaxis.

Furthermore, the explicit coupling construction provided by the interlacing
procedure (3) readily indicates a numerical scheme to simulate the process Xt

that (a) avoids unnecessary oversampling of the jump times as in the thinning
method, and (b) allows for employing, as will be shown in the subsequent part of
this paper, higher-order methods unlike the Euler–scheme used in the definition
of the SDE representation of Xt. Namely, we simulate Xt using an efficient high-
order numerical scheme, e.g. Hairer et al. [14], Hairer and Wanner [15], Stoer
and Bulirsch [16], for the ordinary differential equation (ODE) ż = v(z) between
the jump times (τn)n∈N, and perform the jumps at the jump times. The fact that
despite the presence of the jumps this approach indeed yields efficient numerical
schemes of arbitrary order to path-wise simulate Xt is the main result of this
paper. This is in sharp contrast to corresponding results for simulating diffusions
or jump-diffusions, where it is known to be very difficult to construct higher-
order numerical schemes, e.g. Milstein [7], Milstein and Tretyakov [8], Kloeden
and Platen [9], Bichteler [6].

In Section 2 we describe the ODE solver we admit in our algorithm. The
actual algorithm and the main convergence results are stated in Section 3. Final
remarks are contained in Section 4.

2. Description of the ODE solver

The interlacing procedure (3) shows that except for the jumps the process Xt

is the solution to the ODE ż = v(z). Therefore, we describe a few key aspects
of what kind of algorithm we consider to solve ODEs. It will, however, turn out
that the ODE we are interested in is not simply ż = v(z), which is the reason
why in this section we consider a generic initial value problem

ẏ(t) = g(y(t)) , y(0) = y0 ∈ Rl , (4)
where the specific assumptions we impose on the function g are given below.
In principle we could allow for an explicit time-dependence, but since we re-
strict ourself to time-homogeneous processes we have no need for this slightly
generalized setup.
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There is a vast literature of how to numerically approximate the solution to
(4) efficiently, e.g. Hairer et al. [14], Butcher [17], Stoer and Bulirsch [16]. In
order to explain the structure of the numerical schemes we will consider in this
paper we start with an analysis of Runge-Kutta methods. These methods are
well-known and extensively used in practice, and we refer the reader to Hairer
et al. [14], Butcher [17], Stoer and Bulirsch [16] for details.

Runge-Kutta methods are so-called one-step methods, which partition starts
with a sequence 0 = t0 < t1 < t2 < . . . of points in time at which a numerical
approximation ŷ to y(t) is produced according to the one-step recurrence relation

ŷ(tk+1) = ŷ(tk) + hk Φ(ŷ(tk), hk) with hk = tk+1 − tk (5)

for k = 0, 1, . . . for a given initial value ŷ(0), which may or may not be equal to
y(0). The key ingredient in this kind of method is, of course, the choice of the
function Φ(y, h). For Runge-Kutta methods there is a specific way to construct
Φ(y, h), which will not be of concern to us. What will matter to us, however, is
that it is possible, e.g. Hairer et al. [14], Butcher [17], Stoer and Bulirsch [16], to
construct Φ such that for some L̄ > 0, C̄ > 0, h̄ > 0, p = 1, 2, . . ., q = 0, 1, 2, . . .
we have

∥Φ(y1, h)− Φ(y2, h) ∥ ≤ L̄ ∥ y1 − y2 ∥
∥ y(h)− y(0)− hΦ(y(0), h) ∥ ≤ C̄ ∥ g(y(0)) ∥ (1∨∥ g(y(0)) ∥q)hp+1

(6)

for all 0 < h ≤ h̄ and y(0), y1, y2 ∈ Rl. The left-hand-side is usually referred to
as local truncation error, and p is called the order of the method. A sufficient
condition for this type of local truncation error estimate is the following result,
e.g. Hairer et al. [14], Butcher [17], Stoer and Bulirsch [16].

Lemma 2.1 (Local truncation error for Runge-Kutta methods, e.g. Hairer
et al. [14], Butcher [17], Stoer and Bulirsch [16]). If all derivatives of g up to
and including order p+ 1 are uniformly bounded, then p–th order Runge–Kutta
methods satisfy the local truncation error estimate (6) with q = p− 1.

By a minor variation of the proofs of the error estimate found in Hairer et al.
[14], Butcher [17], Stoer and Bulirsch [16] we obtain the following global error
estimate

Lemma 2.2 (Global truncation error). Suppose the first derivative of g is
uniformly bounded by L, i.e. ∥Dg(y) ∥ ≤ L for all y ∈ Rl, and suppose further
that Φ satisfies the local truncation error estimate (6). Then

∥ y(tk)− ŷ(tk) ∥ ≤ etk L̄ ∥ y(0)− ŷ(0) ∥+ C̄ etk (L̄∨L) e
q L tk − 1

q L
×

× ∥ g(y(0)) ∥ (1∨∥ g(y(0)) ∥q)
[

max
0≤l≤k−1

hl

]p (7)

for all k = 1, 2, . . ..
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Proof. Let for any y ∈ Rl denote by Y (t, y) the solution of the initial value
problem Ẏ = g(Y ), Y (0) = y. By definition of y(t) and ŷ(tk) we have

y(tk+1)− ŷ(tk+1) = y(tk)− ŷ(tk) + hk [Φ(y(tk), hk)− Φ(ŷ(tk), hk)]

+ y(tk+1)− y(tk)− hk Φ(y(tk), hk)

so that the assumed local truncation error estimate (6) implies

∥ y(tn+1)− ŷ(tn+1) ∥ ≤ (1 + hk L̄) ∥ y(tk)− ŷ(tk) ∥
+ C̄ ∥ g(y(tk)) ∥ (1∨∥ g(y(tk)) ∥q)hp+1

k

for all k = 0, 1, . . .. With Gronwall’s inequality it follows that

∥ y(tk)− ŷ(tk) ∥ ≤ etk L̄ ∥ y(0)− ŷ(0) ∥

+ C̄
k−1∑

l=0

e(tk−tl+1) L̄ ∥ g(y(tl)) ∥ (1∨∥ g(y(tl)) ∥q)hp+1
l

for all k = 0, 1, . . ..
The final observation is that the above estimate involves only the true solu-

tion y(t), sampled at t = tk. And since

d

dt
∥ g(y(t)) ∥2 = 2 g(y(t))T Dg(y(t)) g(y(t)) ≤ 2 ∥Dg(y(t)) ∥ ∥ g(y(t)) ∥2

≤ 2L ∥ g(y(t)) ∥2

it follows again from Gronwall’s inequality that

∥ g(y(t)) ∥2 ≤ ∥ g(y(0)) ∥2 e2L t i.e. ∥ g(y(t)) ∥ ≤ ∥ g(y(0)) ∥ eL t

for all t ≥ 0. Upon substituting this estimate for ∥ g(y(t)) ∥ in the above estimate
for ∥ y(tk)− ŷ(tk) ∥ yields

∥ y(tk)− ŷ(tk) ∥ ≤ etk L̄ ∥ y(0)− ŷ(0) ∥

+ C̄

k−1∑

l=0

e(tk−tl+1) L̄ ∥ g(y(0)) ∥ eL tl (1∨∥ g(y(tl)) ∥q)hp+1
l

≤ etk L̄ ∥ y(0)− ŷ(0) ∥

+ C̄ etk (L̄∨L) ∥ g(y(0)) ∥
k−1∑

l=0

(1∨∥ g(y(tl)) ∥q)hp+1
l

≤ etk L̄ ∥ y(0)− ŷ(0) ∥

+ C̄ etk (L̄∨L) ∥ g(y(0)) ∥ (1∨∥ g(y(0)) ∥q)
k−1∑

l=0

eq L tl hp+1
l
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for all k = 1, 2, . . .. With

k−1∑

l=0

eq L tl hp+1
l ≤

[
max

0≤l≤k−1
hl

]p k−1∑

l=0

eq L tl hl ≤
[

max
0≤l≤k−1

hl

]p ∫ tk

0

eq L s ds

we obtain the claimed estimate on ∥ y(tk)− ŷ(tk) ∥.

The Runge-Kutta methods, as any other one-step method, generates nu-
merical approximations to y(t) only at the prescribed (or preselected) times
0 = t0 < t1 < t2 < . . ., for which the local truncation error estimate (6),
provides a global truncation estimate (7). In the construction of Runge-Kutta
methods, i.e. the construction of Φ, one can Hairer et al. [14] also efficiently
produce an interpolation ŷ(t) of ŷ(tk), ŷ(tk+1) for any tk ≤ t ≤ tk+1 that sat-
isfies the same local truncation error estimate for ∥ y(t)− ŷ(t) ∥ as in (6). This
is usually referred to as dense output, and an efficient Runge-Kutta implemen-
tation of this is called a continuous Runge-Kutta method, see Hairer et al. [14]
for details.

Of course, there are other numerical methods to solve the initial value prob-
lem (4), for example multi-step methods or adaptive methods. We refer the
reader to Hairer et al. [14], Butcher [17], Stoer and Bulirsch [16] and references
therein for an analysis of various methods. What matters to us in this paper
is simply the fact that one can construct efficient algorithms to produce an ap-
proximation ŷ(t) that agrees with y(t) for all t up to an explicit error bound as
in (7). Therefore we will consider numerical methods that satisfy the following
properties:

0 = t0 < t1 < . . .

hk = tk+1 − tk ≤ h for all n = 0, 1, . . .

∥ y(t)− ŷ(t) ∥ ≤ et A1 ∥ y(0)− ŷ(0) ∥
+A2 t e

t A3 ∥ g(y(0)) ∥ (1∨∥ g(y(0)) ∥q)hp

(8)

where h is a given parameter controlling the precision of the algorithm (the
maximal step size to be used), p, q ∈ N are describing the order property of the
algorithm, and A1, A2, A3 ≥ 0 are some fixed constants.

As mentioned, continuous Runge-Kutta methods are of this type, including
those that adaptively choose the step size.

3. Coupling of Xt and its numerical approximation X̃t

Let us fix the notation X̃t for any (numerical or not) approximation of Xt.
In order to obtain path-wise estimates on the difference between Xt and X̃t

two principal steps need to be carried out. Firstly, both processes Xt, X̃t must
be constructed on the same probability space, for otherwise they cannot be
compared at all. Secondly, to quantify the comparison of the paths of Xt, X̃t

for some range of t a suitable metric has to be agreed upon. The first issue will
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be addressed by an explicit simultaneous construction of Xt and X̃t, and will be
made clear in the description of Algorithm 3.1 below. So we start this section
explaining the metric we use to compare X and X̃.

3.1. Introduction of notation and basic definitions
Let T > 0 denote some fixed time that describes the time interval [0, T ] on

which we attempt to (construct and) compare the paths of X and X̃. Since X and
X̃ are constructed below to have paths that have left limits and are continuous
from the right (cadlag paths) the natural choice for the space of paths is the
Skorohod space D([0, T ],Rd) consisting of all cadlag paths. Details can be found
in many standard textbooks, e.g. Ethier and Kurtz [3], Jacod and Shiryaev [18],
and we will simply provide here a description of the usual Prohorov metric ϱP
on D([0, T ],Rd), which makes it into a complete separable metric space whose
Borel sigma algebra is the one generated by the evaluation maps. Namely, for
any two paths x, x̃ ∈ D([0, T ],Rd) their distance ϱP (x, x̃) is defined as

ϱP (x, x̃) = inf
λ

{
sup

0≤s<t≤T

∣∣∣ log λ(t)− λ(s)

t− s

∣∣∣+1∧ sup
0≤t≤T

∥x(λ(t))− x̃(t) ∥
∣∣∣
}
, (9)

where the infimum is taken over all time changes λ, i.e. λ : [0, T ] → [0, T ]
increasing continuous bijections. A more tractable metric is the so-called Sko-
rohod metric

ϱS(x, x̃) = inf
λ

sup
0≤s<t≤T

{
|λ(t)− t|+ 1∧∥x(λ(t))− x̃(t) ∥

}
. (10)

The metric ϱS generates the same topology as ϱP , but lacks the completeness
property. This, however, will not be of concern to us.

It is standard practice to interpret the process Xt restricted to t ∈ [0, T ] as
a random variable with values in the complete metric space D([0, T ],Rd). This
point of view is useful when defining the sense in which X and its approximation
X̃ are to be compared path-wise.

3.2. The numerical algorithm
In this section we describe the algorithm for constructing X̃. A key result

will be that this construction also provides a coupling with X, which is crucial
for their comparison. Recall that the interlacing procedure (3) provides an
explicit construction of X as solutions to the ODE ẋ = v(x) on random time
intervals [τn, τn+1) which are connected by random jumps. However, since the
distribution of τn+1 − τn depends on the path of Xt we will not only solve the
ODE ẋ = v(x), but rather do we consider the ODE

z = (x, y) w(x, y) = (v(x),Λ(x)) , ż = w(z) , (11)

whose solution we denote by ψt(z). Furthermore, let

z̃(t) = ψ̃t(z) , 0 = t̃0(z) < t̃1(z) < . . . (12)
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denote the numerical approximation (not necessarily a flow) of ψt(z) with values
algorithmically generated at times (t̃k(z))k∈N using an ODE solver satisfying
our assumption (8). With this notation we can describe an extended interlacing
algorithm, recall (3), to simultaneously construct X and X̃:

Algorithm 3.1 (Extended interlacing procedure to construct X, X̃).

1. Fix the random input (θn)n∈N, (ξn)n∈N, and fix the initial values X0 =
X̃0 ∈ Rd, ỹ0 = 0, τ0 = τ̃0 = 0. Furthermore, fix h⋆ > 0 and ε⋆ > 0.

2. Suppose that for some n ∈ N the jump times (τi)i=0,...,n, (τ̃i)i=0,...,n and
(Xt)0≤t≤τn , (X̃t)0≤t≤τ̃n have been constructed.
(a) Define τn+1 through

τn+1 = inf
{
t > τn :

∫ t

0

Λ(φs(Xτn)) ds > θn

}

and define Xt via

Xt = φt−τn(Xτn) for all τn < t < τn+1

Xτn+1
= γ(ξn, φτn+1−τn(Xτn))

for all τn < t ≤ τn+1.
(b) Use an ODE solver satisfying our assumption (8) to construct for

h = h⋆

(x̃(t), ỹ(t)) = ψ̃t(z̃n) , 0 = t̃0(z̃n) < t̃1(z̃n) < . . .

for the initial value z̃n = (X̃τn , 0), recall (12) for the notation used.
Let N ∈ N be

N = inf{k ∈ N : ỹ(t̃k+1) > θn}
and use the dense output of the ODE solver to determine a value
t̃N ≤ ∆̃n < t̃N+1 such that

|ỹ(∆̃n)− θn| ≤ ε⋆ .

Then set
τ̃n+1 = τ̃n + ∆̃n

and define X̃t via

X̃t = x̃(t− τ̃n) for all τ̃n < t < τ̃n+1

X̃τ̃n+1 = γ(ξn, x̃(∆̃n))

for all τ̃n < t ≤ τ̃n+1.
3. Repeatedly applying step 2 the processes Xt and X̃t can be defined recur-

sively until both are defined on an interval containing [0, T ]. Then restrict
t to [0, T ] to obtain two paths (Xt)t∈[0,T ], (X̃t)t∈[0,T ] in D([0, T ],Rd).

8



3.3. A priori estimates
For any random input (θn)n∈N, (ξn)n∈N, and any initial value X0 = X̃0 ∈ Rd

Algorithm 3.1 produces a pair of paths (Xt, X̃t) and a sequence of jump times
(τn, τ̃n)n∈N. Our standing assumption on the ODE solver used to produce the
numerical approximation is that it satisfies the truncation error estimate given
in (8).

Using the notation as in Algorithm 3.1 we define the time change map

λ(t̃) = τn+1
t̃− τ̃n

τ̃n+1 − τ̃n
+ τn

τ̃n+1 − t̃

τ̃n+1 − τ̃n
for all τ̃n ≤ t̃ ≤ τ̃n+1 , (13)

which maps [τ̃n, τ̃n+1] bijectively onto [τn, τn+1] for all n ∈ N (or rather for all
n for which Algorithm 3.1 produces τn and τ̃n).

Lemma 3.2 (Single step a priori error estimate). Suppose that 0 < Λ− ≤ Λ(x)
for all x, and suppose that Λ is globally Lipschitz with Lipschitz constant LΛ.
Further, suppose that v is globally Lipschitz with Lipschitz constant Lv, and
suppose also that ∥ γ(ξ, x)− γ(ξ, x′) ∥ ≤ Lγ ∥x− x′ ∥ for all x, x′ and all ξ.
Given the values of τn, τ̃n, Xτn , X̃τ̃n , h⋆, ε⋆ it follows that

|τn+1 − τn − τ̃n+1 + τ̃n| ≤
1

Λ−
ε⋆ +

1

Λ−
e(τ̃n+1−τ̃n)A1

wwwXτn − X̃τ̃n

www

+
A2

Λ−
(τ̃n+1 − τ̃n) e

(τ̃n+1−τ̃n)A3×

× ∥w(Xτn , 0) ∥ (1∨∥w(Xτn , 0) ∥q)hp⋆
and

1

1∨Lγ
sup

τ̃n≤t̃≤τ̃n+1

wwwXλ(t̃) − X̃t̃

www ≤ |eLv (τn+1−τn) − eLv (τ̃n+1−τ̃n)|
Lv

∥ v(Xτn) ∥

+ e(τ̃n+1−τ̃n)A1

wwwXτn − X̃τ̃n

www

+A2 (τ̃n+1 − τ̃n) e
(τ̃n+1−τ̃n)A3×

× ∥w(Xτn , 0) ∥ (1∨∥w(Xτn , 0) ∥q)hp⋆ .

Proof. Recall that X̃t is constructed by numerically approximating the initial
value problem ż = w(z) initial value z(τ̃n) = (X̃τ̃n , 0), call the resulting nu-
merical approximation z̃(t) for all t ≥ τ̃n (and not just for t ≤ T ), and then
restricting t to some appropriate time interval. The process Xt is chosen as the
exact solution to the same differential equation, except with initial data (Xτn , 0),
restricted to some appropriately chosen time interval. Denote the solution valid
for all t by simply z(t). By assumption on the ODE solver used to produce the
numerical approximation satisfies the truncation error estimate given in (8)

∥ z(t+ τn)− z̃(t+ τ̃n) ∥ ≤ et A1 ∥ z(τn)− z̃(τ̃n) ∥
+A2 t e

t A3 ∥w(z(τn)) ∥ (1∨∥w(z(τn)) ∥q)hp⋆

9



for all t ≥ 0. Since ∥ z(τn)− z̃(τ̃n) ∥ =
wwwXτn − X̃τ̃n

www it follows that

|y(τn+1)− y(τ̃n+1 − τ̃n + τn)| ≤ |θn − ỹ(τ̃n+1)|+ |ỹ(τ̃n+1)− y(τ̃n+1 − τ̃n + τn)|
≤ ε⋆ + e(τ̃n+1−τ̃n)A1

wwwXτn − X̃τ̃n

www

+A2 (τ̃n+1 − τ̃n) e
(τ̃n+1−τ̃n)A3×

× ∥w(Xτn , 0) ∥ (1∨∥w(Xτn , 0) ∥q)hp⋆ .

From the uniform lower bound on Λ it follows that

|τn+1 − τn − τ̃n+1 + τ̃n| ≤
1

Λ−
|y(τn+1)− y(τ̃n+1 − τ̃n + τn)| ,

which thus proves the claimed bound on |τn+1 − τn − τ̃n+1 + τ̃n|.
Similarly, by assumed bound on the truncation error

∥x(t+ τn)− x̃(t+ τ̃n) ∥ ≤ et A1

wwwXτn − X̃τ̃n

www
+A2 t e

t A3 ∥w(Xτn , 0) ∥ (1∨∥w(Xτn , 0) ∥q)hp⋆

for all t ≥ 0. Hence
wwx(λ(t̃))− x̃(t̃)

ww ≤
wwx(λ(t̃))− x(t̃− τ̃n + τn)

ww
+

wwx(t̃− τ̃n + τn)− x̃(t̃− τ̃n + τ̃n)
ww

≤
wwx(λ(t̃))− x(t̃− τ̃n + τn)

ww+ e(τ̃n+1−τ̃n)A1

wwwXτn − X̃τ̃n

www

+A2 (τ̃n+1 − τ̃n) e
(τ̃n+1−τ̃n)A3×

× ∥w(Xτn , 0) ∥ (1∨∥w(Xτn , 0) ∥q)hp⋆

for all τ̃n ≤ t̃ ≤ τ̃n+1, where

λ(t̃) = τn+1
t̃− τ̃n

τ̃n+1 − τ̃n
+ τn

τ̃n+1 − t̃

τ̃n+1 − τ̃n
.

By a standard Gronwall estimate, similar to what was done in the proof of
Lemma 2.2, it follows that

wwx(λ(t̃))− x(t̃− τ̃n + τn)
ww =

wwx(λ(t̃)− τn + τn)− x(t̃− τ̃n + τn)
ww

≤ |eLv (λ(t̃)−τn) − eLv (t̃−τ̃n)|
Lv

∥ v(x(τn)) ∥

=
|eLv

τn+1−τn
τ̃n+1−τ̃n

(t̃−τ̃n) − eLv (t̃−τ̃n)|
Lv

∥ v(Xτn) ∥

≤ |eLv (τn+1−τn) − eLv (τ̃n+1−τ̃n)|
Lv

∥ v(Xτn) ∥
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for all τ̃n ≤ t̃ ≤ τ̃n+1, and hence

wwx(λ(t̃))− x̃(t̃)
ww ≤ |eLv (τn+1−τn) − eLv (τ̃n+1−τ̃n)|

Lv
∥ v(Xτn) ∥

+ e(τ̃n+1−τ̃n)A1

wwwXτn − X̃τ̃n

www

+A2 (τ̃n+1 − τ̃n) e
(τ̃n+1−τ̃n)A3×

× ∥w(Xτn , 0) ∥ (1∨∥w(Xτn , 0) ∥q)hp⋆

for all τ̃n ≤ t̃ ≤ τ̃n+1. In particular, this estimate applies to
wwwXτ−

n+1
− X̃τ̃−

n+1

www = ∥x(λ(τ̃n+1))− x̃(τ̃n+1) ∥ .

The assumed uniform Lipschitz continuity of γ implies
wwwXτn+1 − X̃τ̃n+1

www ≤ Lγ

wwwXτ−
n+1

− X̃τ̃−
n+1

www

which can be combined with the previous estimate to obtain the claimed esti-
mate on

wwwXλ(t̃) − X̃t̃

www.

Assuming a uniform upper bound on Λ, implies that the number of jumps of
Xt for 0 ≤ t ≤ T has a tail distribution that can be estimated by an exponentially
small (in the number of jumps) term, which is uniform in the choice of the initial
value X0. In particular, the number of jumps is almost surely finite. Therefore
iterating the estimate provided in Lemma 3.2 for as many times as there are
jumps we readily obtain the following

Theorem 3.3 (Almost sure convergence of O(Hp)). Suppose the same as-
sumptions as in Lemma 3.2 and suppose also that supx ∥w(x, 0) ∥ ≤ M for
some M ≥ 1. If ε⋆ = O(hp⋆), then Algorithm 3.1 constructs a coupling (Xt, X̃t)
such that ϱP (Xt, X̃t) = O(Hp) holds almost surely and for all initial values
X0 = X̃0 ∈ Rd. The order of convergence is uniform in the number of jumps of
Xt within [0, T ].

A slightly more careful analysis of the preceding argument provides an esti-
mate of the average of ϱS .

Theorem 3.4 (Convergence in average). Under the same assumptions as in
Theorem 3.3 it follows that for every j ∈ N

E ϱS(X, X̃) ≤ (1 + T )
(T M)j+1

(j + 1)!
+O(Hp) .

Proof. Fix the initial condition X0 = X̃0 ∈ Rd. Notice that the estimates
provided by Lemma 3.2 are naturally set up to estimate |τn+1 − τ̃n+1| and

11



supτ̃n≤t̃≤τ̃n+1

wwwXλ(t̃) − X̃t̃

www in terms of the corresponding quantities with n

replaced by n− 1. Let N denote the number of jumps of Xt in [0, T ]. Then

Pr [N > j] ≤ Pr
[
N̂ > j

]

where N̂ is the number of jumps within [0, T ] of a Poisson process with rate M .
And since N̂ has a Poisson distribution with parameter T M it follows that

Pr [N > j] ≤ e−T M
∞∑

k=j+1

(T M)k

k!
≤ (T M)j+1

(j + 1)!
.

Since the worst case of the right-hand-side in the definition of ϱS as in (10)
is given by T + 1 we obtain the following estimate

E ϱS(X, X̃) = E ϱS(X, X̃)1{N > j}+ E ϱS(X, X̃)1{N ≤ j}
≤ (1 + T ) Pr [E1 + . . .+ Ej ≤M T ] + E ϱS(X, X̃)1{N ≤ j}

≤ (1 + T )
(T M)j+1

(j + 1)!
+ E ϱS(X, X̃)1{N ≤ j} .

By Theorem 3.3 we have ϱS(X, X̃) = O(Hp) uniformly as long as N ≤ j, which
completes the proof.

4. Conclusions

As should be clear from the strategy of proof for Theorem 3.3 and Theo-
rem 3.4 the uniform upper bounds for Λ and v are just made to simplify the
arguments. One can allow for linear growth bounds (which are already implied
by the global Lipschitz assumption imposed on w) under bounds on the q–th
moment of the transition kernel Γ in order to control the terms involving the q–
th power of ∥w(Xt, 0) ∥, which is necessary when iterating the a priori estimate
provided by Lemma 3.2.

Similarly, instead of fixing (i.e. conditioning on) the initial condition X0 =
X̃0 ∈ Rd in Theorem 3.3 and Theorem 3.4 one can allow for a distribution
of initial data, which would naturally lead to an estimate of the Wasserstein-
Kantorovich distance of X and X̃ when using the cost function ϱS .

Finally, as is clear from the interlacing construction of X, our Algorithm 3.1
combines an efficient numerical ODE solver with the least number of random
variables necessary to construct a coupling of Xt and X̃t. In this sense the
proposed algorithm is optimal.
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