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a b s t r a c t

We consider the inverse problem of determining an unknown vectorial source current
distribution associated with the homogeneous Maxwell system. We propose a novel
non-iterative reconstruction method for solving the aforementioned inverse problem
from multi-frequency far-field measurements. The method is based on recovering the
Fourier coefficients of the unknown source. A key ingredient of the method is to establish
the relationship between the Fourier coefficients and the multi-frequency far-field data.
Uniqueness and stability results are established for the proposed reconstruction method.
Numerical experiments are presented to illustrate the effectiveness and efficiency of the
method.
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1. Introduction

The inverse source problem is concerned with the reconstruction of an unknown/inaccessible active source from the
measurement of the radiating field induced by the source. The inverse source problem arises in many important applica-
tions including acoustic tomography [1–4], medical imaging [5–7] and detection of pollution for the environment [8]. In
this paper, we are mainly concerned with the inverse source problem for wave propagation in the time-harmonic regime.
In the last decades, many theoretical and numerical studies have been done in dealing with the inverse source problem for
wave scattering. The uniqueness and stability results can be found in [9–11]. Several numerical reconstruction methods
have also been proposed and developed in the literature. For a fixed frequency, we refer the reader to [5,12,13]. However,
with only one single frequency, the inverse source problem lacks of stability and it leads to severe ill-posedness. In order
to improve the resolution, multi-frequency measurements should be employed in the reconstruction [9,14,15].

The goal of this paper is to develop a novel numerical scheme for reconstructing an electric current source associated
with the time-harmonic Maxwell system. Due to the existence of non-radiating sources [16,17], the vectorial current
sources cannot be uniquely determined from surface measurements. Albanese and Monk [18] showed that surface currents
and dipole sources have a unique solution, but it is not valid for volume currents. Valdivia [15] showed that the volume
currents could be uniquely identified if the current density is divergence free. Following the spirit of our earlier work [19–
21] by three of the authors of using Fourier method for inverse acoustic source problem, we develop a Fourier method for
the reconstruction of a volume current associated with the time-harmonic Maxwell system. The extension from the scalar
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Helmholtz equation to the vectorial Maxwell system involves much subtle and technical analysis. First, we establish the
one-to-one correspondence between the Fourier coefficients and the far-field data, so that the Fourier coefficients can be
directly calculated. Second, the proposed method is stable and robust to measurement noise. This is rigorously verified
by establishing the corresponding stability estimates. Finally, compared to near-field Fourier method, our method is easy
to implement with cheaper computational costs.

The rest of the paper is organized as follows. Section 2 describes the mathematical setup of the inverse source problem
of our study. The theoretical uniqueness and stability results of proposed Fourier method are given in Sections 3 and 4,
respectively. Section 5 presents several numerical examples to illustrate the effectiveness and efficiency of the proposed
method.

2. Problem formulation

Consider the following time-harmonic Maxwell system in R3,{
∇ × E − iωµ0H = 0,
∇ × H + iωε0E = J ,

(2.1)

with the Silver–Müller radiation condition

lim
|x|→+∞

|x|
(√

µ0H × x̂ −
√

ε0E
)

= 0,

where x̂ = x/|x| and x = (x1, x2, x3)⊤ ∈ R3. Throughout the rest of the paper, we use non-bold and bold fonts to
signify scalar and vectorial quantities, respectively. In (2.1), E denotes the electric field, H denotes the magnetic field, J
is an electric current density, ω denotes the frequency, ε0 denotes the electric permittivity and µ0 denotes the magnetic
permeability of the isotropic homogeneous background medium. By eliminating H or E in (2.1), we obtain

∇ × ∇ × E − k2E = iωµ0J ,

and

∇ × ∇ × H − k2H = ∇ × J ,

where k := ω
√

µ0ε0. With the help of the vectorial Green function [22], the radiated field can be written as

E(x) = iωµ0

(
I +

1
k2

∇∇·

)∫
R3

Φ(x, y) J (y) dy, (2.2)

and

H(x) = ∇ ×

∫
R3

Φ(x, y) J (y) dy, (2.3)

respectively, where I is the 3 × 3 identity matrix and

Φ(x, y) =
eik|x−y|

4π |x − y|
, x ̸= y,

is the fundamental solution to the Helmholtz equation. The radiating fields E,H to the Maxwell system have the following
asymptotic expansion [23]

E(x) =
eik|x|

|x|

{
E∞(x̂) + O

(
1
|x|

)}
, |x| → +∞,

H(x) =
eik|x|

|x|

{
H∞(x̂) + O

(
1
|x|

)}
, |x| → +∞,

and by using the integral representations (2.2) and (2.3), we have

E∞(x̂) =
iωµ0

4π

(
I − x̂x̂⊤

) ∫
R3

e−ikx̂·y J (y) dy, (2.4)

H∞(x̂) =
ik
4π

x̂ ×

∫
R3

e−ikx̂·y J (y) dy. (2.5)

Let ν be the unit outward normal of the unit sphere S2. Define the space of surface tangential vector fields in L2(S2) by

L2t (S
2) :=

{
h ∈

(
L2(S2)

)3
| h · ν = 0 on S2

}
,

then the electric far field pattern and magnetic far field pattern satisfy E∞(x̂) ∈ L2t (S
2) and H∞(x̂) ∈ L2t (S

2), respectively.
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Fig. 1. The schematic illustration of the inverse electromagnetic source problem by the far-field measurements.

In what follows, we always assume that the electromagnetic source is a volume current that is supported in D.
As mentioned earlier, there exist non-radiating sources that produce no radiating field outside D. Hence, without any
a prior knowledge, one can only recover the radiating part of the current density distribution. In order to formulate
the uniqueness result, we assume that the current density distribution J only consists of radiating source, which is
independent of the wavenumber k and of the form

J ∈
(
L2(R3)

)3
, supp J ⊂ D,

where D is a cube. Furthermore, the current density distribution J satisfies the transverse electric (TE) and transverse
magnetic (TM) decomposition; that is, the source can be expressed in the form

J = pf + p × ∇g, (2.6)

where f ∈ L2(D) and g ∈ H1(D). We also refer to [24] for more details on the TE/TM decomposition. Here, p is the
polarization direction which is assumed to be known and yields the following admissible set

P :=
{
p ∈ S2

| p × l ̸= 0, l ∈ Z3
\{0}

}
. (2.7)

Fig. 1 provides a schematic illustration of the geometric setting of the measurements. With the above discussion, the
inverse source problem of the current study can be stated as follows:

Inverse Problem. Given a fixed polarization direction p ∈ P and a finite number of wavenumbers {k}, we intend to recover
the electromagnetic source J defined in (2.6) from the electric far-field data {E∞(x̂k; k, p)} or the magnetic far-field data
{H∞(x̂k; k, p)}, where x̂k ∈ S2 depends on the wavenumber k.

3. Uniqueness

Prior to our discussion, we introduce some notations and relevant Sobolev spaces. Without loss of generality, we let

D =

(
−

a
2
,

a
2

)3
, a ∈ R+.

Introduce the Fourier basis functions that are defined by

φl(x) = exp
(
i
2π
a

l · x
)

, l ∈ Z3, x ∈ R3. (3.1)

By using the Fourier series expansion, the scalar functions f ∈ L2(D) and g ∈ H1(D) can be written as

f =

∑
l∈Z3

f̂l φl, g =

∑
l∈Z3\{0}

ĝl φl,

where the Fourier coefficients are given by

f̂l =
1
a3

∫
D
f (x)φl(x) dx, (3.2)

ĝl =
1
a3

∫
D
g(x)φl(x) dx, (3.3)
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where the overbar stands for the complex conjugate in this paper. Therefore the Fourier expansion of the current density
J is

J = pf + p × ∇g = p
∑
l∈Z3

f̂l φl +
2π i
a

∑
l∈Z3\{0}

(p × l) ĝl φl . (3.4)

The proposed reconstruction scheme in the current article is based on determining the Fourier coefficients f̂l and ĝl of
the current density by using the corresponding electric or magnetic far-field data. For the subsequent use, we introduce
the Sobolev spaces with σ > 0

(Hσ
p (D))

3
:=

{
pf + p × ∇g | f ∈ Hσ (D), g ∈ Hσ+1(D), p ∈ S2} ,

equipped with the norm

∥G∥p,σ =

⎛⎝∑
l∈Z3

(
1 + |l|2

)σ
|f̂l |

2
+

4π2

a2
∑

l∈Z3\{0}

(
1 + |l|2

)σ
|p × l|2|ĝl |

2

⎞⎠1/2

,

where G ∈ (Hσ
p (D))

3 has the Fourier expansion of the form

G = p
∑
l∈Z3

f̂l φl +
2π i
a

∑
l∈Z3\{0}

(p × l) ĝl φl .

In addition, the wavenumber cannot be zero in (2.4) and (2.5). Following [20], we introduce the following definition of
wavenumbers.

Definition 3.1 (Admissible Wavenumbers). Let λ be a sufficiently small positive constant and the admissible wavenumbers
can be defined by

kl :=

⎧⎪⎨⎪⎩
2π
a

|l|, l ∈ Z3
\{0},

2π
a

λ, l = 0.
(3.5)

Correspondingly, the observation direction is given by

x̂l :=

⎧⎨⎩
l
|l|

, l ∈ Z3
\{0},

(1, 0, 0), l = 0.
(3.6)

By virtue of Definition 3.1, the Fourier basis functions defined in (3.1) could be written as

φl(x) = exp
(
ikl l̂ · x

)
, l ∈ Z3, x ∈ R3.

Next we state the uniqueness result.

Theorem 3.1. Let kl and x̂l be defined in (3.5) and (3.6), then the Fourier coefficients {f̂l} and {ĝl} in (3.2) and (3.3) could
be uniquely determined by {E∞(x̂l; kl, p)} or {H∞(x̂l; kl, p)}, where l ∈ Z3 and p ∈ P is a fixed polarization direction.

Proof. For simplicity, we write E∞(x̂l; kl) and H∞(x̂l; kl) for E∞(x̂l; kl, p) and H∞(x̂l; kl, p) with a fixed polarization
direction p ∈ P. Let J be the electromagnetic source that produces the electric far-field data {E∞(x̂l; kl)}l∈Z3 and the
magnetic far-field data {H∞(x̂l; kl)}l∈Z3 on S2.

First, we consider the recovery of J by the magnetic far-field data. For every l ∈ Z3
\{0}, using (2.5) and (3.4), we have

H∞(x̂l; kl)

=
ikl
4π

x̂l ×

∫
D

⎛⎝pf̂0e−ikl x̂l ·y +

∑
l̃∈Z3\{0}

(
pf̂l̃ +

2π i
a

(p × l̃)ĝl̃

)
ei(kl̃

ˆ̃l−kl x̂l )·y

⎞⎠ dy

=
ikla3

4π

(
x̂l × pf̂l +

2π i
a

x̂l × (p × l)ĝl
)

.

(3.7)

From (2.7) and (3.6), we see that {x̂l, p× x̂l, x̂l × (p× x̂l)} forms an orthogonal basis of R3. Multiplying x̂l × p on the both
sides of (3.7), and using the orthogonality, we obtain

f̂l =
4π x̂l × p · H∞(x̂l; kl)

ikla3|x̂l × p|2
, (3.8)
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where |·| denotes the ℓ2 norm. Similarly, multiplying x̂l × (p × l) on the both sides of (3.7), we have

ĝl = −
2x̂l × (p × l) · H∞(x̂l; kl)

kla2|x̂l × (p × l)|2
. (3.9)

For l = 0, we have
H∞(x̂0; k0)

=
ik0
4π

x̂0 ×

∫
D

⎛⎝pf̂0e−ik0 x̂0·y
+

∑
l∈Z3\{0}

(
pf̂l +

2π i
a

(p × l)ĝl
)
ei(kl l̂−k0 x̂0)·y

⎞⎠ dy.

Multiplying x̂0 × p on the both sides of the last equation, and also using the orthogonality, we obtain

x̂0 × p · H∞(x̂0; k0) =
ik0
4π

|x̂0 × p|2
⎛⎝a3 f̂0

sin λπ

λπ
+

∑
l∈Z3\{0}

f̂l

∫
D
ei(kl l̂−k0 x̂0)·y dy

⎞⎠ .

Thus,

f̂0 =
λπ

a3 sin λπ

⎛⎝4π x̂0 × p · H∞(x̂0; k0)

ik0|x̂0 × p|2
−

∑
l∈Z3\{0}

f̂l

∫
D
ei(kl l̂−k0 x̂0)·y dy

⎞⎠ . (3.10)

Next, we consider the recovery of J by the electric far-field data. For every l ∈ Z3
\{0}, using (2.4) and (3.4), we have

E∞(x̂l; kl) =
iωµ0a3

4π

(
I − x̂l x̂

⊤

l

)(
pf̂l +

2π i
a

(p × l)ĝl
)

. (3.11)

Through straightforward calculations, one can verify that

x̂l × (x̂l × A) = −

(
I − x̂l x̂

⊤

l

)
A, ∀A ∈ R3.

Combining the last two equations, one can show that

E∞(x̂l; kl) =
iωµ0a3

4π

(
−x̂l × (x̂l × p)f̂l −

2π i
a

x̂l × (x̂l × (p × l))ĝl
)

. (3.12)

Multiplying p on the both sides of (3.12), and using the orthogonality, we obtain
p · E∞(x̂l; kl)

=
iωµ0a3

4π

(
−p · x̂l × (x̂l × p)f̂l −

2π i
a

p · x̂l × (x̂l × (p × l))ĝl
)

=
iωµ0a3

4π

(
(x̂l × p) · (x̂l × p)f̂l +

2π i
a

(x̂l × p) · (x̂l × (p × l))ĝl
)

=
iωµ0a3

4π

⏐⏐x̂l × p
⏐⏐2 f̂l .

Thus,

f̂l =
4πp · E∞(x̂l; kl)

iωµ0a3|x̂l × p|2
. (3.13)

Similarly, multiplying p × l on the both sides of (3.12), we obtain

ĝl = −
2(p × l) · E∞(x̂l; kl)

ωµ0a2|x̂l × (p × l)|2
. (3.14)

For l = 0, we have
E∞(x̂0; k0)

=
iωµ0

4π

(
I − x̂0x̂

⊤

0

) ∫
D

⎛⎝pf̂0e−ik0 x̂0·y
+

∑
l∈Z3\{0}

(
pf̂l +

2π i
a

(p × l)ĝl
)
ei(kl l̂−k0 x̂0)·y

⎞⎠ dy.

Multiplying p on the both sides of the last equation, and also using the orthogonality, we obtain

p · E∞(x̂0; k0) =
iωµ0

4π
|x̂0 × p|2

⎛⎝a3 f̂0
sin λπ

λπ
+

∑
l∈Z3\{0}

f̂l

∫
D
ei(kl l̂−k0 x̂0)·y dy

⎞⎠ .
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Thus,

f̂0 =
λπ

a3 sin λπ

⎛⎝4πp · E∞(x̂0; k0)

iωµ0|x̂0 × p|2
−

∑
l∈Z3\{0}

f̂l

∫
D
ei(kl l̂−k0 x̂0)·y dy

⎞⎠ .

The proof is complete. □

In practical computations, we have to truncate the infinite series by a finite order N ∈ N to approximate J by

JN = pf̂0 +

∑
1≤|l|∞≤N

(
pf̂l +

2π i
a

(p × l) ĝl
)

φl, (3.15)

where f̂0 could be represented by magnetic far-field

f̂0 ≈
λπ

a3 sin λπ

⎛⎝4π x̂0 × p · H∞(x̂0; k0)

ik0|x̂0 × p|2
−

∑
1≤|l|∞≤N

f̂l

∫
D
ei(kl l̂−k0 x̂0)·y dy

⎞⎠ , (3.16)

or electric far-field

f̂0 ≈
λπ

a3 sin λπ

⎛⎝4πp · E∞(x̂0; k0)

iωµ0|x̂0 × p|2
−

∑
1≤|l|∞≤N

f̂l

∫
D
ei(kl l̂−k0 x̂0)·y dy

⎞⎠ . (3.17)

4. Stability

In this section, we derive the stability estimates of recovering the Fourier coefficients of the electric current source by
using the far-field data. We only consider the stability of using the magnetic far-field data, and the case with the electric
far-field data can be treated in a similar manner. In what follows, we introduce H δ

∞
(x̂l; kl) such that

|H δ
∞
(x̂l; kl) − H∞(x̂l; kl)| ≤ δ|H∞(x̂l; kl)|,

where |·| denotes the ℓ2 norm and δ > 0. We first present two auxiliary results.

Theorem 4.1. For l ∈ Z3, |l|∞ ≤ N, we have

|f̂ δ
l − f̂l | ≤ C1δ, 1 ≤ |l|∞ ≤ N, (4.1)

|ĝδ
l − ĝl | ≤ C2δ, 1 ≤ |l|∞ ≤ N, (4.2)

|f̂ δ
0 − f̂0| ≤ C3δ + C4λNδ + C5

λ
√
N

, (4.3)

where constants C1, C2, C3, C4 and C5 depend on f , g, a and λ.

Proof. For l ∈ Z3
\{0}, from Schwarz inequality and (3.8), we have

|f̂ δ
l − f̂l | =

⏐⏐⏐⏐ 4π x̂l × p

ikla3|x̂l × p|2
·
(
H δ

∞
(x̂l; kl) − H∞(x̂l; kl)

)⏐⏐⏐⏐
≤

4π
ikla3|x̂l × p|

δ
⏐⏐H∞(x̂l; kl)

⏐⏐
≤

δ

a3|x̂l × p|

⏐⏐⏐⏐x̂ ×

∫
D
e−ikx̂l ·y J (y) dy

⏐⏐⏐⏐
≤

δ

a3|x̂l × p|
|x̂ × p|

⏐⏐⏐⏐∫
D
e−ikx̂l ·y (f (y) + |∇g(y)|) dy

⏐⏐⏐⏐
≤

δ

a3

(∫
D

⏐⏐⏐e−ikx̂l ·y
⏐⏐⏐2 dy

)1/2 (
∥f ∥L2(D) + ∥∇g∥

(L2(D))
3

)
≤ C1δ

where C1 = (∥f ∥L2(D) + ∥g∥H1(D))/a3/2 and it leads to estimate (4.1).
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Correspondingly, from (3.9), we have

|ĝδ
l − ĝl | =

⏐⏐⏐⏐− 2x̂l × (p × l)

kla2|x̂l × (p × l)|2
·
(
H δ

∞
(x̂l; kl) − H∞(x̂l; kl)

)⏐⏐⏐⏐
≤

2
kla2|x̂l × (p × l)|

δ
⏐⏐H∞(x̂l; kl)

⏐⏐
≤

δ

2π |l|a2|x̂l × p|

⏐⏐⏐⏐x̂ ×

∫
D
e−ikx̂l ·y J (y) dy

⏐⏐⏐⏐
≤

∥f ∥L2(D) + ∥g∥H1(D)

2π |l|a1/2
δ

≤ C2δ,

where C2 = (∥f ∥L2(D) + ∥g∥H1(D))/(2πa1/2) and it verifies (4.2).
For l = {0}, from Schwarz inequality and (3.16), we have

|f̂ δ
0 − f̂0| ≤

λπ

a3 sin λπ

⏐⏐⏐⏐ 4π x̂0 × p

ik0|x̂0 × p|2
·
(
H δ

∞
(x̂0; k0) − H∞(x̂0; k0)

)⏐⏐⏐⏐
+

λπ

a3 sin λπ

∑
1≤|l|∞≤N

⏐⏐⏐⏐(f̂ δ
l − f̂l

) ∫
D
ei(kl l̂−k0 x̂0)·y dy

⏐⏐⏐⏐  
I1

+
λπ

a3 sin λπ

∑
|l|∞≥N

⏐⏐⏐⏐f̂l ∫
D
ei(kl l̂−k0 x̂0)·y dy

⏐⏐⏐⏐  
I2

≜ C3δ + I1 + I2.

where C3 = λπ (∥f ∥L2(D) + ∥g∥H1(D))/(a
9/2 sin λπ ).

Define l = (l1, l2, l3) ∈ Z3, from (3.5) and (3.6), we find that

∫
D
ei(kl l̂−k0 x̂0)·y dy =

⎧⎨⎩ a3 sin (l1 − λ)π
(l1 − λ)π

, |l| = |l1|,

0, |l| ̸= |l1|,

which together with (4.1) gives

I1 ≤
λπ

a3 sin λπ

∑
1≤|l|∞≤N

⏐⏐⏐f̂ δ
l − f̂l

⏐⏐⏐ ⏐⏐⏐⏐a3 sin(l1 − λ)π
(l1 − λ)π

⏐⏐⏐⏐
≤

λπ

sin λπ
2

N∑
j=1

(
C1δ

sin λπ

(j − λ)π

)
≤C4λNδ,

where C4 = 2C1. On the other hand, one can deduce that

I2 ≤
λπ

a3 sin λπ

∑
|l|∞>N

|f̂l |
⏐⏐⏐⏐a3 sin(l1 − λ)π

(l1 − λ)π

⏐⏐⏐⏐
≤

λπ

sin λπ

⎛⎝ ∑
|l|∞>N

|f̂l |
2

⎞⎠1/2 ⎛⎝ ∑
|l|∞>N

⏐⏐⏐⏐ sin(l1 − λ)π
(l1 − λ)π

⏐⏐⏐⏐2
⎞⎠1/2

≤
λπ

sin λπ

1
a3

∥f ∥L2(D)

⎛⎝2
∞∑

j=N+1

⏐⏐⏐⏐ sin λπ

(j − λ)π

⏐⏐⏐⏐2
⎞⎠1/2

≤
2λ

a3
√
N

∥f ∥L2(D)

=C5
λ

√
N

,
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where C5 = 2∥f ∥L2(D)/a3. Finally, we obtain

|f̂ δ
0 − f̂0| ≤ C3δ + C4λNδ + C5

λ
√
N

.

The proof is complete. □

Lemma 4.1 ([19]). Let J be a vector function in (Hσ
p (D))

3 and 0 ≤ µ ≤ σ , then the following estimate holds

∥JN − J∥p,µ ≤ Nµ−σ
∥J∥p,σ , 0 ≤ µ ≤ σ .

The stability result is contained in the following theorem.

Theorem 4.2. Let J ∈ (Hσ
p (D))

3 and 0 ≤ µ ≤ σ , then the following estimate holds

∥J δ
N − J∥p,µ ≤ C6δ + C6λNδ + C6

λ
√
N

+ C7Nµ+3/2δ + C8Nµ+5/2δ + Nµ−σ
∥J∥p,σ ,

where C6, C7, C8 depend only on f , g, a and λ.

Proof. It is readily seen that

∥J δ
N − JN∥p,µ

≤

⎛⎝ N∑
|l|∞=0

(
1 + |l|2

)µ
|f̂ δ
l − f̂l |

2
+

4π2

a2

N∑
|l|∞=1

(
1 + |l|2

)µ
|p × l|2|ĝδ

l − ĝl |
2

⎞⎠1/2

≤|f̂ δ
0 − f̂0| +

⎛⎝ N∑
|l|∞=1

(
1 + |l|2

)µ
|f̂ δ
l − f̂l |

2

⎞⎠1/2

+

⎛⎝4π2

a2

N∑
|l|∞=1

(
1 + |l|2

)µ
|p × l|2|ĝδ

l − ĝl |
2

⎞⎠1/2

≤

(
C3δ + C4λNδ + C5

λ
√
N

)
+ C1δ

⎛⎝ N∑
|l|∞=1

(
1 + |l|2

)µ

⎞⎠1/2

+
2π
a

C2δ

⎛⎝ N∑
|l|∞=1

(
1 + |l|2

)µ
|l|2

⎞⎠1/2

≤C6δ + C6λNδ + C6
λ

√
N

+ C7Nµ+3/2δ + C8Nµ+5/2δ,

(4.4)

where C6 = max {C3, C4, C5}. Hence, from (4.4) and Lemma 4.1, we obtain

∥J δ
N − J∥p,µ ≤ C6δ + C6λNδ + C6

λ
√
N

+ C7Nµ+3/2δ + C8Nµ+5/2δ + Nµ−σ
∥J∥p,σ ,

which completes the proof. □

Remark 4.1. If one takes N = τδ
−

1
σ+5/2 with τ ≥ 1 in Theorem 4.2 , we have

∥J δ
N − J∥p,µ ≤C6δ + C6λτδ

σ+3/2
σ+5/2 +

C6λ
√

τ
δ

1
2σ+5 + C7τ

µ+3/2δ
1+σ−µ
σ+5/2

+ C8τ
µ+5/2δ

σ−µ
σ+5/2 + τµ−σ δ

σ−µ
σ+5/2 ∥J∥p,σ , 0 ≤ µ ≤ σ .

Remark 4.2. Since only a finite number of wavenumbers are available in reality, the reconstruction of J should be
understood as finding an approximation JN . Moreover, it can be seen from Theorem 4.2 that the truncation N plays the
role of regularization in some sense. However, the optimal choice of this truncation N is complicated and currently open.
In this regard, we would like to point out that, although we have established the uniqueness in Theorem 3.1 and stability
in Theorem 4.2, the original inverse source problem is still ill-posed.
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5. Numerical examples

In this section, we carry out a series of numerical experiments to illustrate that the proposed Fourier reconstruction
method is effective and efficient.

First, we briefly describe some parameter settings of our numerical experiments. Let D = [−0.5, 0.5]3, namely, a = 1.
Assume that the wave propagates in the vacuum space, where µ0 = 4π × 10−7 and ε0 = 8.8541 × 10−12. Synthetic
electromagnetic far-field data are generated by solving the direct problem of (2.1) by using the quadratic finite elements
on a truncated spherical domain enclosed by a PML layer. The mesh of the forward solver is successively refined till the
relative error of the successive measured electromagnetic wave data is below 0.1%. To show the stability of our proposed
method, we also add some random noise to the synthetic far-field data by considering

Eδ
∞

:=
(
Eδ

∞,1, Eδ
∞,2, Eδ

∞,3

)⊤
, H δ

∞
:=

(
Hδ

∞,1, Hδ
∞,2, Hδ

∞,3

)⊤
,

where

Eδ
∞,i = E∞,i + δr1|E∞,i|eiπr2 , Hδ

∞
= H∞,i + δr1|H∞,i|eiπr2 , i = 1, 2, 3,

r1 and r2 are two uniform random numbers, both ranging from −1 to 1, and δ > 0 represents the noise level. From
Remark 4.1, the truncation N is given by

N(δ) := [3δ−2/7
] + 1, (5.1)

where [X] denotes the largest integer that is smaller than X + 1.
Next, we specify details of obtaining the artificial multi-frequency electromagnetic far-field data. Let

LN := {l ∈ Z3
| 1 ≤ |l|∞ ≤ N},

then the wavenumber set is given by

KN := {2π |l| : l ∈ LN} ∪ {2πλ}, λ = 10−3,

and the observation directions are given by

XN :=

{
l
|l|

: l ∈ LN

}
∪ {(1, 0, 0)}.

Thus, every wavenumber and observation direction can be denoted by kj ∈ KN and x̂j ∈ XN , respectively, where
j = 1, 2, . . . , (2N+1)3. Correspondingly, the frequency ωj is chosen as ωj = kj/

√
µ0ε0. With the admissible wavenumbers

defined earlier, the artificial electromagnetic far-field data with noise can be written as{(
Eδ

∞
(x̂j; kj, p),H δ

∞
(x̂j; kj, p)

)
: x̂j ∈ XN , kj ∈ KN , j = 1, 2, . . . , (2N + 1)3

}
,

where p is a given polarization direction and it satisfies

PN :=
{
p ∈ S2

| p × l ̸= 0, ∀ l ∈ LN
}
. (5.2)

Finally, we specify details of the numerical inversion via the Fourier method. We reconstruct the electric current source
J (x), x ∈ D by the truncated Fourier expansion J δ

N (x), x ∈ D, where

J = (J1, J2, J3)⊤, J δ
N =

(
J1,N , J2,N , J3,N

)⊤
.

Given the noisy far-field data defined above, if we use the electric far-field data {Eδ
∞
(x̂j; kj, p)}, then the Fourier coefficients

f̂l, ĝl, 1 ≤ |l|∞ ≤ N and f̂0 are computed by (3.13), (3.14) and (3.17), respectively. If we use the magnetic far-field data
{H δ

∞
(x̂j; kj, p)}, then the Fourier coefficients f̂l, ĝl, 1 ≤ |l|∞ ≤ N and f̂0 are computed by (3.8), (3.9) and (3.16), respectively.

Divide the domain D into a mesh with a uniform grid of size 50 × 50 × 50. The approximated Fourier series J δ
N (z) are

computed at the mesh nodes zj, j = 1, 2, . . . , 503 by (3.15). The relative error is defined as

relative error = ∥J − J δ
N∥

(L2(D))
3/∥J∥

(L2(D))
3 .

Unless specified otherwise, we use the magnetic far-field data to reconstruct the electromagnetic source.
Based on the above discussion, we formulate the reconstruction scheme by the Fourier method in Algorithm S as

follows.
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Fig. 2. Contour plots of the exact and reconstructed source function of Example 1 at the plane x3 = 0, where δ = 2%. (a) J1 , (b) J2 , (c) J3 , (d) J1,10 ,
(e) J2,10 , (f) J3,10 .

Table 1
The relative errors of the reconstructions with different noise levels δ.
δ 2% 5% 10% 20%

N(δ) 10 8 6 5
Relative error 0.10% 2.10% 4.26% 8.94%
Time (s) 78.3 40.1 11.9 10.7

Algorithm S: Fourier method for reconstructing the electromagnetic source
Step 1 Choose the parameters λ, N , the wavenumber set KN and observation

direction set XN .
Step 2 For a given p ∈ PN defined in (5.2) , measure the electric far-field data

Eδ
∞
(x̂j; kj, p) or the magnetic far-field data H δ

∞
(x̂j; kj, p) for x̂j ∈ XN and

kj ∈ KN .
Step 3 Compute the Fourier coefficients f̂0, f̂l and ĝl for 1 ≤ |l|∞≤ N .
Step 4 Furthermore, select a sampling mesh Th in D. For each sampling point

zj ∈ Th, calculate the imaging functional JN defined in (3.15), then JN is
the reconstruction of J .

Remark 5.1. The codes in the following numerical experiments are written in MATLAB 2016b and run on a desktop with
Intel Core i7 CPU of 3.40 GHz.

Example 1. In this example, we numerically estimate the stability of the proposed method. We consider the following
smooth source function

J = p × ∇g,

where

p =
1
4

(√
5, −2,

√
7
)

,

g(x1, x2, x3) = 10
(
x21 + x22

)
exp

(
−50

(
x21 + x22 + x23

))
.

Fig. 2 shows the comparison between the exact and the reconstructed source function at the plane x3 = 0 with the
additional noise δ = 2%. We observe that the reconstructions are very close to the exact one. To exhibit the accuracy
quantitatively, we list the relative errors in L2 in Table 1. Meanwhile, Table 1 illustrates that the stability and CPU time
increases as the truncation order N(δ) increases.
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Fig. 3. Iso-surface plots of the exact and the reconstructed vectorial source function of Example 2, where the red color denotes the iso-surface level
being 1.2 and the green color denotes iso-surface level being −0.6. (a) J1 , (b) J2 , (c) J3 , (d) J1,10 , (e) J2,10 , (f) J3,10 . (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Example 2. From (2.4) and (2.5), it is clear that

E∞(−x̂) = −E∞(x̂), H∞(−x̂) = H∞(x̂).

Therefore, for our inverse problem, the measurements of the far-field data could be from an upper hemisphere S2
+
, say

x3 ≥ 0. In this example, we use the electric far-field data from an upper hemisphere S2
+
to recover the source. We aim to

recover a smooth source as follows

J = pf + p × ∇g;

where

p =
1
3

(√
5, −1,

√
3
)

,

f (x1, x2, x3) = 3 exp
(
−80

(
(x1 − 0.15)2 + (x2 − 0.15)2 + x23

))
,

g(x1, x2, x3) = 0.3 exp
(
−40

(
x21 + x22 + x23

))
.

Fig. 3 presents the iso-surface plots of the exact source and the reconstruction with 2% noise , which demonstrate
clearly that our proposed method performs nicely.

Example 3. In this example, we consider a discontinuous source function. For simplicity, the source function is given by

J = pf ,

where

p =
1

√
6

(
1,

√
2,

√
3
)

,

f (x1, x2, x3) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1, if (x1 + 0.25)2 + x22 + x23 ≤ 0.152,

1
2
, if 0.1 ≤ x1 ≤ 0.4, −0.15 ≤ x2 ≤ 0.15, −0.15 ≤ x3 ≤ 0.15,

0, elsewhere.

Fig. 4 shows the contour plots of the exact source and the reconstructions with different truncation order, N =

5, 10, 15, 20, 25. It is clear that the resolution of the reconstructed results increases as the truncation order N increases.
Fig. 5 shows the Gibbs phenomenon of the reconstructions over the line x2 = x3 = 0 with the truncation order
N = 5, 15, 25, respectively.
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Fig. 4. Contour plots of the exact and the reconstructed vector source function in Example 3 at the plane x3 = 0. (a) exact J1 , (b) J1,5 , (c) J1,10 , (d)
J1,15 , (e) J1,20 , (f) J1,25 .

Fig. 5. Gibbs phenomenon of the reconstructed source J1,N for different N with x2 = x3 = 0. (a) N = 5, (b) N = 15, (c) N = 25.

Example 4. In the final example, we try to recover the source with partial data. For simplicity, the source function is
given by

J = pf ,

where

p =
1

√
6

(
1,

√
2,

√
3
)

,

f (x1, x2, x3) = exp
(
−200

(
(x1 + 0.15)2 + (x2 + 0.15)2 + x23

))
+ exp

(
−200

(
(x1 + 0.15)2 + (x2 − 0.15)2 + x23

))
+ exp

(
−200

(
(x1 − 0.15)2 + (x2 + 0.15)2 + x23

))
+ exp

(
−200

(
(x1 − 0.15)2 + (x2 − 0.15)2 + x23

))
.

Let θ and ϕ denote, respectively, the polar and azimuthal angle in the spherical coordinates. By the symmetry, the
measurements of far-field data could be collected from an upper hemisphere S2

+
, that is x3 ≥ 0. Then we could obtain θ ∈

[0, π/2] and ϕ ∈ [−π, π]. Fig. 6 shows the reconstructions of J1 with partial measured data, where the truncation order
is N = 15. It is clear that the quality of reconstructions deteriorates as the observation angles shrink. Thus it is reasonable
to expect that the reconstruction would be barely detectable if the measured data is from only a very limited aperture.
In particular, Fig. 6(i) shows that the reconstructed source is almost invisible when θ = [0, π/6], ϕ = [−π/3, π/3].



X. Wang, M. Song, Y. Guo et al. / Journal of Computational and Applied Mathematics 358 (2019) 279–292 291

Fig. 6. Reconstruction of source J1,15 with 10% noise. (a) θ = [0, π/2], ϕ = [−π, π], (b) θ = [0, π/2], ϕ = [−2π/3, 2π/3], (c) θ = [0, π/2], ϕ =

[−π/3, π/3], (d) θ = [0, π/3], ϕ = [−π, π], (e) θ = [0, π/3], ϕ = [−2π/3, 2π/3], (f) θ = [0, π/3], ϕ = [−π/3, π/3], (g) θ = [0, π/6], ϕ = [−π, π],
(h) θ = [0, π/6], ϕ = [−2π/3, 2π/3], (i) θ = [0, π/6], ϕ = [−π/3, π/3].
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