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0. Information 

A copy of the Fortran 77 subroutine can be obtained by writing to the author. 

ABSTRACT : 
The Partial Singular Value Decomposition <PSVD) subroutine computes a 

basis of the left and/or right singular subspace of a matrix corres- 

ponding to its smallest singular values. The dimension of the desired 

subspace may be fixed or depend on a given upper bound for those 
smallest singular values. 

As only a basis of the desired singular subspace is needed, the 

classical Singular Value Decomposition CSVDI algorithm is modified in 
three ways. First, the Householder transformations of the bidiagonali- 

zation are only applied to the base vectors of the desired singular 

subspace. Second, the bidiagonal is only partially diagonalized and 

third, the convergence rate of the iterative diagonalization is im- 

proved by an appropriate choice between QR and QL iteration steps. 

Depending on the gapr the desired numerical accuracy and the dimension 

of the desired subspace, PSVD can be three times faster than the 

classical SVD algorithm while the same accuracy can be maintained. The 
new algorithm can be successfully used in total least squares appli- 
cations, in the computation of the null space of a matrix and in 
solving CnonIhomogeneous linear equations. 

* This work was supported by the Belgian NFWO (Natic ~4 Fund of Scientific Research). 
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SUBROUTINE : PSVD 

PURPOSE: 

The subroutine PSVD computes in an efficient and reliable way a basis 
for the left an&or right singular subspace of a matrix corresponding 
to its smallest singular values. The dimension of the desired sub- 
space may be given or may depend on a given upper bound for thosG 
smallest singular values. 

SPECIFICATION: 

SUBROUTINE PSVDCA, LDA, M, N, RANK, THETA, U, LDU, V, LDV, Q, INUL, 
WRK, TOLl, TOL2, MODE, IERR, IWARN) 

INTEGER LDA, M, N, RANK, LDU. LDV, MODE, IERR, IWARN 
UBLE PRECISION THETA, TOLl, TOL2 

DObBLE PRECISION A<LDA,N), U(LDU,M), VCLDV,N~,Q<min<MIN~+mino)r 
WRKclrc) 

LOGICAL INUL<max<M,N)J 

ARGUMENT LIST: 

3.1 ARGUMENTS IN 

A- DOUBLE PRECISION array of DIMENSION <LDA,N). 
The leading 19 x N part of this array contains the matrix A 
for which the basis of a desired singular subspace must be 
computed. 
NOTE that A is destroyed by PSVD. 

LDA - INTEGER. 
LDA is the leading dimension of the array A CLDA >= M). 

M- INTEGER. 
M is the number 

N- INTEGER. 
N is the number 

RANK - INTEGER. 

of rows of the matrix A. 

of columns of the matrix A. 

Specifies on entry whether the rank is given or is to be 
computed. 
i) RANK < 0: the rank is to be computed Csee THETA). 
ii) RANK >= 0: specifies the given rank. 

NOTE that RANK may be overwritten if A has multiple 
singular values. 
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THETA - DOUBLE PRECISION, 

On entry, there are f~-_) possibilities <depending on RANK): 
il 

ii1 

RANK < 0: THETA specifies an upper bound on the smallest 

singular values of A corresponding to the singular sub- 
space to be computed. THETA 4~ 0. 

THETA allows to compute the rank of A. 

RANK >= 0: ?HETA is an initial estimate for computing an 
upper bound on the min<M,N) - RA4K smallest singular 

values of A. 

If not available, assign a negafi*fe value t< 01 to THETA. 

NOTE that I;WrA is overwritten. 

3.2 ARGUMENTS OUT 

RANK - INTEGER. 

If not specified by the user? then RANK is computed by the 
routine. 

If specified by the l : z ‘- tc‘,sz specified RANK is changed 
by the routine if the 1.6 the CRANK+lJ-th singular 
value of 4 are -;.r:&.+< : ? equal. 

U - r ' I _. _“';_.:; <::‘ .I ::F, c.F XXENSION rLDlJ,M). 
_* -, 

_- ‘1 ;:i: 3 l ,‘ 7.. . 4 ihrs array <where S = min<M,N) or 
< ‘... : .:‘r arr WJDE3 contazns the S - RANK M-dimensional 

;. _’ . \- * -.. :- -> 0-f the desired left singular subspace of A cor- 
.'*a~- ,:T :-,3 et; i ts singular values <= THETA. 

vsctors are stored in those columns of U whose index i 

?G;>onds with INlJL<i) = .TRUE. 
. . c i= MODE < 20, then S = M. 

?lWlE >= 23, then S = min(M,N). 
. .? ;$“$a? p then U is not referenced. 

3 #%ey nzt !,s i+ntified with A in the subroutine call. 

V- DDU&C FRWE:;';;. .+=.T'I:- ;.' JIME&I=;ZON <lDV,N). 

The leading N x 5 se. 1 his array (where S = min<M,N) or 

S- N, deperding on kvei3Dk) contains the S - RANK N-dimensional 

base vectors of the dssired right singular subspace of A cor- 

responding to its singular values <= THETA. 

These vectors are stored in those columns of V whose index i 

corresponds with IWLCE) =: .TRUE. 

If MODE mod 10 = 1, then S = Ni, else S = min(M,N). 

If MODE mod 10 = 0, then V is not referenced. 

V may not be identified with A in the subroutine call. 
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LDW - INTEGER. 
LDW is the leading dimension of the array b (LDV >= N). 

Q - D03BLE PRECISION array of DIMENSION Cmin<M,Nl+min<M+l,N1). 
Returns the partially diagonalized bidiagonal computed from 
A, at the moment that the desired singular subspace has been 
found. 
The first p = min<M,Nl entries of Q contain the diagonal 
elements q(l),..., q<pl and the entries Q~p+21r...,~<p+sJ 
<with s = min<M+l,N)) contain the superdiagonal elements 
et21 ,...,e<s). Q(p+l) = 0. 

INUL - LOGICAL array of DIMENSION <maxCM,N)J. 
The indices of the elements of INUL with value -TRUE. 
indicate the columns in U an&or V containing the base 
vectors of the desired left and/or right singular subspace 
of A, if computed. They also equal the.indices of the diago- 
gonal entries of the subbidiagonals in Q, corresponding to 
the computed singular subspaces. 

3.3 WORK SPACE 

WRK - DOUBLE PRECISION array of DIMENSION <tl. 
If M < 5a/3 or if no basis of a left singular subspace is 
requested <i.e. if MODE < 101, 
then t equals M 4 N, 
else t equals M + N + NXCN+1)/2 in order to provide NHN+1)/2 

extra storage locations. 

3.4 TOLERANCES 

TOLl - DOUBLE PRECISION. 
This parameter defines the multiplicity of singular values by 
considering alr singular values within an interval of length 
TOLl as coinciding. TOLl is used in checking how many singu- 

lar values are C= THETA. Also in computing an appropriate 
upper bound THETA by a bisection method, TOLl is used as stop 
criterion defining the minimal subinterval length. 
According to the numerical proparties of the SVD, TOLl must 
be >= !!A!! x EPS where !!A!! denotes the L2-norm and EPS 
is the machine precision. 

TOL2 - DOUBLE PRECISION. 
Working precision for the computation of the desired singular 
subspaces of A. This parameter specifies that elements of 
matrices used in the computation, which are <= TOLZ in abso- 
lute value, are considered to be zero. 
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3.5 MODE PARAMETER 

MODE - INTEGER. 

MODE controls the computation of the desired singular sub- 

space. It has the decimal expansion AB with the following 
meaning: 
A = 0, do not compute the left singular subspace. 

A = 1, return the M - RANK base vectors of the desired left 
singular subspace in U. 

A >= 2, return the first min<M,N) - RANK base vectors of the 

desired left singular subspace in U. 

B = 0, do not compute the right singular subspace. 

B = 1, return the N - RANK base vectors of the desired 

right singular subspace in V. 
B >= 2, return the first min<M,N) - RANK base vectors of the 

desired right singular subspace in V. 

3.6 ERROR INDICATORS 

IERR - INTEGER. 

On return, IERR contains 0 unless the routine has failed. 

IWARN - INTEGER. 
On return: IWARN contains 0 unless RANK has been lowered by 

the routine. 

4 ERROR INDICATORS and WARNINGS: 

Errors detected by the routine. 

IERR = 0: 

1: 

2: 

3: 

4: 
-5: 

6: 

7: 

8: 

9: 

10: 

11: 

successful completion. 

number M of rows of array A smaller than 1. 

number N of columns of array A smaller than 1. 

leading dimension LDA of array A smaller than M. 

leading dimension LDU of array U smaller than M. 

leading dimension LDV of array V smaller than N. 

rank of matrix A <RANK) larger than min(M,N). 

the parameters RANK and THETA are both negative C< 01. 

tolerance TOLl is negative. 

tolerance TOL2 is negative. 

maximum number of QR/QL iteration steps (50) exceeded. 

parameter MODE out of range. 

Warnings given by the routine. 

IWARN = 0: no warnings. 

1: the rank of matrix A, specified by the user? has been 

lowered because a singular value of multiplicity ) 1 

has been found. 
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EXTERNAL SUBROUTINES and FUNCTIONS: 

DCOPY form BLAS 153; 

RDC from LINPACK 163; 
BIDIAG, INIT, CANCEL, QRQL, RESTOR. 

ETHOD DESCRIPTION: 

PSWD is an efficient method (see Cll), computing the singular sub- 
space of a matrix corresponding to its smallest singular values. It 
differs from the classical SVD algorithm I33 at three points, which 
results in high efficiency. 
First. the Householder transformations of the bidiagonalization need 
only to be applied on the base vectors of the desired singular sub- 
spaces. 
Second, the bidiagonal needs only to be partially diagonalized. 
Third. the convergence rate of the iterative diagonalization can be 
improved by an appropriate choice between QL and QR iterations. 
Depending on the gapn the desired numerical accuracy and the dimen- 
sion of the desired singular subspace, PSVD can be three times faster 
than the classical SWD algorithm. 

The PSWD algorithm Cl-23 for an M by N matrix A proceeds as follows: 

Step 1: Bidiagonalization phase 
______-_._____-_-_-_---- 

1-a): If M >= 5W4/3, transform A into upper triangular form R. 

1-b): Transform A <or RI into bidiagonal form: 

!q<l) eC2) 0 . . . 0 ! 
CO) ! 0 q(2) eC3) . ! 

J =!. 1 . 
! . e;Nl! 
? 0 . . . q(N)! 

if M >= N. or 

!q<l) eC2) 0 . . . 0 0 I 
CO) ! 0 42) eC3) . . ! 

J = ! . . . ! 

! . e<M) ! 
! 0 . . . q(M) e&+1,! 

if M < N, using Householder trarsAormations. 

1.~1: If U is requested, initialize U with the identity matrix. 
If V is requested, initialize V with the identity matrix. 

1-d): If M < N, then cancel eCM+l), and reduce the bidiagonal to 
M x M. Accumulate the Evens rotations in V <if V is desired]. 
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Step 2: Partial diagonalization phase 

If the upper bound THETA is not given, then compute THETA such that 
precisely p - RANK singular values (p=mintM,N)) of the bidiagonal 
are <= THETA, using a bisection method 143. 
Diagonalize the given bidiagonal J partially, using either QL itera- 
tions <if the upper left diagonal element of the considered subbi- 
diagonal ) the lower right diagonal element) or QR iterations, such 
that J is splitted into unreduced subbidiagonals whose singular 
values are either all larger than THETA or all less than or equal to 
THETA. 
Accumulate the Givens rotations in U and/or V (if desired). 

Step 3: Back transformation phase 

3.a): Apply the Householder transformations of step 1.b) onto the 

columns of U and/or V associated with the subbidiagonals with 
all singular values <= THETA, <if U and/or V is desired). 

3.b): If M >= SW/3 and U is desired, then apply the Householder 

transformations of step 1.a) onto each computed column of U in 

step 3.a). 

NOTE. If M > N <resp.,M < N), then the base vectors of the orthogonal 

complement of the column Cresp., row) space of the M by N matrix A can 

also be computed if desired <see MODE) by applying step 3 onto the 
last M - N <resp.,N - M) columns of U <resp.,V). 
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NUMERICAL ASPECTS: 

Using PSVD a large reduction in computation time can be gained in 

total least squares applications (cf 12 - 431, in the computation of 



S. Van Huffel / Partial singular value decomposition algorithm 

9 EXAPIIPLE: 

the null space of a matrix and in solving <non)homogeneous 
equations. 

Consider the 6 x 4 matrix A : 

linear 

0,80010002D+00 0.39985167D+OO 0.60005330D+00 0.89999446D+OO 
0.299964840+00 0.69990689D+OO 0.39997269D+OO 0.82997570DtOO 

A= 0.49994233D+OO 0.60003167D+OO 0.20012361D+OO 0.79011189D+OO 
0,90013643D+OO 0.20016919D+OO 0.79995025DtOO 0.85002662DtOO 
0.39998539DtOO 0.80006338DtOO 0.49985474DtOO 0.990163990+00 
0,20802274D+OO 0.90007114D+00 0.70009777DtOO 0.10299439DtOl 

and set TOLl = l.OD-08, TO12 = l.OD-10, MODE = 11, RANK = -1 and 
THETA = l.OD-03. 

Then, A has computed rank 3 and PSVD computes the following bases 
for the singular subspaces of A associated with its singular values 
<= l.OD-03 : 

Basis of the computed LEFT singular subspace : 
_________-_-_-______~~~~~~~~~~~~~~~~~~~~~~~~ 

the 1-st base vector UC*, 41 = 
0.269797DtOO 0.153118DtBO 
0.642075DtOO -0.410236D+QO 

the 2-th base vector UC*, 5) = 
-0.578307DtOO -0.456351D+OO 
C.S52879D+OO -0.748493D-01 

the 3-th base vector UC*, 61 = 
0.484175D+OO -0.742503D+OO 
O.l15913D+OO 0.290665DtOO 

-0.536944DtOO -O.P86820D+OO 

0.180389DtOO 0.336878DtOO 

??.646079D-01 -0.334913D+OO 

Basis of the computed RIGHT singular subspace : 
-__-___-_____-______~-~~~~-~-~~~-~-~~~~~~~~~~ 

the l-st base vector V<*, 41 = 
-0.355483DtOO -0.568663D+OO -0.212821DtOO 0.710606D+OO 


