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Abstract 

Descloux, J., Y. Jaccard and M.V. Romerio, A bidimensional stability result for aluminium electrolytic cells, 
Journal of Computational and Applied Mathematics 38 (1991) 77-85. 

This paper shows that the instabilities which are observed in cells cannot be explained by supposing that the 
mechanical and electromagnetic fields are independent of the space variable x3 corresponding to the length of 
the cell. For a model which is infinitely long in the x,-direction, we prove in particular that the kinetic energy 
due to the x1- and x,-components of the velocities tends to zero as the time tends to infinity. 
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1. Introduction 

To our knowledge, the specialists of the production of aluminium possess today only a rather 
limited understanding of the phenomena of instability which may arise in electrolytic cells. 
Among the different approaches which have been considered, let us mention the following ones: 
study of dispersion relations in Fourier analysis of linear models [5,6], shallow water models [8], 
perturbation methods [3], numerical simulation of the dynamic MHD equations. 

In [7], the authors have analysed steady motions in a cell which is infinitely long in the 
x,-horizontal direction by supposing that the fields are x,-invariant. In this work, we consider 
the same situation for evolutionary flows; our main stability result is the following: as the time 
tends to infinity, the normal components of the velocity to the x,-direction tend to zero. We 
notice as a main feature that the proof of this property requires no linearization of the MHD 
equations and no restriction concerning the variations of the interface between the electrolyte 
and the molten metal. 

In Section 2, we define the problem by recalling the MHD equations and fixing the 
hypotheses. The main assumption, i.e., the invariance of the fields’with respect to the x,-variable, 
allows a decoupling of the equations into two sets. We study in Section 3 one of these sets by an 
energy method and deduce the stability results. Section 4 is devoted to the conclusions. 
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2. Description of the model 

The geometry is defined schematically by Fig. 1. The cell is infinitely long in the e,-direction. 
The electrolyte and the liquid aluminium are contained in cylinders with generators parallel to e3 
and sections n,(t), &G?,(t), respectively, in the x1-, x,-plane. t denotes the time. r(t) is the 
section of the interface which separates the two fluids. We set D = G,(t) U f&(t) where n,(t) 
and Q,(t) are considered as closed subsets of (w 2; s2, which represents the section of the fluid 
part of the cell, is independent of t. 

The fields with which we shall deal are listed as follows: 

velocity, 

magnetic induction, 

electric field, 

electric current, 

pressure, 

density, 

viscosity, 

electric conductivity, 

u=u+ UC,; 

B = b + Be,; 

E = e + EC,; 

J=j+ Jr,; 

Pi 

Pi 

77; 

(I. 

(24 
(2.2) 
(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

Let w, q(t), a2(t), y(t) be the cylinders with generators parallel to e3 and sections Sz, f&(t), 

$I,( t), r(t), respectively, with the x1-, x,-plane. 
For t 2 0, U, E, p, 17 and p are defined in w, whereas B, J and u are considered in R3. Note 

that, for our purpose, it is not necessary to treat E on the entire of R3. In (2.1)-(2.4) the vector 
fields are decomposed in two parts; the first one contains the er-, e ,-components; the second one 
is the e,-component. 

The two basic hypotheses are given as follows. 

Hl. U, B, E, J and the gradient of p depend on xi, x2 and t but are independent of x3. 

x3 

Fig. 1. 



H2. The different fields 
and the restrictions of 
regular, with respect to 
developments of Section 3. 
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and their partial derivatives may present discontinuities across y(t). y(t) 
the fields to the subdomains wl( t), w2( t) or R3 - w are sufficiently 
the space and time variables, to insure the validity of the mathematical 

In order to precise Hl and H2, we add the following hypothesis. 

H3. U is continuous in w. B is continuous in R3. The tangential component of E to y(t) is 
continuous across y(t). The jump of p across y(t) is independent of x3. p, q and u take positive 
constant values pk, qk, uk in uk(t), k = 1, 2, with p1 # p2. 

We consider for t >, 0 the following standard set of equations: 

p a,u+p(U.o)u=q Au+ &(B.v)B-vP+v+, (2.9) 

div U= 0, (2.10) 

curl B = pLo J, (2.11) 

div B = 0, (2.12) 

8,B + curl E = 0, (2.13) 

J=a(E+Ur\B). (2.14) 

Because of possible discontinuities across y(t), the Navier-Stokes equation (2.9) is only valid 
separately in w,(t) and 02(t), respectively. p,, is the magnetic permeability of the vacuum. P is 
the total pressure whereas V+ represents the gravity forces; denoting by g the constant of 
gravitation, we have 

p=p+ 2& h12, += -gPkX2, in ak(t), k = 1, 2. (2.15) 

Equations (2.10), (2.13) and (2.14) are valid in wl( t) and w2( t) separately; recall that we do not 
consider E in OX3 but only in w. Equations (2.11), (2.12) are valid in q(t), w2( t) or R3 - w, 
separately. 

We complete the set of equations (2.9)-(2.14) by introducing boundary conditions. n = 

(n,, n2, 0) will denote the unit normal to y(t) pointing into w2( t). For any discontinuous field s, 
{s} r denotes the jump of s across y(t), i.e., the value of s in w2( t) minus its value in wr( t). For 
the fluids, we assume the no-slip condition on aw and the force equilibrium on y(t), i.e., 

U=O, on ati, (2.16) 

C (~(aiu,+a,~)-p6iiJ~ni=0, i=l,2,3, 
j=l 

(2.17) 

where U,, U,, .!.I, are the components of U and ai is the partial derivative with respect to xi. We 
remark that (2.17) takes into account the fact that the surface tension effects are negligible in 
cells. 

We consider the set of relations formed by the zr-, e,-components of (2.9), (2.13), (2.16) and 
(2.17), the e,-components of (2.11), (2.14) and the scalar equations (2.10), (2.12). We ignore the 
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other equations contained in (2.9)-(2.14), (2.16), (2.17) since we shall not use them in the 
following. By using hypothesis Hl and notations (2.1)-(2.4) we readily obtain: 

pa,rr+p(u.~)u=?Au+~(b.~)b-VP+V~, (2.18) 

div u=O, (2.19) 

rot b = poJ, (2.20) 

div b = 0, (2.21) 

d,b + rot E = 0, (2.22) 

J = a(E + u,b, - u*b,), (2.23) 

u=o, on as2, (2.24) 

C {777;j-pSij}rnj=0, on r(t), i=l, 2, (2.25) 
j=l 

where rij = a,u, + Cljui, i, j = 1, 2. (2.26) 

We recall that in (2.18), P and $ are defined by (2.15). Because of Hl and of H3 (jump of p), 
we consider (2.18)-(2.25) in the sections Q,(t), In,(t), R2 - a, XG?, r(t) of al(t), a2(f), R3 - w, 
i?o, y(t). In (2.20) and (2.22), we have used the‘notations rot b =‘&b, - 

- a,E). 
The continuity of b (hypothesis H3), (2.20) and (2.21) imply the existence 

A defined in R* and depending on t such that 

b=rot A, -AA = poJ. 

To complete the modelling, we introduce a final hypothesis. 

H4. (a) J vanishes outside a bounded region of R2. 

a2bl, rot E = (a2E, 

of a scalar potential 

(2.27) 

(b) uJ=O. 
$ 

(4 A(x, t) = - 2 
J 

Rln Ix-[1 J(& t) d[, x~lR*, t>O. 

(d) J is time independent outside Ic2. 

(2.28) 

Parts (a) and (b) of H4 are natural from an engineering point of view. Part (c) expresses 
nothing but the Biot-Savart law. Note that with (2.28) the second relation of (2.27) is satisfied. 
Part (d) is justified by the fact that in practice the bus bars have small sections with respect to 
the distance to the cells. 

3. Study of the stability by an energy method 

For initial conditions at t = 0 which need not be specified, we consider evolutionary fields 
which satisfy (2.18)-(2.25) and hypotheses Hl-H4. We shall study their asymptotic behaviour as 
t tends to infinity with the help of an energy relation that we first establish. 
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We recall from a result of fluid mechanics (see, for example, [l]), which is valid for any scalar 
field II/(x, t), x = (x1, x2) and for u satisfying (2.19): 

d 
dt 

x, t)+v+(x, t).u(x, t)} dx, k=l,2. (3.1) 

It is worth noticing that all “free boundary” features of our problem are implicitly contained 
in (3.1), in particular the immiscibility of the two fluids. We integrate on 1(2 the relation obtained 
by multiplying (2.18) by U: 

Jnp(a,u+(..v)u)..=~(~A.-vP).u+~~.*+~~((6.~)~)... (3.2) 

Due to the presence of discontinuities on r(t), each integral in (3.2) must be considered as the 
sum of integrals on J&(t) and G!,(t) which have to be treated separately. 

Applying (3.1) to the right-hand side member of the identity 

(a,U+(U.v)U).U=t{a,Iu12+v ju12eu}, 

we obtain for the left-hand side member of (3.2) 

(3.3) 

From now on, we shall use the Einstein sum convention. With the notation (2.26), we have by 
(2.19) that U. AU = ui a,rij. Taking into account the boundary condition (2.24), we obtain by 
integrations by parts 

J 71u. Au = - 
a / 

nrij aju, - 
Jz J r(t) 

1 77”i7,jnj > r’ (3 -4) 

where we recall that n = (n,, n2) is the unit normal to r(t) pointing into G!,(t) and where the 
jump { a} r is the value in a,(t) minus the value in Q,(t). From the definition (2.15) of P and the 
continuity of B (see H3), we get in the same way 

Combining (3.4), (3.5) and (2.25) we have: 

J a(q Au-vP).u= -:/q7ljrij. 52 
By (2.15), + is independent of t so that we deduce from (3.1) 

(3.5) 

(3-6) 

(3.7) 

although + is time independent, the integral of + on 1(2 depends on t since the densities of the 
two fluids are different. 

The treatment of the electromagnetic part of (3.2) is somewhat less conventional. We 
introduce the following fields: 

L&)(x, t) = - g/ In Ix-6lJk t) d5, XER~, b, = rot A, = (a2A0,- a,A,). 
52 

(3.8) 
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By H4(c) A, is the contribution to the magnetic potential due to the r,-component of the 
current running in the cell s2, whereas b, is the magnetic field generated by the same current. As 
a consequence of H4(d), A - A, and b - b, are independent of t. As a consequence of H4(b), we 
have 

A,(& t)=O(hj. a=O(+$)? as 1x1 +cQ- (3.9) 

Consider the following identity: 

((b.V)b).u=rot b(b,u,-b,u,)+3VIb12.u. (3.10) 

We integrate (3.10) on 9; recalling that b and u are continuous, we obtain by (2.19) and (2.24) 
that the integral of the second term of the right-hand side member vanishes. From (2.20) and 
(2.23) we deduce 

(3.11) 

Comparing (2.22) and (2.27) the existence follows of a constant c(t) depending only on t 

such that 

E(x, t)= -a,+, t)+c(t), XE52, t>,o. 

By H4(d), a,A = QI,, where A, is defined by (3.Q so that by H4(b) we get 

(3.12) 

J 
PO d 

JE=zdt 
n 

J(,J,‘” Ix-t1 Jb, t)J(E, t> dt dx= -;$&JoA,, (3.13) 

where Jo is the function defined in R2 which is equal to J in ti and vanishes outside 9. Equation 
(3.8) implies that 

-AA, = poJo, in R2. (3.14) 

We multiply (3.14) by A,, integrate over lR2 and use Green’s formula. Taking into account 

(3.9) and recalling the definition (3.8) of b,, we obtain 

J Jo/lo = i 
R2 

Combining (3.11), (3.13) and (3.15), we get 

(3.15) 

(3.16) 

From (3.2), (3.3), (3.6), (3.7) and (3.16), we obtain the desired energy relation that we state 
explicitly in the following lemma. 

Lemma 3.1. Equations (2.18)-(2.25) and hypotheses Hl-H4 imply the relation 

We need the following estimate. 
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Lemma 3.2. There exists a positive constant A, independent of t, such that 

Proof. Since u is continuous and vanishes on ZIG, we can apply the first Korn inequality (see, for 
example, [4]) and obtain the existence of a positive constant c1 such that 

(3.17) 

We apply the Schwarz inequality to (3.15) by recalling that J, equals J in II and vanishes outside 
A2; we get 

(3.18) 

By the Schwarz inequality again, we deduce from (3.8) the existence of a constant c2, indepen- 
dent of t and of x E D such that 

&x, t) <c2 QJ2(.$, t) d<, 
I 

XE 0, t>O. (3.19) 

Integrating (3.19) on fi and replacing in (3.18) proves the existence of a constant cj, independent 
of t, such that 

Lemma 3.2 follows easily from (3.17) and (3.20). Cl 

We are now in a position to state and prove the main result of this work. 

Proposition 3.3. Under hypotheses Hl-H4, we have 

Proof. With the notations 

x(t) = + &u12+ $--*lhlb~ t) I’)- 
i 

Y(t) = JjY 

we have by Lemmata 3.1 and 3.2: 

X’(t)+AX(t)- Y’(t)<o, t>O. 

By (2.15), there exists a constant d, such that 

jY(t)I <d,, t>O. 

Integrating (3.22), we get 

X(t) +$X(T) d T< x(0) + Y(t) - Y(O), t 2 0. 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 
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Noticing that X is nonnegative and that h is positive, (3.23), (3.24) show the existence of a 
constant d, such that 

x(t) < 4, J ‘X(T) dr < d,, t>o. 

0 

(3.25) 

Applying the Schwarz inequality to (3.7), we obtain by (3.25) and (2.15) the existence of a 
constant d, such that 

jr’(t) 1 <d,, t>,O. (3.26) 

By (3.22), (3.25) and (3.26), there exists a constant M such that 

X’(t)<M, tao. (3.27) 

Suppose now that Proposition 3.3 is false, i.e., X(t) does not converge to zero as t tends to 
infinity. Since X(t) 2 0, there exist a > 0 and a sequence 0 < to < t, -C t, < . . . such that 

x( t,) 2 a, t;+t,_,+$, i=l,L-.-. (3.28) 

By (3.27) (3.28) setting (Y = we have for i 

to infinity in this we obtain the 
proof of Cl 

Remark 3.4. Although this is not a consequence of Proposition 3.3, assume that for some T, 

X(t), defined by (3.21), vanishes for t > T, i.e., U(X, t)=O, ~~52, t>T, and b&x, t)=O, 

XER2, t 2 T. By (3.9, (3.14), it follows that J = 0 in 52 and by H4(d) that b is time 
independent for t > T. Furthermore by (2.25), p is continuous along r(t); by (2.15), since B is 
continuous, P is also continuous along r(t); it easily follows (see [2]) from (2.18) that the jump 
of C#J along r(t) is constant; since by H3, p1 f p2, we conclude by (2.15) that r(t) is a horizontal 
line, i.e., parallel to Cl, which by mass conservation is time independent for t k T. 

4. Conclusions 

The purpose of this work was to show that it is not possible to explain the instabilities which 
can be observed in cells by supposing that the fields are invariant for translations with respect to 
the x,-direction. In other words, the phenomena of instabilities must be studied in genuine 
three-dimensional situations. 

Our main result which is contained in Proposition 3.3 states that the kinetic energy relative to 
the pi- and e,-components of the velocity and the magnetic energy generated by the e3-compo- 
nent of the current running into the cell tend to zero as t tends to infinity. 



J. Descloux et al. / Bidimensional stability 85 

Even by supposing that the cell is “ very long”, we are conscious that our model contains some 
unrealistic aspects. For example, the x,-independence of the currents implies that the bus bars 
are not connected to the cell. On another side the model is fully nonlinear; in particular, no 
restriction is imposed on the interface F(t). The geometry of the section Q of the cell is quite 
general. Note furthermore that little use has been made of the specific form (2.15) of +; in fact 
Proposition 3.3 is valid by supposing that, in each subdomain, 9 is a function only depending on 
x, and x2. Finally we notice that, by assuming that Q is not a disk, we can replace the no-slip 
boundary condition by the slip one without modifying the results. 
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