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Abstract

In this paper, by means of fixed point theorem in a cone, the existence of positive solutions of p-Laplacian
difference equations is considered.
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1. Introduction

For notation, given a < b in Z, we employ intervals to denote discrete sets such as [a,b]={a,a+
l,....b}, [a,b)={a,a+1,...,b— 1}, [a,00)={a,a+1,...}, etc. Let T > 1 be fixed. In this paper,
we are concerned with the following p—Laplacian difference equation:

Al ,(Au(t — 1)) +a(t)f(u(t)) =0, t<[1,T+1], (1)
satisfying the boundary conditions
Au(0)=u(T +2)=0, (2)

where ¢ ,(s) is p-Laplacian operator, i.e., ¢,(s)=|s|?"%s, p>1, (¢,) ' =¢, 1/p+1/g=1, and
(A) f:R" — R" is continuous (R" denotes the nonnegative reals),
(B) a(t) is a positive valued function defined on [1,7 + 1].
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The motivation for the present work stems from many recent investigations in [1-4,6-8,10]. For
the continuous case, boundary value problems analogous to (1) and (2) arise in various nonlinear
phenomena for which only positive solutions are meaningful; see, for example [11,12].

2. Preliminaries

Let

fo=tim L9 g = tim L)

w0+ upP—1’ u—oo yP—1"

We note that u(¢) is a solution of (1) and (2), if, and only if

T+1 K}
TOEDIN (Z a(i)f(u(i))> . e[0T +2]. 3)

i=1
Let

E={u:[0,T +2] — R|Au(0)=u(T +2) =0}

with norm, |lu|| = max,cfo,r12) [u(?)|, then (E,| - ||) is a Banach space.
Define a cone, P, by

P={ucE:u(t) >0, t€[0,T + 2], and u(t) = a(¢)||ul|},

where o(¢)=1—1t/(T +2), te[0,T +2].
The following two lemmas will play an important role in the proof of our results and can be
found in the book in [9] as well as in the book in [5].

Lemma 2.1. Let E be a Banach space, and let P C E be a cone in E. Assume Q1,8 are open
subsets of E with 0€ Q) C Q| C ,, and let

T:PN(Q\Q,)— P

be a completely continuous operator such that, either

(1) | Tul] < ||lu|l, €PN 0Qy, and ||Tu|| = ||ul|, u€ P N oy, or
(1) [|Tul| = ||ull, ue PN 3Ry, and ||Tu|| < ||u|, u€ P N 0Q,.

Then T has a fixed point in PN (Q,\Q)).

Lemma 2.2. Let E be a Banach space, and let P C E be a cone in E. For p >0, define P, =
{ueKk:||lul| < p}. Assume that

T:P, —P
is a completely continuous operator such that, Tu # u for x € 0P, = {u € P ||u|| = p}.

(i) If ||lu|| <||Tul|, ue€oP,, then i(T,P,,P)=0;
(ii) If |lu| = ||Tu|, ueoP,, then i(T,P,,P)=1.
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3. Solutions of (1) and (2) in a cone

Theorem 3.1. Assume that conditions (A) and (B) are satisfied. If

(1) f0o=0, foc =00 or
(ii) fo=00, foo =0.

Then, there exists at least one solution of (1) and (2) in P.

Proof. Define a summation operator 7:P — E by

T+1 s
(Tu) ()= _ ¢, (Z a(i)f(u(i))> . te[0,T+2]

i=1
We note that from (4), if u € P, then (Tu)(t) =0, t€[0,T + 2].
Moreover, for u € P, we have

[|Tul| = (Tu)(0)

T+1
= Z ¢ (Z a(i)f(u(i))) .

s=t

i=1
Set

U(t) = (Tu)(r) — <1 - Tt+2> ITu|, t€[0,T +2].

Then U(0) = U(T +2)=0, A’U(t) <0, t€[0,T]. By Lemma 2 in [6], we have U(t)

195

(4)

=20, te

[0,7 + 2], i.e. (Tu)(t)= (1 —¢t/(T + 2))||Tu||, t€[0,T + 2]. Consequently, T:P — P. It is also

easy to check that 7:P — P is completely continuous.

Case (i): Now, turning to f, there exits H; > 0 such that f(u) < (0u)?~' for 0 < u < H;, where

0 > 0 satisfies

T+1
QZ% (Z a(,-)> <1

i=1
Thus, for u € P with ||u|| = H,, implies that

T+1
|1 7ul| = Z g (Z a(i)f(u(i)))

i=1

T+1
Z ¢ <Z a(z‘)(eu(z‘))f’—‘)

i=1

T+1
HuHHZqu <Z,» laa))

< lull-
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Therefore,

| Tu|| < ||lu|| for ue PN oy, (5)
where

Q={ueB:||u|| <H}.

If we next consider f .., there exists an H, > 0 such that f(u) = (Ou)P~!, for all u > H,, where
® > 0 satisfies

1634, (Za(i)) >,
se€Y i=1

where

T+2
Y:{tEZ:OStég}.

Let H, = max{2H,,2H,}, and define

Q) ={ueB:|ul| < Hy}.
Note that

Hull < u(z) < ||ul| fort€Y, ueP.
If u e P with |ju|| = H>, then

T+1 K
I1Tul =" ¢, (Z a(i)f(u(i))>
s=0

i=1

>34, <Z a(i)f(u(i)))

se€Y i=1

> ¢, (Z a(,-)(@u(,-))w)

se€Y i=1
1 ~
SEONAIT)
se€Y i=1
= |ul]-
Hence,
| Tu|| = ||lu|| for ue PN ai,. (6)

From (5) and (6), Lemma 2.1(i) implies that 7 has a fixed point u € PN (QZ\QI).
Case (ii): Beginning with f, there exits H; > 0 such that f(u) > (vu)?~' for 0 < u < H,, where
v > 0 satisfies

%qu&q (Za(i)) > 1.

se€Y i=1
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So, for u € P with ||u|]| = H,, we have

T+1 s
1 Tull = ¢ <Z a(i)f(u(i)))
5s=0

i=1

> b, (Z a(i)f(u(i)))

se€Y i=1

= Z ¥ <Zi1a(i)(vu(i))P—1>

seY

> Y 4, (Zm)
se€Y i=1
= |[ul|.
Therefore,
|Tul| = ||u|]| for ue PN oy, (7)
where

Q = {ueB:|ul <H}.

Using the assumption concerning f.., there exists an H, >0 such that f(u) < (iu)?~! for
u > H,, where 4 > 0 satisfies

T+1 K
D g (Z a(i)> <.
5s=0 i=1

There are two cases: (a) f is bounded, and (b) f is unbounded.
For case (a), assume M > 0 is such that f(u) < MP~! for all 0 <u < co. Let

T+1 K
H, = max {2H1,MZ bq (Z a(z‘)> } .
s=0 i=1
Then, for u € P with ||u|| = H,, we have

T+1 s
I1Tul =" ¢, (Z a(i)f(u(i))>
s=0

i=1
T+1 K
<MD ¢, <Z a(i)>
s=0 i=1

< Hy = lul.
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Hence

| Tu|| < ||ul| for ue PN aR,, (8)
where

Q ={ueB:||u|| < H}.

For case (b), it can be shown without much difficulty that there is an H, > max{2H,,H,} such
that f(u) < f(H,), for 0 <u < H,. Choosing u € P with ||u| = Ha,

T+1 K
I1Tul =" ¢, (Z a(i)f(u(i))>
s=0

i=1

T+1 K
<> ¢, <Z a(i) f(Hy ))
s=0

i=1

T+1 K
<(fHE)D ¢, <Z a(i))

s=0 i=1
T+1 s
<MY ¢, (Z a(z’))
s=0 i=1
< Hy = [[ul].
Therefore
| Tu|| < ||ul|] for ue PN iy, )
where
Q, = {Z/l €B: Hu|| < Hz}

We apply Lemma 2.1 to conclude that 7" has a fixed point u€ P N (QZ\QI). Thus, in either of
the case, Lemma 2.1(ii) applied to (7) and (8) or (9) yields a fixed point of 7 which belongs
to P N (2,\Q;). This fixed point u is a solution of (1) and (2). The proof of Theorem 3.1 is
complete. I

Theorem 3.2. Assume that conditions (A) and (B) are satisfied. If

(i) fo= foo =00,

(ii) there exists p > 0 such that f(u) < (np)?~" for 0 <u < p, where

T+1 s -1
0= [Zd)q (Za(f))] .
s=0 i=1
Then, there exists at least two solutions uy; and uy of (1) and (2) in P, such that 0 < ||u;| <
p < |uzll.
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Proof. Since f= oo, there exits d € (0, p) such that f(u) > (Mu)?~" for 0 < u < d, where M > 0
satisfies

MY ¢, (Z a(i) (1 - :L 2)p_1> > 1.

se€Y i=1

Thus, for u € P with |ju|| =d, we have

T+1
|1 7ul| = Z ¢ (Z a(i)f(u(i))>

i=1

> ¢, (Z a(i)f(u(i)))

seY i=1

> ¢, <Z a(i)(Mu(i))"~ 1)

seY i=1
> 0l Sy (o) (1 545)
seY i=1
> .

Therefore,
i(T,Py;,P)=0.

Since fo = 00, there exists an R > p such that f(u) = (Nu)?~!, for all u > R, where N >0
satisfies

VoS- 7))

s€Y i=1

If u€ P with ||u|| =R, then

T+1
|1 7ul| = Z ¢ (Z a(i)f(u(i))>

i=1

>34, ( a(l)f(u(Z)))

seY

> Nl S 6 ( a(i) (1

seY

50

> [fu]-
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Hence,
i(T, Pg, P) = 0.
If ue P with [ju]| = p, then

T+1 K
ITull =" g | D _ali)f(u(i))
5s=0 i=1
T+1 s
<npY g | D ali))
s=0 i=1
— p=lull.
Hence,
i(T,P,,P)=1.
Therefore,

i(T,Pr\P,,P) = —1, i(T,P,\P4,P)=1.

So, there exists at least two solutions u; and u; of (1), (2) in P, such that 0 < ||u;|| < p < |Juz]|.
U

Theorem 3.3. Assume that conditions (A) and (B) are satisfied. If

(i) fo=/fx=0,
(ii) there exists p > 0 such that f(u) > (Ap)?~" for %p <u < p, where

K -1

=Dy [ D ali) , Yz{tGZ:O<t<T;_2}.

seY i=1

Then, there exists at least two solutions uy and u, of (1) and (2) in P, such that 0 < |lu;|| <
p < ual-

The proof of Theorem 3.3 is similar to that of Theorem 3.2. Here we omit it.
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