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Abstract

A 4-point interpolatory subdivision scheme with a tension parameter is analyzed, and the local property of
4-point interpolatory subdivision scheme and a kind of G1-continuity su4cient condition between surfaces as
well as between curves are discussed. An e4cient method of generating natural boundary points of 4-point
interpolatory curve is presented, as well as a surface modeling method with the entire fairing property by
combining energy optimization with subdivision scheme. The method has been applied in modeling 3D virtual
garment surface.
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1. Introduction

Subdivision schemes are important and e4cient tools for generating curves and surfaces iteratively
from a ;nite set of points. They have been widely applied in CAD and CG. A uniform 4-point
interpolatory subdivision scheme for curve design was proposed by Dyn and Levin [3]. The method
is di>erent from the traditional interpolation methods. The traditional interpolatory methods generate
a continuous curve using a ;nite set of points, then they discretize the curve, and display it on a
computer screen. The process can be summarized as discrete–continuous–discrete. While the 4-point
scheme does not generate continuous curve, it interpolates a discrete curve directly, which greatly
speeds up the calculating and displaying. When control points are non-uniform, it is di4cult to satisfy
the fairing and the preserving shape of curve only by adjusting tension parameter. It constrains 4-point
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interpolatory subdivision scheme’s application in geometrical modeling tremendously. Cai [1] once
proposed a non-uniform 4-point interpolatory scheme by developing Dyn’s 4-point interpolatory
scheme. The method improves the shape controlling of curve and surface greatly. But it cannot
preferably satisfy the entire fairing of curves and surfaces yet [4].

In the present paper, we analyze the local support properties of 4-point interpolatory subdivision
scheme, G1-continuity conditions between surfaces and between curves, and propose an e4cient
method to generate natural boundary points. In order to realize the entire fairing property of sub-
division surface, we employ energy optimization to subdivide the mesh. By constructing the object
function based on subdivision mesh, we not only simplify complex integral of common energy
modeling, but also preferably satisfy the entire fairing of subdivision surfaces. The fairing method
presented here may model the deformable surface more e4ciently than subdivision schemes do. It
has been realized in the design of garment surface, and has achieved good e>ect.

2. Properties of 4-point interpolatory subdivision scheme

De�nition 2.1 (Cai [1]): Given n + 1 points {Pi}ni=0; Pi = (xi; yi) let Hxi = xi+1 − xi; 06 i6 n − 1.
If Hxi=Hxj;∀06 i; j6 n−1; {Pi}ni=0 are called uniform control points; otherwise, {Pi}ni=0 are called
nonuniform control points.

De�nition 2.2 (Cai [1]): Given n+ 1 numbers {xi}ni=0, if xi ¡ xi+1; 06 i6 n− 1, let

K = max
06i6n−2

(
Hxi+1

Hxi
;
Hxi
Hxi+1

)

K is called the non-uniform degree of {xi}, where K satis;es K¿ 1 and (1=K)6 (Hxi+1=Hxi)6K .

Lemma 2.1 (Cai [1]). Suppose that {xi}n+2
i=−2 satisfy x−2 ¡x−1 ¡ · · ·¡xn+1 ¡xn+2, with

0¡
1
K
6

Hxi+1

Hxi
6K;−26 i6 n;

where Hxi = xi+1 − xi; K¿ 1 is a constant. Let {xki } be de6ned by

xk+1
2i = xki ; −16 i6 2kn+ 1;

xk+1
2i+1 = (12 + w)(xki + xki+1)− !(xki−1 + xki+2); −16 I6 2kn;

(2.1)

where x0i = xi;−26 i6 n+ 2, Then for 06!6K=2(K + 1)2, we have

Hxki =Hxki+1 − xki ¿ 0;

0¡
1
K
6

Hxki+1

Hxki
6K:

Suppose that the initial control points {Pi}ni=0 are strictly monotone increasing; the limit curve of
Eq. (2.1) is a strictly monotone increasing function. It is easily proved by Lemma 2.1.
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So we may have the form of non-uniform 4-point interpolatory curve:
Given control points {Pi}n+2

i=−2; Pi ∈Rd, let us denote the control points at the k-level set by

{Pk
i }2

k+2
i=−2. Then the subdivision scheme de;nes the control points at the level k + 1 by

Pk+1
2i = Pk

i ; −16 i6 2kn+ 1;

Pk+1
2i+1 = (12 + !)(Pk

i + Pk
i+1)− !(Pk

i−1 + Pk
i+2); −16 i6 2kn;

(2.2)

where P0
i = Pi; −26 i6 n + 2; 06!6K=(2(K + 1)2). By letting k tend to in;nity, the process

de;nes an in;nite set of points in Rd, and these points lie on a continuous curve in Rd.
The subdivision scheme (2.2) can be easily extended for surface designing, which passes through

a set of control points of the form {P0
i; j; i=−2; : : : ; n+2; j=−2; : : : ; m+2}. Firstly, we apply (2.2)

to the index i, inserting points between Pk
i; j and Pk

i+1; j ; i = −1; : : : ; 2kn; j = −2; : : : ; 2km + 1, where
06!6K=(2(K+1)2). Then (2.2) is applied to the index j. The overall step results in the (k+1)th
set of points:

Pk+1
2i;2j = Pk

i; j; −16 i6 2kn+ 1;−16 j6 2km+ 1;

Pk+1
2i+1;2j = (12 + !)(Pk

i; j + Pk
i+1; j)− !(Pk

i−1; j + Pk
i+2; j); −16 i6 2kn;−16 j6 2km+ 1;

Pk+1
i;2j+1 = (12 + !)(Pk+1

i;2j + Pk+1
i;2j+2)− !(Pk+1

i;2j−2 + Pk+1
i;2j+4); −16 i6 2kn+ 1;−16 j6 2km:

(2.3)

2.1. Generation of natural boundary points

To de;ne a curve passing through P0; P1; : : : ; Pn−1; Pn by Eq. (2.2), one needs to supply additional
points P−2; P−1; Pn+1; Pn+2 which will a>ect the behavior of the curve ends. These extra points can
be used to control the slope of the curve at the end points. In the case of non-closed curve, we
usually adopt natural boundary points to de;ne the curve. A common generation method of natural
boundary points will involve solving complex calculation. To avoid the problem, we propose an
e4cient method to generate natural boundary points.

Algorithm 2.1. In the ;rst phase, we get line l: l satis;es

1. l is on the same surface of P0; P1 and P2;

2. l is vertical to
→

P0P1 and goes across the midpoint of
→

P0P1.

In the second phase, we ;nd point P that is symmetric to P2 with respect to line l, then we set
P−1 = P. The same method is applied to get P−2; Pn+1 and Pn+2. We can de;ne a curve passing
through {Pi}ni=0.

The algorithm only deals with simple linear operation. So it is e4cient in practical application.

2.2. Local property of the scheme

Lemma 2.2. The curve segment p(t); t ∈ (i; i + 1), only depends on Pi−2; : : : ; Pi+3.
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Theorem 2.1. Given the control points {Pi}ni=0, we move any point Pi to P′
i , whose o8set is denoted

as HPi = P′
i − Pi. O8set of any other point in the control points {Pi}ni=0 will satisfy

(i) O(!HPi) ∼ HPj; Pj ∈ [Pi−2; : : : ; Pi+2];

(ii) O(!2HPj) ∼ HPj; Pj ∈ [Pi+2; Pi+3];

(iii) 0; other:

Proof. Case i: Where k = 1, generation of P(i−2)+1=2; P(i−1)+1=2; Pi+1=2, and P(i+1)+1=2 which depend
on Pi:

P(i−2)+1=2 = (12 + !)(Pi−2 + Pi−1)− !(Pi−3 + Pi);

P(i−1)+1=2 = (12 + !)(Pi−1 + Pi)− !(Pi−2 + Pi+1);

Pi+1=2 = (12 + !)(Pi + Pi+1)− !(Pi−1 + Pi+2);

P(i+1)+1=2 = (12 + !)(Pi+1 + Pi+2)− !(Pi + Pi+3):

(2.4)

When Pi changes to P′
i , the change of Pi will have the same impact on the curve segment beside Pi.

The indices of the points in one segment are bigger than Pi and those in other are smaller than Pi.
So we need only to discuss the impact on the curve segment composing of points that have indices
bigger than Pi:

Pi+1=2 = (12 + !)(Pi + Pi+1)− !(Pi−1 + Pi+2);

P(i+1)+1=2 = (12 + !)(Pi+1 + Pi+2)− !(Pi + Pi+3);
(2.5)

P′
i+1=2 = (12 + !)(P′

i + Pi+1)− !(Pi−1 + Pi+2);

P′
(i+1)+1=2 = (12 + !)(Pi+1 + Pi+2)− !(P′

i + Pi+3):
(2.6)

Combining (2.5) with (2.6) we have

HPi+1=2 = (P′
i+1=2 − Pi+1=2) = (12 + !)HPi;

HP(i+1)+1=2 = (P′
(i+1)+1=2 − P(i+1)+1=2) =−!HPi;

(2.7)

and then we have O(!HPi) ∼ HPj; Pj ∈ [Pi; : : : ; Pi+2].
As the impact on the segment [Pi−2; Pi] is similar to the above, we have O(!HPi) ∼ HPj; Pj ∈

(Pi−2; : : : ; Pi+2).
Case ii: Now we mainly discuss how the change of Pi inMuences the segment of [Pi+2; Pi+3].
When k = 2, we have

P(i+2)+1=4 = (12 + !)(Pi+2 + P(i+2)+1=2)− !(P(i+1)+1=2 + Pi+3);

P′
(i+2)+1=4 = (12 + !)(Pi+2 + P(i+2)+1=2)− !(P′

(i+1)+1=2 + Pi+3):
(2.8)
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Combining Eq. (2.6), we have

HP(i+2)+1=4 = P′
(i+2)+1=4 − P(i+2)+1=4 =−!HP(i+1)+1=2 = !2HPi: (2.9)

So we have

O(!2HPi) ∼ HPj; Pj ∈ (Pi+2; Pi+3):

Case iii: By Lemma 2.2, we know that any point with bigger indices than Pi+3, with indices
smaller than Pi−2 of the curve will not be a>ected by the change of Pi.

4-point interpolatory subdivision surface has similar local property.

2.3. G1-continuity of the scheme

Given curves C1; C2 which are, respectively, generated by control points {Pi}ni=0 and {Qi}mi=0,where
Pn is equal to Q0; Pn or Q0 denotes connective point of curve C1 and C2. In order to realize
G1-continuity between curve C1, C2 at point Q0 or Pn, we need to supply the following boundary
conditions:

(i) Boundary condition of curve C1:
• boundary condition of Pn : Pn+1 = Q1; Pn+2 = Q2;
• boundary condition of P0 : P−2; P−1 generated by Algorithm 2.1.

(ii) Boundary conditions of curve C2:
• boundary condition of Q0 : Q−2 = Pn−2; Q−1 = Pn−1;
• boundary condition of Qm : Qn+1; Qn+2 generated by Algorithm 2.1;
G1-continuity su4cient conditions of curve can be easily extended to surface.

Given surfaces S1; S2 which are, respectively, generated by control points {Pi;j : i = 0; : : : ; n;
j=0; : : : ; m1} and {Qi;j : i=0; : : : ; n; j=0; : : : ; m2}, where Pi;m1 =Qi;0 : i=0; : : : n, in order to realize
G1 continuity of surface S1; S2 at the adjacent curve generated by {Pi;m1}ni=0 or {Qi;0}ni=0, we need
to supply the following boundary conditions:

(i) Boundary conditions of surface S1:
• boundary condition of the adjacent curve: Pi;m1+1 = Qi;1; Pi;m1+2 = Qi;2; i =−2; : : : ; n+ 2;
• other boundary conditions: Pi;−2; Pi;−1; i =−2; : : : ; n+ 2 generated by Algorithm 2.1.

(ii) Boundary conditions of surface S2:
• boundary condition of the adjacent curve: Qi;−2 = Pi;m1−2; Qi;−1 = Pi;m1−1; i =−2; : : : ; n+ 2;
• other boundary conditions: Qi;−2; Qi;−1; i =−2; : : : ; n+ 2 generated by Algorithm 2.1.

We employ the above boundary conditions to re;ne S1; S2. The result is shown as Fig. 1. Red
mesh denotes S1, blue mesh denotes S2 and, green line denotes the adjacent curve.
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Fig. 1. G1-continuity between surfaces.

3. Fairing modeling based on subdivision mesh

Surface modeling using subdivision scheme is hard to satisfy the entire fairing of surface [5].
Aiming at it, we introduce energy optimization method into subdivision surface. In order to employ
energy optimization method, we must construct the object function and constrain equation e4ciently.
“Deformable energy function” proposed by Terzopoulo [2] is the most common object function at
present. But it needs to deal with complex integral. We construct an object function, which is
composed of energy functions in discrete form based on subdivision mesh. The method improves
the entire fairing of subdivision surface e4ciently.

3.1. Energy function based on geometrical constraint

3.1.1. Stretching constraint
Stretching constraint can be expressed by restricting the distance between each adjacent point

along longitudinal and latitudinal directions.

∑
i

∑
j

[
1

2!hstresh
(‖Pi;j+1 − Pi;j‖n − U0)2 +

1
2!vstresh

(‖Pi+1; j − Pi;j‖n − V0)2
]
; (3.1)

where !hstresh and !vstresh are stretching constraint weights, respectively, in longitudinal and latitudinal
directions. U0 is the initial distance between adjacent grid points in the longitudinal direction, and
V0 is the initial distance between adjacent grid points in the latitudinal direction.

3.1.2. Shearing constraint
Shearing constraint can be expressed by a deformation caused by a force applied in a direction

not perpendicular on the surface. We restrict the diagonal distance between the control points of the
mesh to be of some speci;ed length:

∑
i

∑
j

[
1

2!shear
(‖Pi+1; j+1 − Pi;j‖ − L0)2

]
; (3.2)

where !shear is the shearing constraint weight, L0 is the initial distance between two points on the
diagonal.
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Fig. 2. Initial mesh.

3.1.3. Bending constraint
Bending constraint can be expressed by restricting the distance between every three neighboring

points of the mesh in the longitudinal direction and latitudinal direction.

∑
i

∑
j

[
1

2!hbend
(‖Pi+2; j − Pi;j‖n − U0)2 +

1
2!vbend

(‖Pi;j+2 − Pi;j‖n − V0)2
]
; (3.3)
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Fig. 3. Surface modeling by 4-point interpolatory subdivision surface.

where !hbend and !vbend are the bending constraint weights in the longitudinal direction and latitudinal
direction. u0 is initial distance between every second neighboring point of the mesh in the longitudinal
direction. v0 is initial distance between every second neighboring point of the mesh in latitudinal
direction.

Combining these constraint function, an e4cient object function can be constructed. With energy
optimization method, an entire fairing surface can be modeled. The new method has been applied
in the ;eld of 3D virtual garment surface modeling. The result is shown as Figs. 2–4.
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Fig. 4. Surface modeling by energy optimization.
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