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Abstract

We consider mixed &nite element discretization for a class of degenerate parabolic problems including the
Richards’ equation. After regularization, time discretization is achieved by an Euler implicit scheme, while
mixed &nite elements are employed for the discretization in space. Based on the results obtained in (Radu et
al. RANA Preprint 02-06, Eindhoven University of Technology, 2002), this paper considers a simple iterative
scheme to solve the emerging nonlinear elliptic problems.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Water @ow in porous media can be modelled by the Richards’ equation [4], a nonlinear, possibly
degenerate, parabolic diCerential equation. Taking the pressure as a primary unknown, Richards’
equation becomes

@t�( ) − ∇ · K(�)∇( + z) = 0; (1)

where  is the pressure head, � the @uid saturation, K the conductivity and z the vertical height.
Assuming a constant air pressure constant, in the fully saturated region we have  ¿ 0, while  ¡ 0
for partially saturated regions. Several retention curves are proposed in the literature to express
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relations between  , K and �. Here we are interested in both partially saturated and saturated @ow,
therefore we retain the pressure  as primary unknown.

As suggested in [1], saturation may be less regular than pressure. Therefore we expect to achieve
better results by applying a KirchhoC transform

K :R → R;  �→
∫  

0
K(�(s)) ds: (2)

Due to the properties of K and � assumed below, K is invertible. With u := K( ) as primary
unknown, after de&ning

b(u) := � ◦ K−1(u); k(b(u)) := K ◦ � ◦ K−1(u); (3)

if ẽ z stands for the vertical unit vector, (1) becomes

@tb(u) − ∇ · (∇u+ k(b(u))̃ez) = 0 in (0; T ) × �: (4)

Qualitative properties for the Richards’ equation are studied in several papers (see, e.g., [1,7]).
Numerous articles investigate numerical methods that are appropriate for this equation. Adaptive
time stepping is studied, e.g., in [20]. In case of implicit schemes, iterative methods are considered
for solving the resulting nonlinear equations (see, e.g., [6,10,12]). For the spatial discretization,
mixed &nite elements or &nite volumes provide a good approximation of the solution [8,11]. Hybrid
mixed &nite elements are studied from an algorithmic point of view in [20].

Convergence results are obtained in [24] (for mixed &nite element discretization), [8] (for an
implicit &nite volume method), [10] (for a relaxation scheme) and [16] (for an implicit scheme in
unsaturated regime). This paper is a continuation of [19], where error estimates are obtained for an
Euler implicit mixed &nite element scheme. It discusses an iterative scheme used for solving the
nonlinear problems appearing as a result of the discretization procedure.

2. The numerical scheme

We are interested in solving Eq. (4) with initial and boundary conditions,

@tb(u) − ∇ · (∇u+ k(b(u))̃ez) = 0 in (0; T ) × �;

u= u0 in 0 × �;

u=0 on J × �: (5)

Throughout this paper we make use of the following assumptions:

(A1) � ⊂ Rd (d¿ 1) is bounded with Lipschitz continuous boundary, T ¡∞.
(A2) b∈C1 is such that 06 b′(u)6Lb for all reals u.
(A3) k(b(z)) is continuous and bounded in z and satis&es, for all z1, z2 ∈R,

| k(b(z2)) − k(b(z1))|26Ck(b(z2) − b(z1))(z2 − z1):

(A4) b(u0) is essentially bounded (by 0 and 1) in � and u0 ∈L2(�).
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Assuming k bounded is reasonable since, for Richards’ equation, k models the medium conductivity
of the medium. The same is also valid for (A4), recalling that b(u0) stands for the initial saturation
in the porous medium. The growth condition on k(b(·)) (see also [16,18]) relaxes the more often
assumed Lipschitz continuity of k (see, for example, [2] or [13]) and ensures uniqueness of a weak
solution (see [1]). Source terms satisfying (A3) can also be considered here without any additional
diMculty.

Because of the degenerate character, solutions of (5) should be understood in a weak sense. To
give the corresponding de&nition we let (·; ·) stand for the inner product on L2(�) or the duality
pairing between H 1

0 (�) and H−1(�), ‖ · ‖ for the norm in L2(�), ‖ · ‖1 and ‖ · ‖−1 for the norms in
H 1(�), respectively H−1(�). For vector valued functions the L2 inner product and norm are de&ned
by summing the correspondings for each component. We also make use of the space H (div; �) =
{̃q∈ (L2(�))d=∇ · q̃∈L2(�)}, with the associated norm ‖̃q‖2div := ‖∇ · q̃‖2 + ‖̃q‖2.
Analogous notations are used for the inner product and corresponding norm on L2(0; T ;H), with

H being either L2(�), H 1(�), or H−1(�). In addition, we often write u or u(t) instead of u(t; x)
and use C to denote a generic positive constant, not depending on the discretization or regularization
parameters.

A weak solution for problem (5) by de&ned as (see [1]).

De�nition 1. A function u is called a weak solution for Eq. (5) iC b(u)∈H 1(0; T ; H−1(�)),
u∈L2(0; T ; H 1

0 (�)), u(0) = u0 (in H−1 sense) and for all ’∈L2(0; T ; H 1
0 (�)) it holds

∫ T

0
(@tb(u(t)); ’(t)) + (∇u(t) + k(b(u(t)))̃ez;∇’(t)) dt = 0: (6)

Existence, uniqueness and essential bounds for a weak solution of the above problem is studied
in several papers (see, for example, [1,14] and the references therein).

Our numerical approach employs the lowest order Raviart–Thomas (RT0) &nite elements in space
and Euler implicit in time. These schemes are applied after performing a regularization step. Specif-
ically, for an �¿ 0 we de&ne b� as an approximation of the original nonlinearity b, satisfying

0¡�6 b′
�(u)6C1 ¡∞; |b(u) − b�(u)|6C2�;

for any real u. Possible choices are

b�(u) = b(u) + �u or b�(u) =
∫ u

0
max{�;min{b′(v); 1=�}} dv: (7)

With N ¿ 0 integer, set  = T=N and let Th being a decomposition of � into closed d-simplices; h
stands for the mesh size.

For a rigorous formulation of the scheme we make use of the discrete subspaces Wh × Vh ⊂
L2(�) × H (div; �) de&ned as

Wh := {p∈L2(�) |p is constant on each element T ∈Th};
Vh := {̃q∈H (div; �) | q̃|T = ã+ b̃x for all T ∈Th}: (8)
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So Wh denotes the space of piecewise constant functions, while Vh is the RT0 space (see [5]). Now
the fully discrete mixed &nite element approximation of problem (5) is de&ned in

De�nition 2. Let n∈ {1; : : : ; N} and pn−1
h ∈Wh be given. Find (pn

h; q̃
n
h)∈Wh × Vh such that

(b�(pn
h); wh) +  (∇ · q̃n

h; wh) = (b�(pn−1
h ); wh); (9)

(̃qn
h; vh) − (pn

h;∇ · ṽh) + (k(b(pn
h))̃ez; ṽh) = 0; (10)

for all wh ∈Wh and ṽh ∈Vh.

Initially we take p0
h = b−1

� (Phb�(u0)), where Ph is the usual L2 projector

Ph : L2(�) → Wh; ((Phw − w); wh) = 0; ∀wh ∈Wh: (11)

Since Phb�(u0) is constant on any T ∈Th, the same holds for b−1
� (Phb�(u0)), so p0

h ∈Wh. Moreover,
with this choice we obtain, for all wh ∈Wh,

(b�(p0
h); wh) = (b�(u0); wh):

De&ning, for 06 t6T , the time-integrated @ux as

q̃(t) = −
∫ t

0
(∇u(s) + k(b(u(s)))̃ez) ds;

if u is the solution of problem (5) in the sense of De&nition 1, the following error estimates are
proven in [19, Theorem 4.14, Corollary 4.15, and Remark 4.16]:

Theorem 3. Assuming (A1)–(A4), we get
∣∣∣∣∣
∣∣∣∣∣

N∑
n=1

∫ tn

tn−1

(u(t) − pn
h) dt

∣∣∣∣∣
∣∣∣∣∣
2

+

∣∣∣∣∣
∣∣∣∣∣q̃(T ) −  

N∑
n=1

q̃n
h

∣∣∣∣∣
∣∣∣∣∣
2

6C( + �+ h2);

N∑
n=1

∫ tn

tn−1

(b�(u(t)) − b�(pn
h); u(t) − pn

h) dt6C( 1=2 + �1=2 + h2= 1=2): (12)

3. Linearization procedure

The numerical scheme under consideration is implicit, leading at each time step to a nonlinear
equation. To solve it we take K¿Lb being a real number and de&ne the following linearization
procedure.
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De�nition 4. Let n=1; N , i¿ 0, and pn−1
h ∈Wh, p

n; i−1
h ∈Wh, q̃

n; i−1
h ∈Vh given. Find (pn; i

h ; q̃n; i
h )∈Wh

× Vh such that

K(pn; i
h ; wh) +  (∇ · q̃n; i

h ; wh) = (Kpn; i−1
h + b�(pn−1

h ) − b�(p
n; i−1
h ); wh); (13)

(̃qn; i
h ; ṽh) − (pn; i

h ;∇ · ṽh) = −(k(b(pn; i−1
h ))̃ez; ṽh); (14)

for all wh ∈Wh and ṽh ∈Vh, with pn;0
h = pn−1

h .

The scheme above is inspired from partial diCerential equations books (see, e.g., [22, p. 96]),
where it is used for constructing sub- and super-solutions for nonlinear elliptic problems. In [25]
(see also [15,17]) the same idea is used to construct iteration schemes for degenerate (slow diCusion)
problems, and the proof is based on &xed point arguments in the H 1 space. Nevertheless, in case of
slow diCusion problems the iterations are converging slowly, so such schemes are not of practical
interest.

Closely related ideas are adopted in the succeeding paper [21], where the same approach is used
for constructing an eCective iteration scheme for fast diCusion problems. Convection is treated there
explicitly, and formulation is conformal. Here we deal with mixed formulation and discretize the
convection implicitly.

Remark 5. The setting of De&nition 4 includes a spatial discretization based on RT0 elements.
De&ning the iterative procedure for the spatially continuous case is straightforward, and all the
results below apply without any change.

Remark 6. Convergence is shown below by contraction arguments and holds for any starting point
pn;0

h . However, the number of iterations required for obtaining a good approximation of pn
h and q̃n

h

is in@uenced by this choice, therefore we take pn;0
h = pn−1

h above, which seems reasonable.

To show convergence of the iteration scheme we use the following notations:

eip := pn
h − pn; i

h ; eiq := q̃n
h − q̃n; i

h ; (15)

where pn
h and q̃n

h are from De&nition 2. The following lemma is proven in [23].

Lemma 7. If the domain � is convex, for any fh ∈Wh a ṽh ∈Vh exists such that

∇ · ṽh = fh and ‖̃vh‖6C�‖fh‖; (16)

where the constant C� ¿ 0 does not depend on fh.

To deal with convection, a mild restriction is imposed for the time step

2Ck ¡ 1; (17)

with no additional assumption for the regularization parameter (�¿ 0).
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Theorem 8. Assuming (17), the scheme in De:nition 4 converges, and for any i¿ 0 we have

‖eip‖6 +i=2‖e0p‖ and ‖eiq‖6 +i=2

√
(K +  =(2C2

�))
 

‖e0p‖ (18)

with + := [(K − �(1 − 2 Ck))=(K +  =(2C2
�))]¡ 1, with C� from Lemma 7 and Ck from (A3).

Proof. We restrict ourselves to proving (18), convergence of pn; i
h to pn

h, respectively, q̃
n; i
h to q̃n

h (as
i ↗ ∞) following directly since +¡ 1. Subtracting (13) from (9) and (14) from (10) gives

K(eip − ei−1
p ; wh) +  (∇ · eiq; wh) + (b�(pn

h) − b�(p
n; i−1
h ); wh) = 0; (19)

(eiq; ṽh) − (eip;∇ · ṽh) + ((k(b(pn
h)) − k(b(pn; i−1

h )))̃ez; ṽh) = 0: (20)

By Lemma 7, a ṽh ∈Vh exists such that ∇ · ṽh = eip and ‖̃vh‖6C�‖∇ · ṽh‖. Using this ṽh into (20)
together with the inequalities of Cauchy and of means |ab|6 ,a2 + b2=(4,) (for all reals a and b
and ,¿ 0) gives

‖eip‖26 2C2
�{‖eiq‖2 + ‖k(b(pn

h)) − k(b(pn; i−1
h ))‖2}: (21)

Taking now wh = eip ∈Wh into (19), respectively ṽh =  eiq into (20), and adding the resulting, by the
identity (x − y; x) = [x2 − y2 + (x − y)2]=2 we get

K
2
(‖eip‖2 − ‖ei−1

p ‖2 + ‖eip − ei−1
p ‖2) +  ‖eiq‖2 + (b�(pn

h) − b�(p
n; i−1
h ); ei−1

p )

= − (b�(pn
h) − b�(p

n; i−1
h ); eip − ei−1

p ) −  ((k(b(pn
h)) − k(b(pn; i−1

h )))̃ez; eiq):

Using again Cauchy’s inequality and the inequality of means, we get

K‖eip‖2 − K‖ei−1
p ‖2 +  ‖eiq‖2 + 2(b�(pn

h) − b�(p
n; i−1
h ); ei−1

p )

6
1
K

‖b�(pn
h) − b�(p

n; i−1
h )‖2 +  ‖k(b(pn

h)) − k(b(pn; i−1
h ))‖2: (22)

Adding  ‖k(b(pn
h)) − k(b(pn; i−1

h ))‖2 on both sides of (22), using (21), (A2) and (A3) gives(
K +

 
2C2

�

)
‖eip‖26K‖ei−1

p ‖2 +
(
Lb

K
+ 2 Ck − 2

)
(b�(pn

h) − b�(p
n; i−1
h ); ei−1

p ):

Since b� is monotone, the scalar product on the right is positive. In fact we have

�‖ei−1
p ‖26 (b�(pn

h) − b�(p
n; i−1
h ); ei−1

p )6Lb‖ei−1
p ‖2:

By (17), because K¿Lb we have Lb=K + 2 Ck − 26 2 Ck − 1¡ 0, so we end up with(
K +

 
2C2

�

)
‖eip‖26 (K − �(1 − 2 Ck))‖ei−1

p ‖2; (23)

and the &rst part of (18) follows immediately.
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For estimating the @ux error we use (22) again and proceed as before to get

K‖eip‖2 +  ‖eiq‖26 (K − �(1 − 2 Ck))‖ei−1
p ‖2:

Using now the estimates in the pressure gives the second part of (18).

Remark 9. Theorems 10 and 8 show that the linearization given in De&nition 4 is convergent in
both pressure and @ux. This is consistent with previous results, where H 1 estimates are obtained in
the conformal formulation.

The convergence rate becomes squared if convection is 0, as follows from below. Moreover, as
in [21] or [25], the scheme converges for any  ¿ 0 and �¿ 0.

Theorem 10. In the absence of convection (k =0), the scheme given in De:nition 4 is convergent.
With + := (K − �)=(K +  =C�)¡ 1, for any i¿ 0 we have

‖eip‖6 +i‖e0p‖ and ‖eiq‖6 +i[(K +  =C�)=(2K 1=2)]‖e0p‖: (24)

Proof. We use similar arguments as for proving Theorem 8. Subtracting (13) from (9) and taking
wh = eip ∈Wh yields

K‖eip‖2 +  (∇ · eiq; eip) = (Kei−1
p − (b�(pn

h) − b�(p
n; i−1
h )); eip): (25)

Similarly, from (14) and (10) we get

(eiq; ṽh) − (eip;∇ · ṽh) = 0; (26)

for all ṽh ∈Vh. Testing with ṽh =  eiq ∈Vh and adding the result to (25) gets

K‖eip‖2 +  ‖eiq‖2 = (Kei−1
p − (b�(pn

h) − b�(p
n; i−1
h )); eip): (27)

By Lemma 7, a ṽh ∈Vh exists such that ∇ · ṽh = eip ∈Wh and ‖̃vh‖6C�‖eip‖. Using this as a test
function into (25) gives

‖eip‖2 = (eip;∇ · ṽh) = (eiq; ṽh)6 ‖̃vh‖‖eiq‖6C�‖eip‖‖eiq‖;
showing that

‖eip‖6C�‖eiq‖: (28)

Since �6 b′
�6Lb6K , it follows that

|Kei−1
p − (b�(pn

h) − b�(p
n; i−1
h ))|6 (K − �)|ei−1

p | (29)

almost everywhere in �. By Cauchy’s inequality, (28) and (29) imply(
K +

 
C�

)
‖eip‖26 (K − �)‖ei−1

p ‖‖eip‖;

so ‖eip‖6 +‖ei−1
p ‖ and the &rst part of (24) is proven. For the second estimate we use (27) again

and the mean inequality to obtain

K‖eip‖2 +  ‖eiq‖26 (K − �)‖ei−1
p ‖‖eip‖6K‖eip‖2 + (K − �)2

4K2 ‖ei−1
p ‖2;

and the rest of the proof is straightforward.
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Table 1
L2 errors for the test problem in [9]

N  h Squared error Convergence order

1 0.04 0.25 7.084860e-06 —
2 0.02 0.176 3.620121e-06 0.81
3 0.01 0.125 2.057357e-06 0.82
4 0.005 0.088 9.574648e-07 1.10
5 0.0025 0.0625 5.362180e-07 0.84
6 0.00125 0.044 2.431789e-07 1.14
7 0.000625 0.03125 1.355457e-07 0.84

Remark 11. The same result is obtained if convection is discretized explicitly (see also [21]).

The theoretical estimates are validated on a test problem proposed in [9]. After performing the
KirchhoC transformation we end up with (4), where k ≡ 0 and

b(u) =




.2

2
− u2

2
for u6 0;

.2

2
for u¿ 0:

With appropriate initial and (Dirichlet) boundary conditions, an exact solution can be given

uex(t; x; y) =




−2(es − 1)
es + 1

for s¿ 0;

−s for s¡ 0;

where s= x − y − t. The equation is solved in the unit square (0; 1)2, and the &nal time is T = 1:0.
We consider a hybrid implementation of the mixed &nite element method. The emerging algebraic

system of equations is solved by adding Lagrange multipliers. Within an iteration step we &rst
eliminate the @ux on each element and then continuity equation is solved locally for pressure. The
algorithm is implemented in UG (version 3.8, see also [3]) on a SUN workstation.
Computations are performed on a uniform triangular mesh. Initially we take h=0:25 and  =0:04.

Then  and h2 are successively halved, up to  =0:000625 and h=0:03125. Here we took �=0 and
K =2. Few iterations (5 to 8) were suMcient to obtain solutions diCering by at most 10−10. Similar
results are provided by the Newton method developed in [20].

The order of convergence is estimated by the logarithm of the ratio between two squared er-
rors, obtained for successive discretization parameters. Results are given in Table 1, con&rming the
theoretical estimates in Theorem 3.
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