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A pseudospectral method of solution of Fisher’s equation
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Abstract

In this paper, we develop an accurate and efficient pseudospectral solution of Fisher’s equation, a prototypical
reaction–diffusion equation. The solutions of Fisher’s equation are characterized by propagating fronts that can be
very steep for large values of the reaction rate coefficient. There is an ongoing effort to better adapt pseudospectral
methods to the solution of differential equations with solutions that resemble shock waves or fronts typical of
hyperbolic partial differential equations. The collocation method employed is based on Chebyshev–Gauss–Lobatto
quadrature points. We compare results for a single domain as well as for a subdivision of the main domain into
subintervals. Instabilities that occur in the numerical solution for a single domain, analogous to those found by
others, are attributed to round-off errors arising from numerical features of the discrete second derivative matrix
operator. However, accurate stable solutions of Fisher’s equation are obtained with a multidomain pseudospectral
method. A detailed comparison of the present approach with the use of the sinc interpolation is also carried out.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Spectral methods have long been known to provide very accurate and rapidly convergent solutions
of partial differential equations with smooth solutions [9,12,40]. These methods generally provide an
exponential convergence of the solution versus the number of collocation points. In recent years, spectral
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methods have also been used for the solution of differential equations with solutions that resemble shock
waves or fronts typical of hyperbolic partial differential equations [22]. There is an ongoing interest to
further adapt spectral methods to differential equations with rapidly varying and propagating solutions.

The purpose of the present paper is to apply a spectral method to the solution of Fisher’s equation
(FE), which was original proposed by Fisher [19] as a model for the spatial and temporal propagation of
a virile gene in an infinite medium. It is a one-dimensional reaction diffusion model for the evolution of
the infected population, U(x′, t ′), with a quadratic reactive term corresponding to logistic growth. The
equation is defined by

�U

�t ′
= D

�2U

�x′2 + kU(1 − U), (1)

where t ′ is the time and x′ ∈ (−∞, ∞) is the position. The diffusion and reactive processes are parame-
terized by a diffusion coefficient, D, and a reactive rate coefficient, k, respectively. We consider solutions
to Eq. (1) subject to the following initial and boundary conditions,

lim
x′→∞

U(x′, t ′) = 0,

lim
x′→−∞

U(x′, t ′) = 1,

U(x′, 0) = U0(x
′). (2)

It has been shown that with the appropriate boundary conditions FE will support travelling waves of
the form U(x′ − c′t ′) moving in the positive x-direction, provided that the speed c′ is greater than the
critical value c′

min = 2
√

kD. Eq. (1) is the simplest reaction–diffusion equation employed to model many
problems in mathematical biology [36]. With the change of variables,

t = kt ′, x = x′
(

k

D

)1/2

Eq. (1) becomes

�U

�t
= �2U

�x2 + U(1 − U) (3)

and travelling wave solutions exist for dimensionless speeds c�2, [28].
The mathematical properties of FE have been studied extensively and there have been numerous

discussions in the literature. Excellent summaries have been provided in [10,29,36]. One of the first
numerical solutions was presented in [21] with a pseudo-spectral approach. Implicit and explicit finite
differences algorithms, have been reported by different authors such as Parekh and Puri [39] and Twizell et
al. [49]. The works of Mickens [33,34] considered time stepping aspects for finite difference algorithms.
The work in [25], where the main goal was to develop asymptotic boundary conditions, considered a
centered finite difference algorithm. Rizwan-Uddin [43] compared a nodal method with nonstandard
finite differences scheme. A Galerkin finite element method was used by Tang and Weber [48] whereas
Carey and Shen [13] employed a least-squares finite element method. A collocation approach based on
Whittaker’s sinc interpolation function [9,47] was also considered in [2,58]. The work in [23] considered
a nonlocal form of FE. The study in [59] was concerned with another modified form of FE including time
delay and the work in [44] considered finite elements for a two-dimensional FE.
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Solutions of FE exhibiting propagating fronts thus possess features similar to those of shock waves
that arise with hyperbolic equations. There are also special interesting features of the solution in terms
of the relation between the speed of the wavefront and the behavior of the solution at infinity [24,29].
Larson [29] and Hagan [24] proved that for any initial condition of Eq. (3) such that

U0(x) −−−−→x → ∞ Ae−�x

then, U(x, t) evolves as a wave front with speed given by

c =
{

� + 1
� 0 < ��1,

2 ��1.

There is also an interest concerning the instability of the solution to small perturbations in the solution
particularly when U(x, t) ≈ 0 as discussed by different authors [11,21,24,41]. Canosa [11] proved
stability of the solution to perturbations of compact support, whereas instability occurred when the
perturbation vanished at infinity. This property plays a fundamental role when Eq. (3) is solved numerically
[21].

A closely related problem is to consider a modified form of FE introduced in [30], for which the
nonlinear reactive term is made arbitrarily larger than the diffusion term. This modified FE is given by

�U

�t
= �2U

�x2 + �U(1 − U) (4)

with initial and boundary conditions similar to Eq. (2), and the reaction rate coefficient is generally chosen
so that �?1. A particular solution of Eq. (4) considered in [30], was found by Ablowitz and Zepetella
[1]. It has the form of a travelling wave front, and is given by

U(x, t) = 1

(1 + exp
√

�/6x−5�/6t )2
(5)

which travels with constant speed c = 5
√

�/6. The initial condition of Eq. (4) is clearly given by U0(x)=
U(x, 0). Solutions of Eq. (4) with large � have been referred in [58] as super speed wave (SSW) types.
With an increase in �, the propagating front steepens and this presents a challenging numerical problem
to both resolve and track the front. This rescaled version of FE was considered by Li et al. [30] in their
study of moving mesh strategies in finite difference methods of solution of partial differential equations.
They commented that moving mesh methods are not recommended for such reaction diffusion problems
for which the diffusion term is much smaller than the reactive term. Subsequently, Qiu and Sloan [41]
carried out a detailed comparison of different moving mesh strategies [26,27] and concluded that these
methods are not easily adapted for equations analogous to FE with steep fronts. The authors have also
applied these methods to Burger’s equation [7,8,35] with similar shock like solutions. In the course of
these studies on FE, numerous workers have also reported a sensitivity of the numerical solutions to
perturbations owing to numerical noise in the solutions or round-off errors resulting in instabilities.

One of the objectives of the present paper is to apply spectral methods to the solution of FE. A
second objective is to establish a relationship between the problems given by Eqs. (3) and (4), which we
demonstrate lead to equivalent numerical problems. In the first instance, we consider a single fixed domain
suitably truncated to the interval [xL, xR] and apply a spectral method based on Chebyshev–Lobatto points.
This approach gives good results but only for relatively small values of �. The difficulty encountered for
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larger values of � is traced to round-off errors in the application of the second derivative spectral matrix
operator to the solution. The occurrence of round-off errors for these matrix derivative operators have
been well documented [3–5]. We examine in detail the origin of these round-off errors in the application
of spectral methods to FE. A multidomain approach developed in [31,56,57] for the solution of Burgers
equation and the Navier Stokes equation was then employed for the present work. We obtain accurate
stable solutions of FE for relatively large values of �, with the appropriate division of the domain [xL, xR]
into subdomains. In Section 2, we outline our spectral method applied to FE in one domain and analyze
the problem of round-off errors. The multidomain approach is presented in Section 3. In Section 4,
we present a comparison of the present approach with the one based on Whittaker’s sinc interpolation
[9,16,55] employed in [58,50] that they refer to as the discrete singular convolution (DSC).

2. Chebyshev–Lobatto spectral approach to Fisher’s equation

2.1. The modified FE; scaling the � dependence

Several groups [30,41,58], have employed the modified form of FE (Eq. (4)) for the SSW situation.
The exact solution of the modified FE exhibits a shock-like front for large � and speed c=5

√
�/6. For the

infinite spatial domain, the rapidly varying shock front is considered to be stiff with the stiffness depending
on �. In the next section, we propose a numerical solution of Eq. (4) which involves the expansion of the
solution in Chebyshev polynomials orthogonal on [−1, 1]. This requires that the boundary conditions be
applied on a truncated domain [xL, xR]. As a consequence of the use of a finite domain in the numerical
solution, there is an important dependence of the solution on � and the width of the interval considered.
On this truncated interval, we consider the differential equation for V (x, t),

Vt = Vxx + �V (1 − V ) (6)

with the initial condition given by

V (x, 0) = V0(x), x ∈ [xL, xR] (7)

and boundary conditions at the ends of the truncated interval, that is

V (xL, t) = 1,
V (xR, t) = 0, t ∈ [0, T ] (8)

where V0(x) is given by U(x, 0) in Eq. (5) but over [xL, xR]. From Eq. (5), the dependence on the
parameter � can be removed with a scaling of the space and time variables, i.e.

z = √
�x, � = �t (9)

and Eq. (6) can be written with the dependence of � occurring only at the end points of the computational
domain, that is

V� = Vzz + V (1 − V ) (10)
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with

V (z, 0) = V0(z), z ∈ [√�xL,
√

�xR]
V (

√
�xL, �) = 1,

V (
√

�xR, �) = 0, � ∈ [0, �T ]. (11)

Due to the boundary condition V
(√

�xR, �
) = 0, and in order to preserve a good approximation of the

solution. T is taken as a time before the wavefront hits the right boundary at xR.
By virtue of the transformations Eq. (9), the solution of Eq. (6) for � = �1 on [xL, xR] is equivalent to

Eq. (10) on [√�1xL,
√

�1xR]. Similarly, the solution for � = �2 on [x′
L, x′

R] is equivalent to Eq. (10) on
[√�1x

′
L,

√
�1x

′
R]. The solutions for different � are equivalent to each other provided that

x′
L =

√
�1

�2
xL, x′

R =
√

�1

�2
xR (12)

are satisfied. If we consider the problem given by Eq. (6) with � = �2 on [x′
L, x′

R], and a numerically
equivalent problem given by �1 on [xL, xR] (i.e. satisfying (12)), then, if �1 is modified to �1, the problem
with � = �2 on [x′

L, x′
R] and the modified problem with � = �1 on [xL, xR], are no longer equivalent

unless xL and xR are modified in order to satisfy condition (12). In other words, relation (12) establishes
a property between � and the length of the interval L = xR − xL, where modifying � or L and fixing the
other one, represents the same problem as long as relation (12) is satisfied. It follows that increasing the
value of � leads to a steeper front only if we consider a fixed numerical domain. This aspect of FE appears
not to have been mentioned previously in the literature.

The case of SSW studied in [30,41,58] has been considered previously by different authors with � = 1
and different interval lengths. As an example, Qiu and Sloan [41] and Zhao and Wei [58] considered the
computational domain with end points given by xL = −0.2 and xR = 0.8 with � = 104 whereas Gazdag
and Canosa [21] considered � = 1, xL = 0, xR = 140. According to (9), the problem considered in [21], is
equivalent to � = (140)2 = 19, 600, xL = 0 and xR = 1. Another example is the problem studied in [39]
where they chose � = 1, xL = 0 and xR = 300 which is equivalent to � = (300)2 = 90, 000 with xL = 0
and xR = 1. However, these previous works did not consider the case of solving Eq. (6), with the initial
and boundary conditions given by Eqs. (7) and (8). Instead, properties such as the numerical stability
of algorithms, or features of reaction diffusion processes, were considered. As an example of previous
numerical studies, we mention the works in [2,13,43,48] that analyzed the phenomena of reaction and
diffusion on FE for different initial conditions. Gazdag and Canosa [21] based on Canosa’s previous
work [11], considered initial conditions of Eq. (3) with an asymptotic behavior at infinity such that the
speed is faster than the minimum, c=2. However, due to their proposed numerical scheme, they obtained
oscillations in their numerical solution near the right boundary and at the onset of the front, giving an
unstable solution. The instability problem was solved considering V (x, t) = 0 whenever |V (x, t)| < �,
where � is some small quantity. However, this assumption leads to the loss of the initial theoretical speed,
and to the convergence to the minimum speed front c = 2.

The variable � in the numerical problem (10) with (11), does not play the role of a reaction rate
coefficient but a scaling over the numerical domain as considered in [2,13,21,39,43,48]. However, as the
work presented in this paper follows from the work by Li et al. [30] and [41,58], we will consider the
numerical problem given by (6) with (7).
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2.2. Pseudospectral solution of the modified FE

We expand U(x, t) or V (x, t) in the Chebyshev polynomials, Tk(x), which are orthogonal with respect
the weight function w(x) = (1 − x2)−1/2 on the interval [−1, 1], that is,

1

ck

∫ 1

−1
w(x)Tk(x)Tl(x) dx = 1

2
��k,l , (13)

where ck = 1 for all k except for c0 = 2. The Lobatto quadrature points and weights associated with the
Chebyshev polynomials are given by xi = − cos(�i/N) and the weights are wi = �/N for all i except
w0 = wN = �/2N [9,12,40]. These points and weights provide the approximate quadrature,

∫ 1

−1
w(x)f (x) dx �

N∑
i=0

wif (xi), (14)

where N + 1 is the number of points. Since any piecewise continuous function, f ∈ L2
w[0, 1] can be

expanded in a Chebyshev polynomial series that is convergent in the L2
w norm, we have

f (x) ≈ fN(x) =
N∑

k=0

akTk(x), (15)

where

ak = 2

ck�

∫ 1

−1
w(x)f (x)Tk(x) dx. (16)

With Eqs. (14)–(16) we obtain the interpolation algorithm

fN(x) �
N∑

j=0

Ij (x)f (xj ), (17)

where the interpolating polynomials, Ij (x), are given by

Ij (x) = 2

N�j

N∑
k=0

�kTk(xj )Tk(x), (18)

where �0 = �N = 1/2 and �k = 1 if k 	= 0, N . The nth derivative of f (x) at the quadrature points is then
given approximately by

f
(n)
N (xk) �

N∑
j=0

I
(n)
j (xk)f (xj ). (19)

If we denote by f , the vector of the function evaluated at the Chebyshev–Lobatto points, Eq. (19) can be
rewritten as

f (n) = D(n) · f (20)
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and thus, the second derivative matrix is then identified with

D
(2)
jk = d2Ij (x)

dx2

∣∣∣∣
x=xk

(21)

This is the basis for the Chebyshev pseudospectral method.
It is now straightforward to apply the pseudospectral method to the modified FE, by approximating

the second derivative operator as in Eq. (21). From Eq. (6) and the linear transformation from [xL, xR] to
[−1, 1], the following system of ordinary differential equations is obtained.

dVi

dt
= A

N∑
j=0

D
(2)
ij Vj + �Vi(1 − Vi), (22)

where A = 4/(xR − xL)2, Vi = V (xi, t) and the time dependence is considered implicitly in Vi . The
spectral derivative matrices were calculated with the MATLAB suite of programs developed in [54]. The
set of ordinary differential equations was integrated with a Runge–Kutta integrator in MATLAB subject
to the boundary conditions, V (xL) = 1 and V (xR) = 0 for all t.

2.3. Numerical results

The formalism in Sections 2.1 and 2.2 was applied to a study of the behavior of the numerical solution
of FE versus �. The behavior for a fixed interval for different values of � is considered. In the present study,
U0(x) will refer to the initial condition depending on �, that is Eq. (5) with t = 0, unless it is otherwise
indicated. We choose xL = −0.2, xR = 0.8 as done in [41,58] and vary �. In Fig. 1, we compare the
analytic solution U(x, t) (solid curves) evaluated at the Chebyshev collocation points with the numerical
solution Vi (symbols), at different t. The values of � are (A) 2000, (B) 5000 and (C,D) 10,000, and we
note that � = 10, 000 was considered in the previous works [30,41,58]. The steepening of the front on
increasing � for a fixed interval is clearly seen by comparing Figs. 1C and D with Figs. 1A and B. In Fig.
1A, the good agreement between the numerical results and the analytic solution with � = 2000 and 40
Chebyshev points is shown. As the initial profile (Eq. (5), t = 0) behaves asymptotically as given by Eq.
(28), the wave speed is constant at c = 5

√
�/6. The wave speeds calculated from the numerical solutions

agree with the theoretical speed to 4–6 significant figures depending on the value of �. In order to get a
stable and accurate solution for � = 5000 shown in Fig. 1B, the number of points had to be increased
from N = 40 to 64. Fig. 1C for � = 104 and N = 64, shows an instability (negative part) that appears at
x ∼ 0.7 for t = 0.002. When N is increased to 150, a stable solution is obtained as shown in Fig. 1D.
To further validate the numerical method used, we have considered the solution of the diffusion equation
(� = 0) but with an exponentially decaying initial profile (U0(x), � = 104). We find that instabilities at
small times are quickly damped by diffusion. However, for FE with �=1.5×104, a stable solution could
not be obtained even with N as large as 250.

It is of considerable interest to understand the origin of this instability, which we attribute to round-off
error associated with the application of the second derivative operator on the solution at some time step.
This is a problem common to many applications of spectral methods as recently discussed [3–5]. We
therefore study the error in the numerical computation of the second derivative of the initial condition
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Fig. 1. Time dependent profiles versus x for � and N equal to (A) 2 × 103, 40; (B) 5 × 103, 64; (C) 104, 64 and (D) 104, 150.
The successive profiles in each graph are for times (A) t = 0.002, 0.003, 0.004, 0.005, 0.006; (B) t = 0.0005, 0.0015, 0.0025,

0.0035, 0.0045; (C) t = 0.0004, 0.0008, 0.0012, 0.0016, 0.002; (D) t = 0.001, 0.0015, 0.002, 0.0025, 0.003. The solid line
represents the analytic solution, U(x, t), and the symbols, Vi , the numerical solution evaluated at the Chebyshev points.

U0(x). In Fig. 2, we show the relative error defined by

RE(xk) = log10

∣∣∣∣∣�
2U0(x)/�x2|x=xk

−∑N
i=0 D

(2)
ki U0(xi)

�2U0(x)/�x2|x=xk

∣∣∣∣∣ (23)

versus xk , for � equal to 104 and 1.5 × 104 and N = 64, 128 and 200. These results clearly demonstrate
that the error is larger at the right boundary than at the left boundary. Furthermore, for x > 0.1 where
U(x) ≈ 0, the error increases exponentially with respect to x, reaching its largest value at the right
boundary.
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Fig. 2. The relative error versus in the application of the second derivative matrix operator to the solution at t = 0 for different
values of N with (A) � = 10, 000 and (B) � = 15, 000.
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Fig. 3. The relative error RE versus N in the application of the second derivative matrix operator to the solution at t = 0 at the
boundaries, x = xR (upper curve) x = xL (lower curve) with � equal to (A) 10,000 and (B) 15,000.

In Fig. 3, the relative errors at the right and left boundaries versus N are compared. As in Fig. 2, the error
is bigger at xR than at xL. It decreases with N until about N =200 for �=104 (N =230 for �=1.5×10−4)
and then increases slowly with a further increase in N. Thus, it is clear that an increase in N decreases the
error and as a consequence a stable solution can be obtained, Fig. 1(D), N = 150 whereas an instability
occurs with a smaller N = 64 for Fig. 1(C). For �= 104, the improvement of the accuracy can be done up
to N = 200, where for larger values of N round off error begins to become significant in the calculations.
When � = 1.5 × 104, N = 250 is not large enough to obtain a stable solution. From Fig. 3B, it is noticed
that values of N greater than 250 do not provide an improvement of the accuracy due to the effects of
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Fig. 4. (A) Variation of the logarithm of the second derivative versus �, at xR and xL for the analytic solution at t = 0. (B)
log10(D2

Nj
) versus j. The elements alternate in sign. Negative terms (◦), Positive terms (•) N = 250.

round-off error that have become significant. It is important to mention that round-off errors are present
even for relatively small values of �. However, since the amplitude of the error is small throughout the
time integration considered, the accumulated error does not play a crucial role, and a stable solution is
obtained.

The main contribution of the round-off error, is due to (i) the alternation in sign and the magnitude of
the elements of the second derivative operator D(2), and (ii) the small values of �2U0(xR)/�x2 relative to
U0(xL). U0(x) varies approximately exponentially with x for x ≈ xR and U0(x) ≈ 0 in the region near
the right boundary. Consequently, �2U0(x)/�x2 is very small.

The behavior of �2U0(x)/�x2 versus � at the boundary points is shown in Fig. 4A. Whereas the value
of the second derivative at xL remains almost constant, the value of �2U0(xR)/�x2 is small and decreases
rapidly with an increase in �. The numerical approximation of the second derivative at the right boundary,
�2U0(xR)/�x2 involves the summation of the form,

SN =
N∑

k=0

D
(2)
NkU0(xk), (24)

where the subindex N refers to the Nth row and D
(2)
Ni are the elements in the Nth row of the second

derivative matrix operator (21). It is well-known that (i) the size of the largest element of D
(2)
Ni increases

as N4, whereas the smallest increases as N2 and (ii) the elements D
(2)
Ni alternate in sign [40]. These

features of the elements of D(2) are confirmed in Fig. 4(B) for N = 250.
As a result, the sum (24) consists of adding alternately positive and negative terms, due to the alternation

of the signs of the elements in D(2). For � = 15, 000 and N = 250, �2U0(xR)/�x2 is of the order of 10−31

(Fig. 4A), whereas the terms in (24) take values from 10−27 to 104 i.e., the terms in (24) become relatively
large compared to �2U0(xR)/�x2.
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The key point is observed in the last two elements of the sum, Eq. (24). It is the difference between two
numbers of the order of 104, that should approximate a quantity of the order of 10−31. This substraction
leads to a poor approximation of the second derivative. In the same way, the approximated second
derivative over the rest of the points near xR, presents the same problem. It has to be mentioned that this
problem is less severe for �2U0(xL)/�x2, as log10(�

2U0(xL)/�x2) ≈ 0.
From the previous analysis, the smallness of �2U0(xR)/�x2 is the main source of round-off error at

xR. As a larger domain is considered, an increase in xR and/or decrease in xL, �2U0(xR)/�x2 decreases,
giving a larger error at xR. Then, it is clear that the effects of round-off error are greater for a larger
domain xR − xL. In order to reduce the effects of round-off error we have to consider a smaller domain.
As we will see in the next section, we partition the main domain into smaller domains, contributing to a
reduction in the round-off error.

From relation (12), it follows that increasing the length of the interval and fixing �, is equivalent to an
increase of � and fixing the length of the interval. Then, the problem of round-off error will be present
with the same magnitude whether � or the length of the interval are varied, according to relation (12).

The main consequence due to the round-off error problem, is the development of unwanted oscillations
at some particular time step in the integration of Eq. (22). This type of oscillation is similar to the one
reported in [58] for the Fourier pseudo-spectral method. The difference between the oscillations reported
in [58] and the instabilities in this paper with the Chebyshev–Lobatto collocation, is the location of the
oscillations. Whereas in [58] the higher amplitude oscillations are at the foot of the wave front, in this
paper they are located in a neighborhood of xR as discussed previously.

3. Chebyshev–Lobatto multidomain spectral method

In order to overcome the numerical round-off errors discussed in the previous section, we employ a
multidomain approach used previously [17,18,31,38,56,57]. This involves splitting the domain [xL, xR],
into K sub-domains denoted by

I� = [x�
0 , x

�
M ],

where each subinterval has length L and is discretized with M + 1 Chebyshev points as shown in Fig. 5.
The first two quadrature points of the interval I�+1 coincide with the last two points of the interval I�.

X0
X2M-1XMXM-1

XN

XR
XL

INi-1

I1

I2

INi

Subdomain Iµ

Fig. 5. Partition of the interval [xL, xR] into Ni subdomains.
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The overlap of these points of neighboring domains is possible provided that each subinterval is of the
same length

L = xR − xL

K + (1 − Ni)(1 − cos(�/M))/2

and the same number of Chebyshev collocation points is used in each interval. Thus, the new grid of
points over the whole interval can be represented by

{xk} = {x1
0 , . . . , x1

M−1 = x2
0 , x1

M = x2
1 , . . . , x

�
M−2, x

�
M−1 = x

�+1
0 , . . . , xK

M}. (25)

The overlap of the subdomains as described is very important for the correct construction of the derivative
operators. In each sub-domain I�, we proceed as before and have an equation similar to Eq. (1), given by

�U�

�t
= �2U�

�x2 + �U�(1 − U�), x ∈ [x�
0 , x

�
M ], t ∈ [0, tf ], (26)

where U� is the solution over the �th interval, and x
�
0 and x

�
M are the left and right boundaries of the �th

interval, respectively. The discretized form of Eq. (26) for each subinterval I� is given by

dU
�
i

dt
= 4

(x
�
M − x

�
0 )2

N∑
j=0

D
(2)
ij U

�
j + �U

�
i (1 − U

�
i ), (27)

where U
�
i = U�(x

�
i , t) and x

�
i are the Chebyshev–Lobatto points over the interval I�. The column vector

U�(t), consists of joining the column vectors U
�
i according to Eq. (25).

The first derivative matrix operator is then defined by,

D=⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
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. . .
. . .

. . .
. . .

. . .
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M−1,M−1 D1

M−1,M

D2
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1,1 · · · D2
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1,M

. . .
. . .
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Fig. 6. Time dependent profiles U(x, t) versus x for � = 106 with 140 subdomains and 20 points per domain; The profiles are
for times t = 8 × 10−9, 8 × 10−5, 1.6 × 10−4, 2.4 × 10−4, 3.2 × 10−4; the total integration time is T = 3.3 × 10−4.

and the remaining components are zero. The size of the derivative operator is (N + 1) × (N + 1), with
N = M + (M − 1)(K − 1).

The multidomain approach is expected to provide more stable and accurate results. The round-off errors
that occur in the application of D(2) to the solution vector U(t) are smaller as the main interval has been
subdivided.

We demonstrate the success of the multidomain approach in Fig. 6 where the successive profiles are
shown for �=106. In this calculation, 140 subdomains with 20 collocation points in each subdomain were
used. The time step was �t=8×10−8 with an integration up to T =3.3×10−4 such that L∞=3.12×10−12.
The agreement between the numerical and analytic solutions is excellent. The value of � used here is
significantly larger than the value used by numerous other researchers whose works have been cited.

To further benchmark this method, we choose � = 104 for which we obtained accurate solutions with
the single domain and N = 150. With the multidomain method we study the effect of varying the number
of domains and the number of points in each domain. The results are summarized in Table 1. It is clear
from these results that there is a considerable improvement with the multidomain method. The best results
for the case in Table 1 is with 15 subdomains and 10 points per domain. The error is an order of magnitude
smaller than the one domain approach with the same total number of points. In Table 2, a similar analysis
is carried out for � = 105 with N = 400. The single domain calculation leads to an instability in this
case. The multidomain approach provides an excellent result with 20 domains and 20 points in each
domain.
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Table 1
Analysis of the multidomain method for �=104, �t =10−8, total time of integration T =0.003; M is the number of subintervals
and N is the number of Chebyshev points per subinterval

Scheme M (sub) N points L∞ error

Chebyshev 1 150 0.332 (−2)
Multidomain 2 75 0.305 (−2)

6 25 0.456 (−3)
10 15 0.407 (−3)
15 10 0.357 (−3)
25 6 0.724 (−2)

Table 2
Analysis of the multidomain method for � = 105, �t = 10−8, T = 0.001; M is the number of subintervals and N is the number
of Chebyshev points per subinterval

Scheme M (sub) N points L∞ error

Chebyshev 1 400 NAN
Multidomain 10 40 0.132 (−3)

16 25 0.134 (−4)
20 20 0.511 (−5)
25 16 0.773 (−4)
40 10 0.471 (−2)

As discussed in the previous section, U0(x) given by Eq. (5) with t=0, behaves as a negative exponential
where U0(x) ≈ 0. More specifically,

U0(x) � e−2
√

�/6x for U0(x) ≈ 0. (28)

Moreover, for values of x where U0(x) ≈ 0, the second derivative �2U0(x)/�x2 behaves like U0(x), up
to a factor depending on �, i.e.,

�2U0(x)

�x2 � 2�

3
U0(x) for U0(x) ≈ 0. (29)

On the other hand, we know that the largest value of the sum in Eq. (24), that is used also in the multidomain
approach for each subdomain, is of the order of

R = log10

(
4

(xM − x0)
2

)
+ log10(N

2) − |log10(U0(x0))|, (30)

where from Eq. (29), the smallest value to be approximated is �2U0(xM)/�x2 � 2�/3U0(xM), which is
of the order of

E = log10

(
2�

3

)
− |log10(U0(xM))|. (31)

In order to get a good approximation for E, the difference R − E given by
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R − E = log10

(
12N2

2�(xM − x0)
2

)
+ log10

(
U0(xM)

U0(x0)

)
(32)

should be reduced. For a fixed value of � and N, the first term of Eq. (32) is a decreasing function of the
length of the interval whereas the second is an increasing function. Then, for a fixed � and N there is an
optimal interval length to consider in the multidomain approach.

For this last analysis, the region considered is where U0(x) ≈ 0. The main reason is due to the
importance of having a good approximation for U0(x) ≈ 0, as the solution U(x) ≡ 0 for FE, is unstable.

4. Discrete singular convolution; Whittaker’s sinc interpolation

In this section, we compare the results in Sections 2 and 3 with the results obtained with the DSC
method employed in [58], to solve FE. We also provide a detailed analysis of the numerical aspects of
their method. This method is based on the generic Cardinal function due to Whittaker [55] and discussed
previously by others [9,16,32,45,46], and defined in terms of the sinc function,

Ck(x) = sin[�/h(x − xk)]
�/h(x − xk)

. (33)

A uniform grid of N + 1 points xk = xL + hk, is defined for the finite interval [xL, xR] where the grid
spacing is h= (xR − xL)/N . This Cardinal function satisfies the interpolation requirement Ck(xj )= �jk ,
and the second derivative of f (x) is approximated by

f
(2)
N (x) ≈

N∑
k=0

C
(2)
k (x)f (xk). (34)

The use of Eq. (34) on a finite interval instead of the infinite interval results in truncation errors unless the
function of interest is well localized in the selected interval [9,32,45,46]. From the explicit differentiation
of Eq. (33), the representation of the second derivative operator in this scheme is,

D̃
(2)
jk = C

(2)
k (xj ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 2(−1)j−k

(j − k)2h2
j 	= k,

− �2

3h2 j = k.

(35)

We distinguish the sinc second derivative matrix operator with a tilde overbar. This scheme is similar
to the one used in [50] and by other researchers [9,16,32,45,46]. These methods employ a uniform grid
based on the sinc cardinal function as the interpolation function, although they are presented from different
perspectives. The time dependent solution is then determined with Eq. (22), where A=1 and the derivative
matrix operator given by Eq. (35). Although Wei [51,52] presents his methodology in the language of
wavelets and signal analysis, it is useful to recognize that it is simply an alternate interpolation scheme
analogous to other interpolations schemes such as Lagrange [6,32,42] as well as the interpolation defined
in terms of orthogonal polynomials in Section 2.2.

We present an analysis of the numerical aspects of the DSC method with concern to the round-off
errors associated with the application of the second derivative matrix operator, D̃(2), to U0(x) and to
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Fig. 7. Logarithmic value of the ith row of (A) D(2) (B) D(2)
	 , for i = 1, 16, 32, 48 and 64. The largest value occurs for j = i.

FE analogous to the analysis for D(2) in Section 2.3. Zhao and Wei [58] report excellent results for the
solution of FE. It is useful to consider a detailed analysis of the second derivative matrix operator that
they used analogous to the study in Section 2.3 of the Chebyshev–Lobatto spectral method.

As the sinc function decays slowly as 1/x, Zhao and Wei [58] multiplied the sinc function in Eq. (33)
with a Gaussian window function of the form R	(x) = exp(−x2/2	2) such that

C	,k = sin[�/h(x − xk)]
�/h(x − xk)

exp

(
−(x − xk)

2

2	2

)
. (36)

Thus, the second derivative matrix operator matrix D̃(2) is thus changed to D(2)
	 with elements,

D
(2)
	,jk =

⎧⎪⎪⎨
⎪⎪⎩

2(−1)j−k+1

h2

(
2
 + 1

(j − k)2

)
exp(−
(j − k)2) j 	= k,

−1

3

(
3

	2 + �2

2
	2

)
j = k,

(37)

where 
 = h2/2	2. As R	(x) is a Gaussian and R	(0) = 1, only the off-diagonal elements of D̃(2) are
modified. Zhao and Wei [58] chose the optimum value 	 = 3.5h. Chen and Shizgal [15,14] employed
a similar weighted interpolation scheme for the solution of Sturm–Liouville problems and the Poisson
equation. This was originally proposed by Weideman [53].

We show the matrix elements of the kth row of log10(D̃
(2)
jk ) and log10(D

(2)
	,jk) in Figs. 7(A) and (B),

respectively, versus j for fixed k = 1, 16, 32, 48 and 64, and N = 64. From the results in Fig. 7(A), we
see that the matrix elements of D̃(2) are of the order 104 along the diagonal and decay quickly away from
the diagonal. This should be compared with the matrix elements of D(2)

	 whose elements range from 104

on the diagonal to as small as about 10−65 for the extreme off-diagonal elements. The addition of the
Gaussian window function has resulted in a rapid decrease of the derivative matrix operator away from
the diagonal as expected, and thus the derivative matrix is banded about the diagonal.
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We consider an additional modification of the differentiation algorithm, Eq. (34), such that

f
(2)
N (xj ) ≈

kmax∑
k=kmin

D
(2)
	,jkf (xk), (38)

where

kmin =
{

0 j < W,

j − W j �W,
and kmax =

{
W + j j �N − W,

N j > N − W
(39)

and W is the number of elements on either side of the diagonal that are retained with 2W + 1 < N .
The elements of D(2)

	 decay exponentially as we move away from the diagonal due to the introduction
of the Gaussian window function in Eq. (36). From Fig. 7B we see that the terms neglected vary from
about 10−16 to 10−67. This should not influence the final results as these elements of D(2)

	 are small. This
procedure reduces the bandwidth (RB) from N to 2W + 1 and the derivative algorithm is now more local
than global. In the next section, we report an analysis of the two second derivative matrix operators, D̃(2),
D(2)

	 given by (35) and (37), respectively, with and without RB. While the polynomial interpolation, Eq.
(19), and the associated differentiation algorithm, Eq. (21), can give excellent results on a finite interval,
the interpolation based on the Sinc functions, Eq. (34), and the differentiation algorithm, Eq. (38), involve
truncation errors especially at the boundaries of the finite interval [xL, xR]. With this in mind, we consider
an alternative interpretation of Eq. (38) whereby the differentiation algorithm is always centred on the
point xk with W points to the left and W points to the right of the point of interest. Thus we define a second

derivative matrix operator D
(2)

	 which is of dimension (N + 2W + 1)× (N + 1) and operates on solution
vectors of FE of dimension (N + 2W + 1) of the form

(1, 1, . . . , 1, U(x0) = U(xL) = 1, U(x1), . . . , U(xN) = U(xR) = 0, 0 . . . 0, 0)

with the first W components set equal to unity and the last W components set equal to zero consistent with
the boundary conditions. The (N + 1) components U(xi) are computed from the solution of FE within
the computational domain [xL, xR].

4.1. Analysis of the round-off error for D̃(2), D(2)
	 and D

(2)

	

We consider a solution of FE with the same values used in Section 2.3, that is, xL = −0.2, xR = 0.8,
� = 104 and N = 64. In Fig. 8, we show the computed profile after the first time step for D̃(2) without RB
in Fig. 8(A) and with RB in Fig. 8(B). In both cases, small amplitude oscillations develop at the foot of
the wave front. These oscillations are responsible for the unstable numerical solutions that are obtained.
On the other hand, when the window function R	 is considered, i.e. the second derivative operator matrix
is given by D(2)

	 , there are no oscillations. As a result, a stable solution is obtained.
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Fig. 8. Oscillations of U(x, t) after the first time step. D(2) is given by (35). (A) Without reduced bandwidth (RB), (B) With RB.
� = 104, N = 64.

To understand the origin of the oscillations when the operator D̃(2) with and without RB is considered,
we study the details in the sum involved in the calculation of the second derivative of U0(x), given by

Sj =
N∑

k=0

LjkU0(xk), (40)

where the matrix operator L can be D̃(2) or D(2)
	 with or without RB. For the present analysis, two test

points x = 0.3 and x = 0.8, which correspond to j = N/2 and j = N , respectively, were considered to
approximate the second derivative. The elements in the sum in Eq. (40) alternate in sign along a row, as
shown in Eqs. (35) and (37). The calculation of the second derivative for j =N/2 and j =N , is subject to
round-off errors analogous to the discussion in Section 2.3. The values �2U0(xN/2)/�x2 = 2.93 × 10−7

and �2U0(xN)/�x2 =2.85×10−25 (N =64, N/2=32) are approximated by a difference of two numbers
whose order will depend on the second derivative operator matrix L.

A summary of the order of magnitude of the elements, whose difference will approximate �2U0(x32)/�x2

and �2U0(x64)/�x2 for different second derivative operators L, is presented in Table 3. For the case of
D̃(2) without RB, both �2U0(x32)/�x2 = 2.93 × 10−7 and �2U0(x64)/�x2 = 2.85 × 10−25 are approxi-
mated by the difference of two numbers of the order of 101. This round-off error problem is similar to
the problems encountered with Chebyshev Lobatto collocation discussed previously. The result of such
round-off error is shown in Fig. 8(A).

Similar instabilities are obtained when D̃(2) with RB is considered. However, as seen in Fig. 8(B),
there is a notable improvement after the first time step integration for x = x64. This improvement is a
consequence of the approximation of �2U0(x64)/�x2, that is calculated as a difference of two numbers
of the order of 10−9 (Table 3).

On the other hand, when D(2)
	 given by (37) with and without RB is considered, the solution is free

of oscillations and as a consequence, a stable solution is obtained. The results in Table 3, show the
improvement of the approximation of the second derivative at x = x32 and x = x64.
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Table 3
Maximum value of the elements in the sum, Eq. (40), with L equal to D(2) and D(2)

	

Operator �2U0(x32)

�x2 = 2.93 × 10−7 �2U0(x64)

�x2 = 2.85 × 10−25

L Maxk L32kU0(xk) Maxk L64kU0(xk)

D(2) (No RB) 101 101

D(2) (RB) 101 10−9

D(2)
	 (No RB) 10−4 10−21

D(2)
	 (RB) 10−4 10−21

When reduced bandwidth (RB) is considered, the index in the sum, Eq. (40), runs from −W to W, W = 32.
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Fig. 9. (A) Instability of U(x, t) at x =xL, �=104, �t =1×10−7. The (N +1)× (N +1) second derivative operator considered
is D(2)

	 given by the algorithm, Eqs. (38) and (39); N = 64; total integration time T = 0.004. (B) Time dependent profiles versus
x for �= 104 and times t = 0.001, 0.0015, 0.002, 0.0025 and 0.003 with the (N + 2W + 1)× (N + 1) second derivative operator

D
(2)
	 ; N = 64, W = 32.

It is important to mention that the approximation of �2U0(x64)/�x2 = 2.85 × 10−25, with D(2)
	 , is

numerically inaccurate even though the elements of the sum Eq. (40) range from 10−26 to 10−21. The
inaccurate approximation is due in part to the use of the window function R	, that modifies the structure
of the elements of D̃(2). Since the error in the calculation of �2U0(x64)/�x2 is at most of the order of
10−21, the error generated is small for the time integration considered. This, leads to an excellent solution
for FE with large values of �.

In Fig. 9(A) we show the solution to FE with D(2)
	 . We find a small growing instability near x =xL after

several time steps and which after some time ceases to grow. We find that the amplitude of this instability
increases with N.

The origin of the instability near x=xL in Fig. 9(A), can be understood in terms of the second derivative
operator D(2)

	 applied to U0(x). From Eq. (38), S0 ≈ O(104) is the approximation of �2U0(x0)/�x2 =
O(100). This poor approximation is due to the truncation of the physical domain to [xL, xR]. The effect of
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the truncation on the approximation of �2U0(xk)/�x2 depends directly on the combination of the values
of U0(xk) and D

(2)
	,0k in Eq. (38). For x = xL, the largest value of both U0(xk) and D

(2)
	,0k is for k = 0, and

thus the main contribution of the sum, Eq. (38), is from the first element with magnitude 104. Therefore,
if the vector Un denotes the numerical solution at the nth time step, we find that Un(x2) → � 	= 1 as
n → ∞, as shown in Fig. 9(A). In this case � satisfies the relation

lim
n→∞ D(2)

	 Un|x=x2 = ��(1 − �). (41)

From Eq. (41), it is shown that for any time t = tn the poor approximation of �2U0(x0)/�x2 at x = x1 is
always present and S0 ≈ O(104) for t = tn.

However, when x = xR, the truncation of the domain does not have the same effect as the one shown
in Fig. 9 for x = xL. The quantity to be approximated is of the order of 10−25 whereas the largest element
of Eq. (38) for x = xR is also of the order of 10−25.

However, the instability that occurs near x = xL, does not destabilize the rest of the solution. This
is due to the distribution of the elements of D(2)

	 as shown in Fig. 7(B), and the magnitude of elements
of U0(x). In order to approximate �2U0(x)/�x2 near x = xR, the values of U0(x) near x = xL do not
play any role in the calculation, even if RB is not considered. This is an important difference between
Chebychev–Lobatto collocation and the weighted DSC (Eq. (37)) differentiation matrices, applied to FE.
Whereas in Chebychev–Lobatto collocation, the second derivative at some point x = xk has a strong
dependence on all the Chebychev–Lobatto points, that is, is global, the DSC with the window function
becomes a more local method as only a small number of points, play a major role in the calculations. It
is important to mention that for a fixed value of �, xL and xR, it is not possible to eliminate the instability
at x = xL in Fig. 9(A). One possible alternative to get a good solution on xL and xR, is to increase the
physical domain, keeping only the interval in x where the solution has a good precision. However, this
alternative will break the structure given by �, xL and xR in relation (12), giving as a result a different
numerical problem.

However, when the solution vector is “padded” with W points to the left of xL and W points to the right
of xR such that

U(xk) =
{

1 if − W �k� − 1,

0 if N + 1�k�N + W
(42)

and D
(2)

	 of dimension (N + 2W + 1) × (N + 1) is used, we obtain the result shown in Fig. 9(B) without
the instability at x = xL shown in Fig. 9(A). In this calculation with � = 104 and x ∈ [−0.2, 0.8], we
verified that both �2U0(x)/�x2|x=x1 and its numerical approximation S0 given by Eq. (40) are of order
one O(1). Again the approximation of �2U0(x)/�x2|x=x1 is numerically inaccurate, due to the use of the
window function R	 and because U(x) lies outside the space of bandlimited functions as described in
[46]. However, the numerical solution that is obtained is accurate as now � = 1 in Eq. (41). Therefore,
we obtain

lim
n→∞ D(2)

	 Un|x=x1 = ��(1 − �) = 0 (43)

giving as a result what is shown in Fig. 9(B). Table 4 shows a comparison between the results with the

sinc method with D
(2)

	 and the multidomain method presented in Section 3. The multidomain approach
provides a more accurate result for the largest value of �.
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Table 4
Comparison between multidomain method and the Sinc approach with D

(2)
	 (W = 32) for different values of �

Scheme � M (sub) N points �t T L∞ error

Sinc 104 1 75 1 × 10−7 0.0032 4.976 (−4)
105 1 400 1 × 10−8 0.001 1.395 (−10)
106 1 2800 1 × 10−8 0.00033 4.966 (−8)

Multidomain 104 3 25 1 × 10−7 0.0032 4.839 (−3)

105 20 20 1 × 10−8 0.001 5.115 (−6)
106 140 20 8 × 10−8 0.00033 3.125 (−12)

T is the total time of integration, M is the number of subintervals and N is the number of Chebyshev points per subinterval.

5. Summary

The objective of the present paper was to develop an accurate and efficient pseudospectral solution of
the FE, a prototypical reaction–diffusion equation. The collocation method used the Chebyshev–Gauss–
Lobatto quadrature points. The solutions of FE are characterized by propagating fronts that can be steep
depending on the value of the reaction rate coefficient, �. We compared results for a single domain as
well as for a subdivision of the main domain into subintervals. On a single domain the integration of
the FE lead to instabilities at some time step. These instabilities were a consequence of the numerical
round-off errors arising from the numerical form of the discrete second-order derivative matrix operator.
We have demonstrated the importance of constructing the differential matrix operator accurately. From
a detailed numerical analysis, we have also identified the nature of the round-off errors that occur in the
use of the differential matrix operator in the numerical solution of FE. This complements the work in [5].
The exponentially small values of the solution, U(x, t), combined with the size of the elements in D(2)

which oscillate in sign along a row, was the main source of round-off error, when a single domain was
used.

In order to reduce the effects of round-off error for the Chebyshev collocation, the main domain was
subdivided into smaller subintervals as proposed in [31,56,57]. The multidomain method provided stable
and accurate solutions of FE for values of � as large as 106. We also compared the present numerical
treatment with the DSC approach of Zhao and Wei [58] who employed an interpolation based on the sinc
function. They added a window function R	 to the sinc interpolation function and also limited the number
of terms in the differentiation algorithm to a small number about the diagonal elements of the derivative
matrix operator. We refer to this procedure as reduced bandwidth RB. We also studied the occurrence of
numerical round-off with their method. We found that for fixed values of �, xL and xR, the results with the
multidomain method did not present any problem at the left boundary at x = xL as did the DSC method.
The instability at the left boundary shown in Fig. 9(A) obtained with DSC, is attributed to the truncation
of the spatial domain as discussed in Section 4.1.

Another important result of this paper is the demonstration of the equivalence of the numerical problems
defined by Eqs. (6)–(8) and Eqs. (10), (11). However, for Eqs. (6)–(8), the parameter � plays an important
role and for large � we have the SSW situation, whereas for Eqs. (10), (11) the main parameter is the
length of the numerical domain. The results in the present paper for Fisher’s equation, a prototypical
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reaction–diffusion equation, will play an important role in the application of pseudospectral methods to
more complex physical systems such as the Fitzhugh–Nagumo equation [20,37].
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