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1. Introduction

To solve wave scattering problems in unbounded media using the finite element method, it is necessary to truncate the
domain at some boundaries, to form the computational domain, and to apply a suitable boundary condition allowing the
outgoing waves to radiate away towards infinity. If approximate boundary conditions are used, these should be placed at a
sufficiently large distance from the scatterer, which leads to solutions in large computational domains. If, however, accurate
boundary conditions are used, the computational domain can be reduced so that the truncation boundary is very close to
the scatterer and hence fewer finite elements may be used. But exact NRBCs are non-local and, as a consequence, the global
system becomes dense near the outer boundary.

Another problem arises from the fact that polynomial based finite elements have limited ability to deal with short wave
problems due to the requirement of around ten nodal points per wavelength, or even higher resolution for short wave prob-
lems. To overcome this difficulty, various finite elements which incorporate knowledge about the problem to be solved
were developed. The approach is based on the enrichment of the solution space by analytical solutions. In the case of the
Helmholtz equation, plane waves were used with finite elements in the Partition of Unity Method [1-5], Least-Squares
Method [6], Ultra-Weak Variational Method [7,8] and Discontinuous Enrichment method [9,10]. The reader is directed to ref-
erence [11] for a survey of the activity which took place up to 2004. More recent work could be found, for example, in[12,13].
The developed plane wave basis finite elements have been very successful in reducing the computing effort by up to 90%
[14,15] and it is demonstrated that a discretization level of about 2.5 degrees of freedom per wavelength is sufficient to
achieve engineering accuracy [12,16].

In this work, plane wave basis finite elements are combined with exact and approximate models of NRBCs to solve wave
scattering problems. The problem of interest is a simple model of an acoustic plane wave scattered by a rigid circular cylinder,
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Incident plane wave

Fig. 1. (left) Schematic diagram of the scattering problem, (right) Mesh of the computational domain.

for which the exact solution is known. Various numerical tests are carried out with a fixed mesh and for a wide range of
wave numbers. Three approximate boundary conditions are used. Those are of Bayliss, Gunzburger and Turkel (BGT) [17,18],
Engquist and Majda (EM) [19,20], and Feng (F) [21]. Different orders of these boundary conditions are also considered. The
DtN map is used as an exact NRBC whereas an inhomogeneous Robin condition, through which the analytical solution of the
scattering problem is imposed on the outer boundary of the domain, is used as a reference. Note that approximate NRBCs
have been developed since the late 1970s and a huge literature is available in this field. Regarding the DtN method, it goes
back to Keller and Givoli [22] who developed it for the Helmholtz equation when the outer boundary is a circle or a sphere. It
is a non-local condition and it involves an infinite trigonometric or spherical harmonic series. DtN conditions were derived
for various equations and geometries, and also for single or multiple disjoint computational domains [23]. So much activity
has been taking place in this area and the reader is directed to references [24-28].

2. Formulation of the problem and finite element model

The problem of a horizontal plane wave of potential u; = e scattered by a rigid object §25 of boundary I'y in an infinite
2D medium is considered. The diffracted potential u satisfies the Helmholtz equation

Viu+ku=0 outside £, (1)
with the Neumann boundary condition
Vu-n=—-Vu,-n only, (2)
and the Sommerfeld radiation condition
.1 f0u
lim r2 (— — 1I<u> =0, (3)
r—00 ar

where V2 denotes the Laplacian operator, V is the gradient vector operator, k is the wave number, n is the outward normal
vector to the line boundary I'y and i is the complex imaginary such that i = —1. The time variable is removed by considering
a harmonic steady state. For computational purpose, the region of interest 2 around the scatterer is bounded by an artificial
circular boundary I'; of radius R at which special conditions must be imposed to appear transparent to the propagating waves
(Fig. 1 (left)). The solution of the original scattering problem is approximated by the solution u of the problem defined by
the Helmholtz equation (1) in £2, the Neumann boundary condition (2) and the boundary condition

Vu-n—Bu=0 onl}, (4)

where B is an operator corresponding to a NRBC.
Multiplying the Helmholtz equation (1) by a test function v and integrating by parts, we obtain a weak formulation of
the problem where it is required to find the scattered potential u € H'(£2) such that

/ (Vu- Vo — Kuv)d2 — / vBudl} = —/ vVu; - ndr, (5)
Q I I'n

for all v € H!(£2), where H'(£2) is the usual Sobolev space [29]. An existence and uniqueness results for (5) can
be established, under appropriate assumptions, by virtue of Fredholm’s alternative theorem [30] and continuation
arguments [31].

The computational domain §2 is meshed into n-noded finite elements and the potential field u is written as combination
of m plane waves as follows

n m
u= Z ZNp exp(ikr - dg)A, 4, ©®)

p=1 g=1
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where N, are the usual polynomial shape functions. The coefficients A, ; are the amplitudes of the set of plane waves
associated with each node p. The plane waves are chosen to be evenly distributed such that d; = (cos oy, sin aq)T with
aq = 2mwq/m. The geometry of each finite element is described by the coordinate transformation r = 7 (§) between the
global coordinates r = (x, y) and the local coordinates & = (£, ) € [—1, 1]%. In this work, Galerkin weighting is used and
hence the test functions v take the form of the plane wave enriched shape functions. For the evaluation of element matrices,
high order Gauss-Legendre integration scheme is used in all computations. Let us recall that semi-analytical integration
rules were developed for finite elements with straight edges [32] but were not used in this work because the mesh of the
computational domain contains elements with curved edges (Fig. 1 (right)).

3. Non-reflecting boundary conditions considered

All considered NRBCs are briefly presented in this section. Their explanation is beyond the scope of this paper and the
reader is directed to the corresponding literature. Note that, through the Robin type boundary condition, the analytical
solution of the scattering problem is explicitly imposed on the outer boundary I'. Therefore the corresponding numerical
solution will be considered as a reference solution and will provide information on the PUFEM discretization error. It will,
therefore, allow to distinguish the contribution of the considered NRBCs to the global error.

3.1. Robin type boundary condition—reference solution

The considered scattering problem by a rigid circular cylinder of radius a has an analytical solution. It is given in [33]

o0 / I
i=— ; i"e, I]-Zg((:la)) H,(kr) cosnf, (7)

where r and 6 are the polar coordinates of a considered point. H,, and J, are, respectively, the Hankel function and the Bessel
function of the first kind and order n. The prime in H;, and J denotes differentiation with respect to the argument. The
sequence {&,} is defined by g = 1, &, = 2 for alln > 1. The solution (7) is imposed on the outer boundary I'; through the
Robin boundary condition

Vii-n+iki =g, (8)

where g is the boundary condition such that the exact solution of the problem corresponds to the diffracted potential ii. In
this case, the weak formulation of the scattering problem becomes

/ (Vu- Vo —kzuv)d9+f
2

Iy

ikuvdF:—/ vVu,~ndF+/ vgdrl. (9)
I'n Ip

3.2. Exact boundary condition: DtN

Outside the outer boundary I' the solution u of the scattered potential is expressed as a series sum of harmonics [22]

1T Halkr) [ , o
u(r,0) = P ZS"Hn(kR) ; u(R,6")cosn(@ —6")do’". (10)

n=0

This time, the sequence {¢,} is defined by g9 = % e, = 1foralln > 1and @’ is a reference angle. Considering the normal
derivative of expression (10) along the outer boundary I it is possible to establish the following relation

kS H.(kR) [*"
Bu = — &n n(kR)

- By (R) u(R, 8" cosn(® — 0)do’, (11)
n=0 n 0

which is the DtN boundary condition. The infinite series of the DtN boundary condition is truncated at N and is then no
longer exact. In this case, the DtN map will represent the wave harmonics exactly up to the truncation number. Harari and
Hughes [27] derived a simple relation between the number N of terms retained in the series and the non-dimensional wave
number kR to ensure the uniqueness of the solution, that is N > kR. It is also possible to use the modified DtN operator
introduced in [26], which removes the difficulties due to the truncation of the infinite series and improves the accuracy
regardless of kR and N. In this work, the rule proposed in [27] is used to truncate both expressions (7) and (10).
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Fig. 2. (left) Non-dimensional wave number ka versus the extent R/a of the computational domain around a circular scatterer for a given mesh resolution,
(right) Real part of the diffracted potential, ka = 100, A/a = 0.06, 7 = 3,¢; = 0.1%.

3.3. Approximate NRBCs
As mentioned earlier, the three approximate NRBCs considered are of Bayliss, Gunzburger and Turkel of order 1 and 2

(BGT1 and BGT2), Engquist and Majda of order 2 (EM2), and Feng of order 2 and 3 (F2 and F3). The corresponding operator
B for each boundary condition and for a considered order is given by

BGT1 ik — i, (12)
2R

BGT2 1 (ik — 1)_1 (Zk2 + Sik_ 3 + 182) (13)

2 R R 4R?2  R2320)°

EM2 ik—1—1<ik+1>82 (14)
2R 2k2R? R/ 920’

F2 ik — . <1 +482) (15)
2R 8kR? 220 )’

F3 ik—1—1<ik+1>(l+4az> (16)
2R 8Kk2R? R 920

Note that the first order operators due to Engquist and Majda (EM1), and due to Feng (F1) coincide with the BGT1. Higher
orders than those mentioned in (12)-(16) are not suitable for finite element implementation due to regularity requirement.
Regarding the evaluation of the boundary integral along I'; in expression (5), which involves a partial second derivative of
the unknown potential u with respect to the angular coordinate 6, it is treated as a second order total derivative and hence
the integration by part (17) is possible provided that Iy is a closed curve. In this case, it is a circle of radius R.

02 dvd
n 00 r, 46 d6

4. Numerical results and discussion

The computational domain £2 is meshed into a single layer of 23 finite elements around the scattering cylinder (Fig. 1
(right)). The finite elements are 9-noded and their geometry is interpolated using Lagrange polynomials. At each nodal
point we use 30 plane waves to approximate the scattered potential. We define the parameter 7 as the number of degrees
of freedom (DOF) per wavelength in the problem. It is given by

2 T NeotM
= - , 18
kVR—a (18)

where ny is the total number of nodal points used to mesh the computational domain §2. Using expression (18) and for
a chosen value of the parameter t = 3, the non-dimensional wave number ka is plotted as a function of the extent of the
computational domain R/a. Fig. 2 (left) shows, if the outer boundary I is very close to the scatterer, it is possible to consider
high wave numbers in the problem. For example, for R/a < 1.25, it is possible to consider ka > 100. However, for a large
domain extent, such as R/a > 2, for the mesh resolution and plane wave enrichment used here, only low wave numbers
could be considered, ka < 50.
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Table 1
L, error corresponding to different boundary conditions on I'.
ka T € [%] Robin €, [%] DtN €, [%] BGT1 €, [%] BGT2 €, [%] EM2 € [%] F2 € [%] F3
1 304 0.00099 0.00086 20.9 2.3 19 37 28
2 152 0.0014 0.0017 20.4 3.9 6.3 19 8.2
4 76 0.0025 0.0031 18.2 5.0 45 9.9 45
8 38 0.0056 0.0056 17.2 4.8 47 6.0 4.6
10 30 0.0073 0.0073 17.3 4.7 4.6 5.4 4.6
20 15 0.018 0.018 18.4 4.0 3.9 4.2 3.9
30 10 0.033 0.033 17.0 35 35 3.6 35
40 7.6 0.034 0.035 15.6 33 33 33 33
50 6.1 0.045 0.043 17.2 3.2 3.2 33 3.2
60 5.1 0.049 0.049 15.6 3.1 3.1 3.1 3.1
70 4.3 0.059 0.059 16.0 3.1 3.1 3.1 3.1
80 3.8 0.068 0.067 16.5 3.1 3.1 3.1 3.1
90 34 0.075 0.074 154 3.0 3.0 3.0 3.0
100 3.0 0.11 0.12 16.6 3.0 3.0 3.0 3.0
110 2.8 0.19 0.20 16.0 3.0 3.0 3.0 3.0
120 2.5 0.24 0.41 15.8 3.0 3.0 3.0 3.0

For the following numerical tests, the computational domain extent is chosen such that 1 < R/a < 1.25, which allows
us to consider wave numbers ka > 100. To measure the accuracy of the numerical solution u, we define the L, norm error
€ = |lu — il )/l 2) x 100%, where i is the exact solution. Fig. 2 (right) shows an example of contour plots of the
real part of the scattered potential around the cylinder for ka = 100 when the DtN boundary condition is used on the outer
boundary I'k. In this case, 60 integration points are employed per element, in each spatial direction, for the evaluation of the
element matrices. The L, error is very satisfactory, €; = 0.1%.

Now, the same scattering problem is considered with the parameters taken above and for a range of wave numbers
extending from ka = 1 to ka = 120. The accuracy of the numerical results is estimated for different boundary conditions
applied on 'k and the results are summarised in Table 1. First, it is obvious that the DtN boundary condition performs well
for all wave numbers. Its performance is very similar to that of the Robin boundary condition, in which the analytical solution
is imposed on I'. This proves that the error generated by the DtN boundary condition is negligible and that the L, error is
due only to the PUFEM discretization. However, L, errors generated by all approximate NRBCs show that their contribution
to the error, as boundary conditions, is significant compared to the discretization error.

It is worth mentioning that at low wave numbers, the parameter t indicates that the number of DOF per wavelength
is very high, which leads to a high condition number. Despite this fact, the L, error stays very low [15]. Also, at low wave
numbers, the diameter d of the scattering cylinder is only a fraction of the wavelength A (d = 0.32A for ka = 1). But as the
wave number increases, the scatterer’s diameter becomes multi-wavelength sized (d = 3.2\ for ka = 10 and d = 32\
for ka = 100) and the problem becomes a short wave scattering one. As the finite elements span many wavelengths,
for the numerical evaluation of the element matrices, the number of integration points was increased to accommodate
the oscillatory behaviour of the integrand. For ka = 10, only 10 integration points were used. However, this number was
increases to 70 for ka = 120.

Regarding the approximate NRBCs, it is clear that BGT1 performs poorly for all wave numbers as the L, error remains
higher than 15% all the time while using BGT2 leads to a significant drop in €,. Up to ka = 20, BGT2 leads to a better accuracy
compared to other approximate NRBCs (EM2, F2 and F3). However, for ka > 20, their performances are very similar. At
low wave numbers, the distance between the inner boundary I'y and the outer boundary Iy is very small, in term of the
wavelength. But for increasing wave number, this distance becomes very large in term of A. This is obvious from the simple
relationship (R — a) /1 = k/8m. Despite the fact that I is very far from the scatterer in term of A, at high wave numbers,
the L, error remains around 3%. This is due to I'; which is not at an asymptotic distance from the scatterer.

Let us recall that Shirron [34] compared the approximate NRBCs considered here for polynomial based finite elements.
Canonical problems for rigid scattering were solved where each component of the Anger-Jacobi expansion of the incident
plane wave was considered separately. In a different work, Shirron et al. [35] compared these approximate NRBCs and infinite
elements for exterior Helmholtz problems where each wavelength was modelled with 16 cubic elements. The computational
domain was truncated at a circle of radius R = a + A, which means that the outer boundary gets closer to the scatterer as
the wave number increases.

To further investigate the efficiency of the NRBCs considered in this work, several tests were carried out for the
same scattering problem with the outer boundary I'; being all the time 5\ far from the inner boundary I'y. Hence the
computational domain £2 is an annulus of thickness t = R — a = 5A. Table 2 summarizes the L, error corresponding to the
DtN and BGT2 boundary conditions, for different wave numbers. At low wave numbers, both boundary conditions perform
well as they lead to similar low L, error. In this case, the thickness t of the computational domain is large in term of the
scatterer’s radius a (t/a = 5 for ka = 2w and t/a = 2.5 for ka = 4m ). However, at large wave numbers, the DtN boundary
condition continues to perform well while the error corresponding to BGT2 starts to deteriorate. In this case, the thickness
t becomes a fraction of the radius a (t/a = 0.5 for ka = 20 and t/a = 1/3 for ka = 30x). The BGT2 boundary condition
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Table 2
L, error corresponding to DtN and BGT2 boundary conditions on I'k.
ka=2n,R/a=6 ka = 4m,R/a =35 ka =8m,R/a=2 ka = 207,R/a=1.5 ka =307,R/a =1.333...
T k] el¥ T ¥ el%] T %] el¥ T ek el T l¥] € [%]
DtN BGT2 DtN BGT2 DtN BGT2 DtN BGT2 DtN BGT2
3.1 187 1.75 3.0 1.00 0.92 3.1 0.81 0.82 3.0 0.14 1.03 3.0 0.09 1.98
3.3 056 0.56 32 0.62 0.70 34 029 0.39 33 0.23 1.02 3.3 0.08 1.98
3.6 038 0.36 3.6 0.30 0.30 36 028 0.38 3.6 0.05 1.02 3.6 0.07 1.98

+
+te

Sound sources

Fig. 3. Interfering sound sources inside a polygon shaped window: (left) schematic diagram, (right) mesh of the computational domain.

performs well up to a thickness of the annulus £2 equal to the scatterer’s radius; thatis t/a = 1 for ka = 8x.Fort/a < 1,
the BGT2 L, error starts to increase.

In all computations, most of the CPU time was dedicated to the evaluation of the oscillatory integrals resulting from the
products of plane waves. This is true particularly at high wave numbers where large numbers of integration points are used.
Consequently, the solution time is only a fraction of the time required during the process of matrix assembly. Moreover, the
computational time of the PUFEM-DtN model is slightly higher than the time required when approximate NRBCs are used.
This is due to the DtN operator being non-local.

For the plane wave scattering problem solved above, the inner boundary of the computational domain is circular and
hence the outward normal vector is continuous throughout the whole boundary. In the following numerical experiment,
a test problem is briefly presented in which the outward normal to the inner boundary I'y is discontinuous. Consider the
solution of a wave problem in an unbounded domain due to the interference of various sound sources. The domain of interest
§2 is bounded by an external circular boundary I'; of radius R, on which the DtN boundary condition is used, and by an
internal polygon shaped boundary I'y, on which the normal velocity of the interfering sources is specified (Fig. 3 (left)). This
technique which consists of imposing a known normal velocity on the inner boundary was used in [36] to assess the stability
of infinite element schemes for transient wave problems. In practical applications, the problem inside /'y may involve sound
sources and reflecting surfaces of general shapes. For such cases, it is difficult to assess the accuracy of the results as analytical
solutions are not available.

For the interference test problem considered here, the equivalent variational formulation to (5) is given by

/(Vu~Vv—k2uv)d.Q—/ vBudFR:/ vVw - ndr, (19)
2 Ik In

where w is representing the sound sources inside I'y. As an example, 4 radial sound sources placed at different locations are
considered to interfere. The computational domain 2 is limited by an inner boundary in the shape of a regular octagon and
an outer circular boundary. It is meshed into 24 elements with 9 nodes each (Fig. 3 (right)). The function w is given by the
sum of Hankel functions of first kind and order zero with sources located at radii r. Thatis w = Z;.l:] Ho(k|r — rj]), with
r; = (0.3,0.3)7,(—0.3,0.3)T,(—0.3, —0.3)T and (0.3, —0.3) for j = 1, 2, 3 and 4, respectively. The L; error of the solution
is obtained from the expression previously defined where i is replaced by w. This test example is run for two extreme cases
of the wave number ka = 10 and ka = 120, and under similar conditions of the scattering problem solved earlier regarding
the number of plane waves attached at each node, the number of integration points and the number of components in the
DtN series. The only difference lies in the geometry of the computational domain which is bounded by an inner octagonal
boundary I'y with corners placed at a unit distance a from the center and the outer circular boundary I' placed atR/a = 1.2.
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Fig. 4. Sound sources inside a polygon shaped window, real part of the potential: (left) ka = 10, t = 32, ¢; = 0.007%, (right) ka = 120, T = 2.6,
€, = 0.8%.

Fig. 4 shows the real part of the potential throughout the computational domain. For ka = 10, the outer boundary is around
X /3 away from the corners of the octagon. The L, error is very low, €, = 0.007%, and is due to the use of many more DOF
per wavelength than usually required, t = 32. For ka = 120, the outer boundary is about 4A away from the corners of the
octagon. The L, error shows a very good accuracy of the results, e, = 0.8%, for a discretization level of only 2.6 DOF per
wavelength.

5. Conclusion

In this work, a wave scattering problem is solved with a fixed mesh for a wide range of wave numbers. The used PUFEM
model allows to compute many wavelengths per nodal spacing provided that enough integration points are used in the
evaluation of the element matrices. The numerical results show that the combined model PUFEM-DtN provides accurate
results even when the outer boundary of the computational domain is very close to the scatterer. Regarding approximate
NRBCs, it is found that, at low wave numbers, BGT2 is more accurate than EM2, F2 and F3. However, at high wave numbers,
they all lead to similar accuracy. Moreover, at high wave numbers, when the outer boundary is very close to the scatterer in
term of the absolute distance, but many wavelengths away from it, approximate NRBCs perform poorly. This is due to the
fact that approximate radiation conditions are based on asymptotic expansions and hence are not valid in the immediate
surrounding of the scattering object. It seems that approximate NRBCs lead to optimal results when the outer boundary is
placed at a distance equal to the radius of the scattering object.

The DtN operator, compared with the approximate NRBCs for identical computational domains, leads to better accuracy
results. However, it is more demanding at the implementation level because of its non-local nature. As a consequence, it
leads to higher computational effort during the integration along the outer boundary and during the solution process. But
this does not mean that the DtN model is computationally more expensive. In fact, a model using approximate NRBCs would
be computationally more expensive than a model using the DtN if the same accuracy is sought, because the former would
require a much larger domain. Therefore, the choice of the best option between PUFEM-DtN and PUFEM-approximate NRBCs
must be based on practical considerations; either go for a reduced computational domain with a global matrix dense near
the outer boundary, for PUFEM-DtN, or choose a larger computational domain with a sparse global matrix, for PUFEM-
approximate NRBCs.

Last, it should be possible to extend the combined model of PUFEM-DtN to three dimensions, in which case many
real problems could be solved with a significantly reduced computational domain. It is believed that by meshing the
computational domain with a single layer of multi-wavelength sized finite elements around the scatterer, this will reduce
the size of the global matrix and lead to solutions of 3D problems for a wide range of wave numbers with a reasonable
computing effort.
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